Advertisement for orthosearch.org.uk
Results 1 - 100 of 2074
Results per page:
Bone & Joint Research
Vol. 12, Issue 4 | Pages 285 - 293
17 Apr 2023
Chevalier A Vermue H Pringels L Herregodts S Duquesne K Victor J Loccufier M

Aims. The goal was to evaluate tibiofemoral knee joint kinematics during stair descent, by simulating the full stair descent motion in vitro. The knee joint kinematics were evaluated for two types of knee implants: bi-cruciate retaining and bi-cruciate stabilized. It was hypothesized that the bi-cruciate retaining implant better approximates native kinematics. Methods. The in vitro study included 20 specimens which were tested during a full stair descent with physiological muscle forces in a dynamic knee rig. Laxity envelopes were measured by applying external loading conditions in varus/valgus and internal/external direction. Results. The laxity results show that both implants are capable of mimicking the native internal/external-laxity during the controlled lowering phase. The kinematic results show that the bi-cruciate retaining implant tends to approximate the native condition better compared to bi-cruciate stabilized implant. This is valid for the internal/external rotation and the anteroposterior translation during all phases of the stair descent, and for the compression-distraction of the knee joint during swing and controlled lowering phase. Conclusion. The results show a better approximation of the native kinematics by the bi-cruciate retaining knee implant compared to the bi-cruciate stabilized knee implant for internal/external rotation and anteroposterior translation. Whether this will result in better patient outcomes remains to be investigated. Cite this article: Bone Joint Res 2023;12(4):285–293


Bone & Joint Research
Vol. 13, Issue 9 | Pages 485 - 496
13 Sep 2024
Postolka B Taylor WR Fucentese SF List R Schütz P

Aims. This study aimed to analyze kinematics and kinetics of the tibiofemoral joint in healthy subjects with valgus, neutral, and varus limb alignment throughout multiple gait activities using dynamic videofluoroscopy. Methods. Five subjects with valgus, 12 with neutral, and ten with varus limb alignment were assessed during multiple complete cycles of level walking, downhill walking, and stair descent using a combination of dynamic videofluoroscopy, ground reaction force plates, and optical motion capture. Following 2D/3D registration, tibiofemoral kinematics and kinetics were compared between the three limb alignment groups. Results. No significant differences for the rotational or translational patterns between the different limb alignment groups were found for level walking, downhill walking, or stair descent. Neutral and varus aligned subjects showed a mean centre of rotation located on the medial condyle for the loaded stance phase of all three gait activities. Valgus alignment, however, resulted in a centrally located centre of rotation for level and downhill walking, but a more medial centre of rotation during stair descent. Knee adduction/abduction moments were significantly influenced by limb alignment, with an increasing knee adduction moment from valgus through neutral to varus. Conclusion. Limb alignment was not reflected in the condylar kinematics, but did significantly affect the knee adduction moment. Variations in frontal plane limb alignment seem not to be a main modulator of condylar kinematics. The presented data provide insights into the influence of anatomical parameters on tibiofemoral kinematics and kinetics towards enhancing clinical decision-making and surgical restoration of natural knee joint motion and loading. Cite this article: Bone Joint Res 2024;13(9):485–496


Bone & Joint Open
Vol. 3, Issue 5 | Pages 390 - 397
1 May 2022
Hiranaka T Suda Y Saitoh A Tanaka A Arimoto A Koide M Fujishiro T Okamoto K

The kinematic alignment (KA) approach to total knee arthroplasty (TKA) has recently increased in popularity. Accordingly, a number of derivatives have arisen and have caused confusion. Clarification is therefore needed for a better understanding of KA-TKA. Calipered (or true, pure) KA is performed by cutting the bone parallel to the articular surface, compensating for cartilage wear. In soft-tissue respecting KA, the tibial cutting surface is decided parallel to the femoral cutting surface (or trial component) with in-line traction. These approaches are categorized as unrestricted KA because there is no consideration of leg alignment or component orientation. Restricted KA is an approach where the periarthritic joint surface is replicated within a safe range, due to concerns about extreme alignments that have been considered ‘alignment outliers’ in the neutral mechanical alignment approach. More recently, functional alignment and inverse kinematic alignment have been advocated, where bone cuts are made following intraoperative planning, using intraoperative measurements acquired with computer assistance to fulfill good coordination of soft-tissue balance and alignment. The KA-TKA approach aims to restore the patients’ own harmony of three knee elements (morphology, soft-tissue balance, and alignment) and eventually the patients’ own kinematics. The respective approaches start from different points corresponding to one of the elements, yet each aim for the same goal, although the existing implants and techniques have not yet perfectly fulfilled that goal


Bone & Joint Research
Vol. 11, Issue 10 | Pages 739 - 750
4 Oct 2022
Shu L Abe N Li S Sugita N

Aims. To fully quantify the effect of posterior tibial slope (PTS) angles on joint kinematics and contact mechanics of intact and anterior cruciate ligament-deficient (ACLD) knees during the gait cycle. Methods. In this controlled laboratory study, we developed an original multiscale subject-specific finite element musculoskeletal framework model and integrated it with the tibiofemoral and patellofemoral joints with high-fidelity joint motion representations, to investigate the effects of 2.5° increases in PTS angles on joint dynamics and contact mechanics during the gait cycle. Results. The ACL tensile force in the intact knee was significantly affected with increasing PTS angle. Considerable differences were observed in kinematics and initial posterior femoral translation between the intact and ACLD joints as the PTS angles increased by more than 2.5° (beyond 11.4°). Additionally, a higher contact stress was detected in the peripheral posterior horn areas of the menisci with increasing PTS angle during the gait cycle. The maximum tensile force on the horn of the medial meniscus increased from 73.9 N to 172.4 N in the ACLD joint with increasing PTS angles. Conclusion. Knee joint instability and larger loading on the medial meniscus were found on the ACLD knee even at a 2.5° increase in PTS angle (larger than 11.4°). Our biomechanical findings support recent clinical evidence of a high risk of failure of ACL reconstruction with steeper PTS and the necessity of ACL reconstruction, which would prevent meniscus tear and thus the development or progression of osteoarthritis. Cite this article: Bone Joint Res 2022;11(10):739–750


Bone & Joint Research
Vol. 11, Issue 4 | Pages 226 - 228
20 Apr 2022
Hiranaka T Suda Y Saitoh A Koide M Tanaka A Arimoto A Fujishiro T Okamoto K


The Bone & Joint Journal
Vol. 105-B, Issue 1 | Pages 35 - 46
1 Jan 2023
Mills K Wymenga AB Bénard MR Kaptein BL Defoort KC van Hellemondt GG Heesterbeek PJC

Aims. The aim of this study was to compare a bicruciate-retaining (BCR) total knee arthroplasty (TKA) with a posterior cruciate-retaining (CR) TKA design in terms of kinematics, measured using fluoroscopy and stability as micromotion using radiostereometric analysis (RSA). Methods. A total of 40 patients with end-stage osteoarthritis were included in this randomized controlled trial. All patients performed a step-up and lunge task in front of a monoplane fluoroscope one year postoperatively. Femorotibial contact point (CP) locations were determined at every flexion angle and compared between the groups. RSA images were taken at baseline, six weeks, three, six, 12, and 24 months postoperatively. Clinical and functional outcomes were compared postoperatively for two years. Results. The BCR-TKA demonstrated a kinematic pattern comparable to the natural knee’s screw-home mechanism in the step-up task. In the lunge task, the medial CP of the BCR-TKA was more anterior in the early flexion phase, while laterally the CP was more posterior during the entire movement cycle. The BCR-TKA group showed higher tibial migration. No differences were found for the clinical and functional outcomes. Conclusion. The BCR-TKA shows a different kinematic pattern in early flexion/late extension compared to the CR-TKA. The difference between both implants is mostly visible in the flexion phase in which the anterior cruciate ligament is effective; however, both designs fail to fully replicate the motion of a natural knee. The higher migration of the BCR-TKA was concerning and highlights the importance of longer follow-up. Cite this article: Bone Joint J 2023;105-B(1):35–46


Bone & Joint Research
Vol. 11, Issue 7 | Pages 494 - 502
20 Jul 2022
Kwon HM Lee J Koh Y Park KK Kang K

Aims. A functional anterior cruciate ligament (ACL) or posterior cruciate ligament (PCL) has been assumed to be required for patients undergoing unicompartmental knee arthroplasty (UKA). However, this assumption has not been thoroughly tested. Therefore, this study aimed to assess the biomechanical effects exerted by cruciate ligament-deficient knees with medial UKAs regarding different posterior tibial slopes. Methods. ACL- or PCL-deficient models with posterior tibial slopes of 1°, 3°, 5°, 7°, and 9° were developed and compared to intact models. The kinematics and contact stresses on the tibiofemoral joint were evaluated under gait cycle loading conditions. Results. Anterior translation increased in ACL-deficient UKA cases compared with intact models. In contrast, posterior translation increased in PCL-deficient UKA cases compared with intact models. As the posterior tibial slope increased, anterior translation of ACL-deficient UKA increased significantly in the stance phase, and posterior translation of PCL-deficient UKA increased significantly in the swing phase. Furthermore, as the posterior tibial slope increased, contact stress on the other compartment increased in cruciate ligament-deficient UKAs compared with intact UKAs. Conclusion. Fixed-bearing medial UKA is a viable treatment option for patients with cruciate ligament deficiency, providing a less invasive procedure and allowing patient-specific kinematics to adjust posterior tibial slope. Patient selection is important, and while AP kinematics can be compensated for by posterior tibial slope adjustment, rotational stability is a prerequisite for this approach. ACL- or PCL-deficient UKA that adjusts the posterior tibial slope might be an alternative treatment option for a skilled surgeon. Cite this article: Bone Joint Res 2022;11(7):494–502


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 59 - 66
1 Jun 2021
Abhari S Hsing TM Malkani MM Smith AF Smith LS Mont MA Malkani AL

Aims. Alternative alignment concepts, including kinematic and restricted kinematic, have been introduced to help improve clinical outcomes following total knee arthroplasty (TKA). The purpose of this study was to evaluate the clinical results, along with patient satisfaction, following TKA using the concept of restricted kinematic alignment. Methods. A total of 121 consecutive TKAs performed between 11 February 2018 to 11 June 2019 with preoperative varus deformity were reviewed at minimum one-year follow-up. Three knees were excluded due to severe preoperative varus deformity greater than 15°, and a further three due to requiring revision surgery, leaving 109 patients and 115 knees to undergo primary TKA using the concept of restricted kinematic alignment with advanced technology. Patients were stratified into three groups based on the preoperative limb varus deformity: Group A with 1° to 5° varus (43 knees); Group B between 6° and 10° varus (56 knees); and Group C with varus greater than 10° (16 knees). This study group was compared with a matched cohort of 115 TKAs and 115 patients using a neutral mechanical alignment target with manual instruments performed from 24 October 2016 to 14 January 2019. Results. Mean overall patient satisfaction for the entire cohort was 4.7 (SE 0.1) on a 5-point Likert scale, with 93% being either very satisfied or satisfied compared with a Likert of 4.3 and patient satisfaction of 81% in the mechanical alignment group (p < 0.001 and p < 0.006 respectively). At mean follow-up of 17 months (11 to 27), the mean overall Likert, Knee Injury and Osteoarthritis Outcome Score for Joint Replacement, Western Ontario and McMaster Universities Osteoarthritis Index, Forgotten Joint Score, and Knee Society Knee and Function Scores were significantly better in the kinematic group than in the neutral mechanical alignment group. The most common complication in both groups was contracture requiring manipulation under anaesthesia, involving seven knees (6.1%) in the kinematic group and nine knees (7.8%) in the mechanical alignment group. Conclusion. With the advent of advanced technology, and the ability to obtain accurate bone cuts, the target limb alignment, and soft-tissue balance within millimetres, using a restricted kinematic alignment concept demonstrated excellent patient satisfaction following primary TKA. Longer-term analysis is required as to the durability of this method. Cite this article: Bone Joint J 2021;103-B(6 Supple A):59–66


Bone & Joint Open
Vol. 5, Issue 7 | Pages 592 - 600
18 Jul 2024
Faschingbauer M Hambrecht J Schwer J Martin JR Reichel H Seitz A

Aims. Patient dissatisfaction is not uncommon following primary total knee arthroplasty. One proposed method to alleviate this is by improving knee kinematics. Therefore, we aimed to answer the following research question: are there significant differences in knee kinematics based on the design of the tibial insert (cruciate-retaining (CR), ultra-congruent (UC), or medial congruent (MC))?. Methods. Overall, 15 cadaveric knee joints were examined with a CR implant with three different tibial inserts (CR, UC, and MC) using an established knee joint simulator. The effects on coronal alignment, medial and lateral femoral roll back, femorotibial rotation, bony rotations (femur, tibia, and patella), and patellofemoral length ratios were determined. Results. No statistically significant differences were found regarding coronal alignment (p = 0.087 to p = 0.832). The medial congruent insert demonstrated restricted femoral roll back (mean medial 37.57 mm; lateral 36.34 mm), while the CR insert demonstrated the greatest roll back (medial 42.21 mm; lateral 37.88 mm; p < 0.001, respectively). Femorotibial rotation was greatest with the CR insert with 2.45° (SD 4.75°), then the UC insert with 1.31° (SD 4.15°; p < 0.001), and lowest with the medial congruent insert with 0.8° (SD 4.24°; p < 0.001). The most pronounced patella shift, but lowest patellar rotation, was noted with the CR insert. Conclusion. The MC insert demonstrated the highest level of constraint of these inserts. Femoral roll back, femorotibial rotation, and single bony rotations were lowest with the MC insert. The patella showed less shifting with the MC insert, but there was significantly increased rotation. While the medial congruent insert was found to have highest constraint, it remains uncertain if this implant recreates native knee kinematics or if this will result in improved patient satisfaction. Cite this article: Bone Jt Open 2024;5(7):592–600


The Bone & Joint Journal
Vol. 103-B, Issue 1 | Pages 105 - 112
1 Jan 2021
Lynch JT Perriman DM Scarvell JM Pickering MR Galvin CR Neeman T Smith PN

Aims. Modern total knee arthroplasty (TKA) prostheses are designed to restore near normal kinematics including high flexion. Kneeling is a high flexion, kinematically demanding activity after TKA. The debate about design choice has not yet been informed by six-degrees-of-freedom in vivo kinematics. This prospective randomized clinical trial compared kneeling kinematics in three TKA designs. Methods. In total, 68 patients were randomized to either a posterior stabilized (PS-FB), cruciate-retaining (CR-FB), or rotating platform (CR-RP) design. Of these patients, 64 completed a minimum one year follow-up. Patients completed full-flexion kneeling while being imaged using single-plane fluoroscopy. Kinematics were calculated by registering the 3D implant models onto 2D-dynamic fluoroscopic images and exported for analysis. Results. CR-FB designs had significantly lower maximal flexion (mean 116° (SD 2.1°)) compared to CR-RP (123° (SD 1.6°)) and PS-FB (125° (SD 2.1°)). The PS-FB design displayed a more posteriorly positioned femur throughout flexion. Furthermore, the CR-RP femur was more externally rotated throughout kneeling. Finally, individual patient kinematics showed high degrees of variability within all designs. Conclusion. The increased maximal flexion found in the PS-FB and CR-RP designs were likely achieved in different ways. The PS-FB design uses a cam-post to hold the femur more posteriorly preventing posterior impingement. The external rotation within the CR-RP design was surprising and hasn’t previously been reported. It is likely due to the polyethylene bearing being decoupled from flexion. The findings of this study provide insights into the function of different knee arthroplasty designs in the context during deep kneeling and provide clinicians with a more kinematically informed choice for implant selection and may allow improved management of patients' functional expectations. Cite this article: Bone Joint J 2021;103-B(1):105–112


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 98 - 98
11 Apr 2023
Williams D Chapman G Esquivel L Brockett C
Full Access

To be able to assess the biomechanical and functional effects of ankle injury and disease it is necessary to characterise healthy ankle kinematics. Due to the anatomical complexity of the ankle, it is difficult to accurately measure the Tibiotalar and Subtalar joint angles using traditional marker-based motion capture techniques. Biplane Video X-ray (BVX) is an imaging technique that allows direct measurement of individual bones using high-speed, dynamic X-rays. The objective is to develop an in-vivo protocol for the hindfoot looking at the tibiotalar and subtalar joint during different activities of living. A bespoke raised walkway was manufactured to position the foot and ankle inside the field of view of the BVX system. Three healthy volunteers performed three gait and step-down trials while capturing Biplane Video X-Ray (125Hz, 1.25ms, 80kVp and 160 mA) and underwent MR imaging (Magnetom 3T Prisma, Siemens) which were manually segmented into 3D bone models (Simpleware Scan IP, Synopsis). Bone position and orientation for the Talus, Calcaneus and Tibia were calculated by manual matching of 3D Bone models to X-Rays (DSX Suite, C-Motion, Inc.). Kinematics were calculated using MATLAB (MathWorks, Inc. USA). Pilot results showed that for the subtalar joint there was greater range of motion (ROM) for Inversion and Dorsiflexion angles during stance phase of gait and reduced ROM for Internal Rotation compared with step down. For the tibiotalar joint, Gait had greater inversion and internal rotation ROM and reduced dorsiflexion ROM when compared with step down. The developed protocol successfully calculated the in-vivo kinematics of the tibiotalar and subtalar joints for different dynamic activities of daily living. These pilot results show the different kinematic profiles between two different activities of daily living. Future work will investigate translation kinematics of the two joints to fully characterise healthy kinematics


The Bone & Joint Journal
Vol. 103-B, Issue 5 | Pages 822 - 827
1 May 2021
Buzzatti L Keelson B Vanlauwe J Buls N De Mey J Vandemeulebroucke J Cattrysse E Scheerlinck T

Evaluating musculoskeletal conditions of the lower limb and understanding the pathophysiology of complex bone kinematics is challenging. Static images do not take into account the dynamic component of relative bone motion and muscle activation. Fluoroscopy and dynamic MRI have important limitations. Dynamic CT (4D-CT) is an emerging alternative that combines high spatial and temporal resolution, with an increased availability in clinical practice. 4D-CT allows simultaneous visualization of bone morphology and joint kinematics. This unique combination makes it an ideal tool to evaluate functional disorders of the musculoskeletal system. In the lower limb, 4D-CT has been used to diagnose femoroacetabular impingement, patellofemoral, ankle and subtalar joint instability, or reduced range of motion. 4D-CT has also been used to demonstrate the effect of surgery, mainly on patellar instability. 4D-CT will need further research and validation before it can be widely used in clinical practice. We believe, however, it is here to stay, and will become a reference in the diagnosis of lower limb conditions and the evaluation of treatment options. Cite this article: Bone Joint J 2021;103-B(5):822–827


Bone & Joint Research
Vol. 9, Issue 11 | Pages 761 - 767
1 Nov 2020
Hada M Mizu-uchi H Okazaki K Murakami K Kaneko T Higaki H Nakashima Y

Aims. This study aims to investigate the effects of posterior tibial slope (PTS) on knee kinematics involved in the post-cam mechanism in bi-cruciate stabilized (BCS) total knee arthroplasty (TKA) using computer simulation. Methods. In total, 11 different PTS (0° to 10°) values were simulated to evaluate the effect of PTS on anterior post-cam contact conditions and knee kinematics in BCS TKA during weight-bearing stair climbing (from 86° to 6° of knee flexion). Knee kinematics were expressed as the lowest points of the medial and lateral femoral condyles on the surface of the tibial insert, and the anteroposterior translation of the femoral component relative to the tibial insert. Results. Anterior post-cam contact in BCS TKA was observed with the knee near full extension if PTS was 6° or more. BCS TKA showed a bicondylar roll forward movement from 86° to mid-flexion, and two different patterns from mid-flexion to knee extension: screw home movement without anterior post-cam contact and bicondylar roll forward movement after anterior post-cam contact. Knee kinematics in the simulation showed similar trends to the clinical in vivo data and were almost within the range of inter-specimen variability. Conclusion. Postoperative knee kinematics in BCS TKA differed according to PTS and anterior post-cam contact; in particular, anterior post-cam contact changed knee kinematics, which may affect the patient’s perception of the knee during activities. Cite this article: Bone Joint Res 2020;9(11):761–767


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 59 - 65
1 Jun 2020
Kwon Y Arauz P Peng Y Klemt C

Aims. The removal of the cruciate ligaments in total knee arthroplasty (TKA) has been suggested as a potential contributing factor to patient dissatisfaction, due to alteration of the in vivo biomechanics of the knee. Bicruciate retaining (BCR) TKA allows the preservation of the cruciate ligaments, thus offering the potential to reproduce healthy kinematics. The aim of this study was to compare in vivo kinematics between the operated and contralateral knee in patients who have undergone TKA with a contemporary BCR design. Methods. A total of 29 patients who underwent unilateral BCR TKA were evaluated during single-leg deep lunges and sit-to-stand tests using a validated computer tomography and fluoroscopic imaging system. In vivo six-degrees of freedom (6DOF) kinematics were compared between the BCR TKA and the contralateral knee. Results. During single-leg deep lunge, BCR TKAs showed significantly less mean posterior femoral translation (13 mm; standard deviation (SD) 4) during terminal flexion, compared with the contralateral knee (16.6 mm, SD 3.7; p = 0.001). Similarly, BCR TKAs showed significantly less mean femoral rollback (11.6 mm (SD 4.5) vs 14.4 mm (SD 4.6); p < 0.043) during sit-to-stand. BCR TKAs showed significantly reduced internal rotation during many parts of the strenuous flexion activities particularly during high-flexion lunge (4° (SD 5.6°) vs 6.5° (SD 6.1°); p = 0.051) and during sit-to-stand (4.5° (SD 6°) vs 6.9° (SD 6.3°); p = 0.048). Conclusion. The contemporary design of BCR TKA showed asymmetrical flexion-extension and internal-external rotation, suggesting that the kinematics are not entirely reproduced during strenuous activities. Future studies are required to establish the importance of patient factors, component orientation and design, in optimizing kinematics in patients who undergo BCR TKA. Cite this article: Bone Joint J 2020;102-B(6 Supple A):59–65


Bone & Joint Open
Vol. 3, Issue 8 | Pages 656 - 665
23 Aug 2022
Tran T McEwen P Peng Y Trivett A Steele R Donnelly W Clark G

Aims. The mid-term results of kinematic alignment (KA) for total knee arthroplasty (TKA) using image derived instrumentation (IDI) have not been reported in detail, and questions remain regarding ligamentous stability and revisions. This paper aims to address the following: 1) what is the distribution of alignment of KA TKAs using IDI; 2) is a TKA alignment category associated with increased risk of failure or poor patient outcomes; 3) does extending limb alignment lead to changes in soft-tissue laxity; and 4) what is the five-year survivorship and outcomes of KA TKA using IDI?. Methods. A prospective, multicentre, trial enrolled 100 patients undergoing KA TKA using IDI, with follow-up to five years. Alignment measures were conducted pre- and postoperatively to assess constitutional alignment and final implant position. Patient-reported outcome measures (PROMs) of pain and function were also included. The Australian Orthopaedic Association National Joint Arthroplasty Registry was used to assess survivorship. Results. The postoperative HKA distribution varied from 9° varus to 11° valgus. All PROMs showed statistical improvements at one year (p < 0.001), with further improvements at five years for Knee Osteoarthritis Outcome Score symptoms (p = 0.041) and Forgotten Joint Score (p = 0.011). Correlation analysis showed no difference (p = 0.610) between the hip-knee-ankle and joint line congruence angle at one and five years. Sub-group analysis showed no difference in PROMs for patients placed within 3° of neutral compared to those placed > 3°. There were no revisions for tibial loosening; however, there were reports of a higher incidence of poor patella tracking and patellofemoral stiffness. Conclusion. PROMs were not impacted by postoperative alignment category. Ligamentous stability was maintained at five years with joint line obliquity. There were no revisions for tibial loosening despite a significant portion of tibiae placed in varus; however, KA executed with IDI resulted in a higher than anticipated rate of patella complications. Cite this article: Bone Jt Open 2022;3(8):656–665


The Bone & Joint Journal
Vol. 101-B, Issue 11 | Pages 1325 - 1330
1 Nov 2019
White J Couzens G Jeffery C

The wrist is a complex joint involving many small bones and complicated kinematics. It has, therefore, been traditionally difficult to image and ascertain information about kinematics when making a diagnosis. Although MRI and fluoroscopy have been used, they both have limitations. Recently, there has been interest in the use of 4D-CT in imaging the wrist. This review examines the literature regarding the use of 4D-CT in imaging the wrist to assess kinematics and its ability to diagnose pathology. Some questions remain about the description of normal ranges, the most appropriate method of measuring intercarpal stability, the accuracy compared with established standards, and the place of 4D-CT in postoperative assessment. Cite this article: Bone Joint J 2019;101-B:1325–1330


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 17 - 17
1 Nov 2021
Sosio C Sirtori P Ciliberto R Lombardo MDM Mangiavini L Peretti G
Full Access

Introduction and Objective. Kinematic Alignment (KA) is a surgical technique that restores the native knee alignment following Total Knee Arthroplasty (TKA). The association of this technique with a medial pivot implant design (MP) attempts to reestablish the physiological kinematics of the knee. Aim of this study is to analyze the clinical and radiological outcomes of patients undergoing MP-TKA with kinematic alignment, and to assess the effect of the limb alignment and the orientation of the tibial component on the clinical outcomes. Materials and Methods. We retrospectively analyzed 63 patients who underwent kinematic aligned medial pivot TKA from September 2018 to January 2020. Patient-Related Outcomes (PROMs) and radiological measures were collected at baseline, 3 months and 12 months after surgery. Results. We demonstrated a significant improvement in the clinical and functional outcomes starting from 3 months after surgery. This finding was also confirmed at the longest follow-up. The clinical improvement was independent from the limb alignment and from the orientation of the tibial component. The radiological analysis showed that the patient's native limb alignment was restored, and that the joint line orientation maintained the parallelism to the floor when standing. This latter result has a particular relevance, as it may positively influence the outcomes, reducing the risk of wear and mobilization of the implant. Conclusions. The association of kinematic alignment and a medial pivot TKA implant allows for a fast recovery, good clinical and functional outcomes, independently from the final limb alignment and the tibial component orientation


Bone & Joint Research
Vol. 8, Issue 12 | Pages 593 - 600
1 Dec 2019
Koh Y Lee J Lee H Kim H Chung H Kang K

Aims. Commonly performed unicompartmental knee arthroplasty (UKA) is not designed for the lateral compartment. Additionally, the anatomical medial and lateral tibial plateaus have asymmetrical geometries, with a slightly dished medial plateau and a convex lateral plateau. Therefore, this study aims to investigate the native knee kinematics with respect to the tibial insert design corresponding to the lateral femoral component. Methods. Subject-specific finite element models were developed with tibiofemoral (TF) and patellofemoral joints for one female and four male subjects. Three different TF conformity designs were applied. Flat, convex, and conforming tibial insert designs were applied to the identical femoral component. A deep knee bend was considered as the loading condition, and the kinematic preservation in the native knee was investigated. Results. The convex design, the femoral rollback, and internal rotation were similar to those of the native knee. However, the conforming design showed a significantly decreased femoral rollback and internal rotation compared with that of the native knee (p < 0.05). The flat design showed a significant difference in the femoral rollback; however, there was no difference in the tibial internal rotation compared with that of the native knee. Conclusion. The geometry of the surface of the lateral tibial plateau determined the ability to restore the rotational kinematics of the native knee. Surgeons and implant designers should consider the geometry of the anatomical lateral tibial plateau as an important factor in the restoration of native knee kinematics after lateral UKA. Cite this article: Bone Joint Res 2019;8:593–600


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 83 - 83
1 Dec 2020
Shah DS Taylan O Labey L Scheys L
Full Access

Understanding the long-term effects of total knee arthroplasty (TKA) on joint kinematics is vital to assess the success of the implant design and surgical procedure. However, while in vitro cadaveric studies quantifying post-operative biomechanics primarily reflect joint behaviour immediately after surgery,. 1. in vivo studies comprising of follow-up TKA patients often reflect joint behaviour a few months after surgery. 2. Therefore, the aim of this cadaveric study was to explore the long-term effects of TKA on tibiofemoral kinematics of a donor specimen, who had already undergone bilateral TKA, and compare them to post-operative kinematics reported in the literature. Two fresh-frozen lower limbs from a single donor (male, age: 83yr, ht: 1.83m, wt: 86kg), who had undergone bilateral TKA (Genesis II, Smith&Nephew, Memphis, USA) 19 years prior to his demise, were obtained following ethical approval from the KU Leuven institutional board. The specimens were imaged using computed tomography (CT) and tested in a validated knee simulator. 3. replicating active squatting and varus-valgus laxity tests. Tibiofemoral kinematics were recorded using an optical motion capture system and compared to various studies in the literature using the same implant – experimental studies based on cadaveric specimens (CAD). 1,4. and an artificial specimen (ART). 5. , and a computational study (COM). 6. . Maximum tibial abduction during laxity tests for the left leg (3.54°) was comparable to CAD (3.30°), while the right leg exhibited much larger joint laxity (8.52°). Both specimens exhibited valgus throughout squatting (left=2.03±0.57°, right=5.81±0.19°), with the change in tibial abduction over the range of flexion (left=1.89°, right=0.64°) comparable to literature (CAD=1.28°, COM=2.43°). The left leg was externally rotated (8.00±0.69°), while the right leg internally rotated (−15.35±1.50°), throughout squatting, with the change in tibial rotation over the range of flexion (left=2.61°, right=4.79°) comparable to literature (CAD=5.52°, COM=4.15°). Change in the femoral anteroposterior translation over the range of flexion during squatting for both specimens (left=14.88mm, right=6.76mm) was also comparable to literature (ART=13.40mm, COM=20.20mm). Although TKA was reportedly performed at the same time on both legs of the donor by the same surgeon, there was a stark difference in their post-operative joint kinematics. A larger extent of intraoperative collateral ligament release could be one of the potential reasons for higher post-operative joint laxity in the right leg. Relative changes in post-operative tibiofemoral kinematics over the range of squatting were similar to those reported in the literature. However, differences between absolute magnitudes of joint kinematics obtained in this study and findings from the literature could be attributed to different surgeons performing TKA, with presumable variations in alignment techniques and/or patient specific instrumentation, and the slightly dissimilar ranges of knee flexion during squatting. In conclusion, long-term kinematic effects of TKA quantified using in vitro testing were largely similar to the immediate post-operative kinematics reported in the literature; however, variation in the behaviour of two legs from the same donor suggested that intraoperative surgical alterations might have a greater effect on joint kinematics over time


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 81 - 81
1 Dec 2022
Straatman L Walton D Lalone E
Full Access

Pain and disability following wrist trauma are highly prevalent, however the mechanisms underlying painare highly unknown. Recent studies in the knee have demonstrated that altered joint contact may induce changes to the subchondral bone density and associated pain following trauma, due to the vascularity of the subchondral bone. In order to examine these changes, a depth-specific imaging technique using quantitative computed tomography (QCT) has been used. We've demonstrated the utility of QCT in measuring vBMD according to static jointcontact and found differences invBMD between healthy and previously injured wrists. However, analyzing a static joint in a neutral position is not necessarily indicative of higher or lower vBMD. Therefore, the purposeof this study is to explore the relationship between subchondral vBMDand kinematic joint contact using the same imaging technique. To demonstrate the relationship between kinematic joint contact and subchondral vBMDusing QCT, we analyzed the wrists of n = 10 participants (n = 5 healthy and n = 5 with previous wrist trauma). Participantsunderwent 4DCT scans while performing flexion to extension to estimate radiocarpal (specifically the radiolunate (RL) and radioscaphoid (RS)) joint contact area (JCa) between the articulating surfaces. The participantsalso underwent a static CT scan accompanied by a calibration phantom with known material densities that was used to estimate subchondral vBMDof the distal radius. Joint contact is measured by calculatinginter-bone distances (mm2) using a previously validated algorithm. Subchondral vBMD is presented using mean vBMD (mg/K2HPO4) at three normalized depths from the subchondral surface (0 to 2.5, 2.5 to 5 and 5 to 7.5 mm) of the distal radius. The participants in the healthy cohort demonstrated a larger JCa in the RS joint during both extension and flexion, while the trauma cohort demonstrated a larger JCa in the RL during extension and flexion. With regards to vBMD, the healthy cohort demonstrated a higher vBMD for all three normalized depths from the subchondral surface when compared to the trauma cohort. Results from our preliminary analysis demonstrate that in the RL joint specifically, a larger JCa throughout flexion and extension was associated with an overall lower vBMD across all three normalized layers. Potential reasoning behind this association could be that following wrist trauma, altered joint contact mechanics due to pathological changes (for example, musculoskeletal trauma), has led to overloading in the RL region. The overloading on this specific region may have led to a decrease in the underlying vBMD when compared to a healthy wrist. However, we are unable to conclude if this is a momentary decrease in vBMD that could be associated with the acute healing phase following trauma given that our analysis is cross-sectional. Therefore, future work should aim to analyze kinematic JCa and vBMD longitudinally to better understand how changes in kinematic JCa over time, and how the healing process following wrist trauma, impacts the underlying subchondral bone in the acute and longitudinal phases of recovery


The Bone & Joint Journal
Vol. 106-B, Issue 8 | Pages 817 - 825
1 Aug 2024
Borukhov I Ismailidis P Esposito CI LiArno S Lyon J McEwen PJ

Aims. This study aimed to evaluate if total knee arthroplasty (TKA) femoral components aligned in either mechanical alignment (MA) or kinematic alignment (KA) are more biomimetic concerning trochlear sulcus orientation and restoration of trochlear height. Methods. Bone surfaces from 1,012 CT scans of non-arthritic femora were segmented using a modelling and analytics system. TKA femoral components (Triathlon; Stryker) were virtually implanted in both MA and KA. Trochlear sulcus orientation was assessed by measuring the distal trochlear sulcus angle (DTSA) in native femora and in KA and MA prosthetic femoral components. Trochlear anatomy restoration was evaluated by measuring the differences in medial, lateral, and sulcus trochlear height between native femora and KA and MA prosthetic femoral components. Results. Femoral components in both MA and KA alignments exhibited a more valgus DTSA compared to native femora. However, DTSA deviation from native was significantly less in KA than in MA (4.8° (SD 2.2°) vs 8.8° (SD 1.8°); p < 0.001). DTSA deviation from native orientation correlated positively with the mechanical lateral distal femoral angle (mLDFA) in KA and negatively in MA (r = 0.53, p < 0.001; r = -0.18, p < 0.001). Medial trochlear height was not restored with either MA or KA, with MA resulting in lower medial trochlear height than KA in the proximal 20% of the trochlea. Lateral and sulcus trochlear height was not restored with either alignment in the proximal 80% of the trochlea. At the terminal arc point, KA replicated sulcus and lateral trochlear height, while MA led to over-restoration. Conclusion. Femoral components aligned in KA demonstrated greater biomimetic qualities than those in MA regarding trochlear sulcus orientation and trochlear height restoration, particularly in valgus femora. Variability across knees was observed, warranting further research to evaluate the clinical implications of these findings. Cite this article: Bone Joint J 2024;106-B(8):817–825


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 68 - 68
1 Feb 2020
Gascoyne T Pejhan S Bohm E Wyss U
Full Access

Background. The anatomy of the human knee is very different than the tibiofemoral surface geometry of most modern total knee replacements (TKRs). Many TKRs are designed with simplified articulating surfaces that are mediolaterally symmetrical, resulting in non-natural patterns of motion of the knee joint [1]. Recent orthopaedic trends portray a shift away from basic tibiofemoral geometry towards designs which better replicate natural knee kinematics by adding constraint to the medial condyle and decreasing constraint on the lateral condyle [2]. A recent design concept has paired this theory with the concept of guided kinematic motion throughout the flexion range [3]. The purpose of this study was to validate the kinematic pattern of motion of the surface-guided knee concept through in vitro, mechanical testing. Methods. Prototypes of the surface-guided knee implant were manufactured using cobalt chromium alloy (femoral component) and ultra-high molecular weight polyethylene (tibial component). The prototypes were installed in a force-controlled knee wear simulator (AMTI, Watertown, MA) to assess kinematic behavior of the tibiofemoral articulation (Figure 1). Axial joint load and knee flexion experienced during lunging and squatting exercises were extracted from literature and used as the primary inputs for the test. Anteroposterior and internal-external rotation of the implant components were left unconstrained so as to be passively driven by the tibiofemoral surface geometry. One hundred cycles of each exercise were performed on the simulator at 0.33 Hz using diluted bovine calf serum as the articular surface lubricant. Component motion and reaction force outputs were collected from the knee simulator and compared against the kinematic targets of the design in order to validate the surface-guided knee concept. Results. Under deep flexion conditions of up to 140° of squatting the surface-guided knee implants were found to undergo a maximum of 22.2° of tibial internal rotation and 20.4 mm of posterior rollback on the lateral condyle. Pivoting of the knee joint was centered about the highly congruent medial condyle which experienced only 1.6 mm of posterior rollback. Experimental results were within 2° (internal-external rotation) and 1 mm (anteroposterior translation) agreement with the design target throughout the applied exercises (Figure 2). Conclusion. The results of this test confirm that by combining a constrained medial condyle with guiding geometry on the lateral condyle, deep knee flexion activities of up to 140° can be performed while maintaining near-natural kinematics of the knee joint. The authors believe that the tested surface-guided implant concept is a significant step toward the development of novel TKR which allows a greater range of motion and could improve the quality of life for active patients undergoing knee replacement. For any figures or tables, please contact the authors directly


Aims. Mobile-bearing unicompartmental knee arthroplasty (UKA) with a flat tibial plateau has not performed well in the lateral compartment, leading to a high rate of dislocation. For this reason, the Domed Lateral UKA with a biconcave bearing was developed. However, medial and lateral tibial plateaus have asymmetric anatomical geometries, with a slightly dished medial and a convex lateral plateau. Therefore, the aim of this study was to evaluate the extent at which the normal knee kinematics were restored with different tibial insert designs using computational simulation. Methods. We developed three different tibial inserts having flat, conforming, and anatomy-mimetic superior surfaces, whereas the inferior surface in all was designed to be concave to prevent dislocation. Kinematics from four male subjects and one female subject were compared under deep knee bend activity. Results. The conforming design showed significantly different kinematics in femoral rollback and internal rotation compared to that of the intact knee. The flat design showed significantly different kinematics in femoral rotation during high flexion. The anatomy-mimetic design preserved normal knee kinematics in femoral rollback and internal rotation. Conclusion. The anatomy-mimetic design in lateral mobile UKA demonstrated restoration of normal knee kinematics. Such design may allow achievement of the long sought normal knee characteristics post-lateral mobile UKA. However, further in vivo and clinical studies are required to determine whether this design can truly achieve a more normal feeling of the knee and improved patient satisfaction. Cite this article: Bone Joint Res 2020;9(7):421–428


Bone & Joint Research
Vol. 6, Issue 1 | Pages 43 - 51
1 Jan 2017
Nakamura S Tian Y Tanaka Y Kuriyama S Ito H Furu M Matsuda S

Objectives. Little biomechanical information is available about kinematically aligned (KA) total knee arthroplasty (TKA). The purpose of this study was to simulate the kinematics and kinetics after KA TKA and mechanically aligned (MA) TKA with four different limb alignments. Materials and Methods. Bone models were constructed from one volunteer (normal) and three patients with three different knee deformities (slight, moderate and severe varus). A dynamic musculoskeletal modelling system was used to analyse the kinematics and the tibiofemoral contact force. The contact stress on the tibial insert, and the stress to the resection surface and medial tibial cortex were examined by using finite element analysis. Results. In all bone models, posterior translation on the lateral side and external rotation in the KA TKA models were greater than in the MA TKA models. The tibiofemoral force at the medial side was increased in the moderate and severe varus models with KA TKA. In the severe varus model with KA TKA, the contact stress on the tibial insert and the stress to the resection surface and to the medial tibial cortex were increased by 41.5%, 32.2% and 53.7%, respectively, compared with MA TKA, and the bone strain at the medial side was highest among all models. Conclusion. Near normal kinematics was observed in KA TKA. However, KA TKA increased the contact force, stress and bone strain at the medial side for moderate and severe varus knee models. The application of KA TKA for severe varus knees may be inadequate. Cite this article: S. Nakamura, Y. Tian, Y. Tanaka, S. Kuriyama, H. Ito, M. Furu, S. Matsuda. The effects of kinematically aligned total knee arthroplasty on stress at the medial tibia: A case study for varus knee. Bone Joint Res 2017;6:43–51. DOI: 10.1302/2046-3758.61.BJR-2016-0090.R1


Bone & Joint Research
Vol. 6, Issue 8 | Pages 514 - 521
1 Aug 2017
Mannering N Young T Spelman T Choong PF

Objectives. Whilst gait speed is variable between healthy and injured adults, the extent to which speed alone alters the 3D in vivo knee kinematics has not been fully described. The purpose of this prospective study was to understand better the spatiotemporal and 3D knee kinematic changes induced by slow compared with normal self-selected walking speeds within young healthy adults. Methods. A total of 26 men and 25 women (18 to 35 years old) participated in this study. Participants walked on a treadmill with the KneeKG system at a slow imposed speed (2 km/hr) for three trials, then at a self-selected comfortable walking speed for another three trials. Paired t-tests, Wilcoxon signed-rank tests, Mann-Whitney U tests and Spearman’s rank correlation coefficients were conducted using Stata/IC 14 to compare kinematics of slow versus self-selected walking speed. Results. Both cadence and step length were reduced during slow gait compared with normal gait. Slow walking reduced flexion during standing (10.6° compared with 13.7°; p < 0.0001), and flexion range of movement (ROM) (53.1° compared with 57.3°; p < 0.0001). Slow walking also induced less adduction ROM (8.3° compared with 10.0°; p < 0.0001), rotation ROM (11.4. °. compared with 13.6. °. ; p < 0.0001), and anteroposterior translation ROM (8.5 mm compared with 10.1 mm; p < 0.0001). Conclusion. The reduced spatiotemporal measures, reduced flexion during stance, and knee ROM in all planes induced by slow walking demonstrate a stiff knee gait, similar to that previously demonstrated in osteoarthritis. Further research is required to determine if these characteristics induced in healthy knees by slow walking provide a valid model of osteoarthritic gait. Cite this article: N. Mannering, T. Young, T. Spelman, P. F. Choong. Three-dimensional knee kinematic analysis during treadmill gait: Slow imposed speed versus normal self-selected speed. Bone Joint Res 2017;6:514–521. DOI: 10.1302/2046-3758.68.BJR-2016-0296.R1


Bone & Joint Research
Vol. 7, Issue 6 | Pages 379 - 387
1 Jun 2018
Hansen L De Raedt S Jørgensen PB Mygind-Klavsen B Kaptein B Stilling M

Objectives. To validate the precision of digitally reconstructed radiograph (DRR) radiostereometric analysis (RSA) and the model-based method (MBM) RSA with respect to benchmark marker-based (MM) RSA for evaluation of kinematics in the native hip joint. Methods. Seven human cadaveric hemipelves were CT scanned and bone models were segmented. Tantalum beads were placed in the pelvis and proximal femoral bone. RSA recordings of the hips were performed during flexion, adduction and internal rotation. Stereoradiographic recordings were all analyzed with DRR, MBM and MM. Migration results for the MBM and DRR with respect to MM were compared. Precision was assessed as systematic bias (mean difference) and random variation (Pitman’s test for equal variance). Results. A total of 288 dynamic RSA images were analyzed. Systematic bias for DRR and MBM with respect to MM in translations (p < 0.018 mm) and rotations (p < 0.009°) were approximately 0. Pitman’s test showed lower random variation in all degrees of freedom for DRR compared with MBM (p < 0.001). Conclusion. Systematic error was approximately 0 for both DRR or MBM. However, precision of DRR was statistically significantly better than MBM. Since DRR does not require marker insertion it can be used for investigation of preoperative hip kinematics in comparison with the postoperative results after joint preserving hip surgery. . Cite this article: L. Hansen, S. De Raedt, P. B. Jørgensen, B. Mygind-Klavsen, B. Kaptein, M. Stilling. Marker free model-based radiostereometric analysis for evaluation of hip joint kinematics: A validation study. Bone Joint Res 2018;7:379–387. DOI: 10.1302/2046-3758.76.BJR-2017-0268.R1


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 76 - 76
11 Apr 2023
Petersen E Rytter S Koppens D Dalsgaard J Bæk Hansen T Larsen NE Andersen M Stilling M
Full Access

In an attempt to alleviate symptoms of the disease, patients with knee osteoarthrosis (KOA) frequently alter their gait patterns. Understanding the underlying pathomechanics and identifying KOA phenotypes is essential for improving treatments. We aimed to investigate altered kinematics in patients with KOA to identify subgroups. Sixty-six patients with symptomatic KOA scheduled for total knee arthroplasty and 12 age-matched healthy volunteers with asymptomatic knees were included. We used k-means to separate the patients based on dynamic radiostereometric assessed knee kinematics. Ligament lesions, KOA score, and clinical outcome were assessed by magnetic resonance imaging, radiographs, and patient reported outcome measures, respectively. We identified four clusters that were supported by clinical characteristics. Compared with the healthy group; The flexion group (n=20): revealed increased flexion, greater adduction, and joint narrowing and consisted primarily of patients with medial KOA. The abduction group (n=17): revealed greater abduction, joint narrowing and included primarily patients with lateral KOA. The anterior draw group (n=10): revealed greater anterior draw, external tibial rotation, lateral tibial shift, adduction, and joint narrowing. This group was composed of patients with medial KOA, some degree of anterior cruciate ligament lesion and the greatest KOA score. The external rotation group (n=19): revealed greater external tibial rotation, lateral tibial shift, adduction, and joint narrowing while no anterior draw was observed. This group included primarily patients with medial collateral and posterior cruciate ligament lesions. Patients with KOA can, based on their gait patterns, be classified into four subgroups, which relate to their clinical characteristics. The findings add to our understanding of associations between disease pathology characteristics in the knee and the pathomechanics in patients with KOA. A next step is to investigate if patients in the pathomechanic clusters have different outcomes following total knee arthroplasty


The Bone & Joint Journal
Vol. 98-B, Issue 10 | Pages 1360 - 1368
1 Oct 2016
Waterson HB Clement ND Eyres KS Mandalia VI Toms AD

Aims. Our aim was to compare kinematic with mechanical alignment in total knee arthroplasty (TKA). Patients and Methods. We performed a prospective blinded randomised controlled trial to compare the functional outcome of patients undergoing TKA in mechanical alignment (MA) with those in kinematic alignment (KA). A total of 71 patients undergoing TKA were randomised to either kinematic (n = 36) or mechanical alignment (n = 35). Pre- and post-operative hip-knee-ankle radiographs were analysed. The knee injury and osteoarthritis outcome score (KOOS), American Knee Society Score, Short Form-36, Euro-Qol (EQ-5D), range of movement (ROM), two minute walk, and timed up and go tests were assessed pre-operatively and at six weeks, three and six months and one year post-operatively. Results. A total of 78% of the kinematically aligned group (28 patients) and 77% of the mechanically aligned group (27 patients) were within 3° of their pre-operative plan. There were no statistically significant differences in the mean KOOS (difference 1.3, 95% confidence interval (CI) -9.4 to 12.1, p = 0.80), EQ-5D (difference 0.8, 95% CI -7.9 to 9.6, p = 0.84), ROM (difference 0.1, 95% CI -6.0 to 6.1, p = 0.99), two minute distance tolerance (difference 20.0, 95% CI -52.8 to 92.8, p = 0.58), or timed up and go (difference 0.78, 95% CI -2.3 to 3.9, p = 0.62) between the groups at one year. Conclusion. Kinematically aligned TKAs appear to have comparable short-term results to mechanically aligned TKAs with no significant differences in function one year post-operatively. Further research is required to see if any theoretical long-term functional benefits of kinematic alignment are realised or if there are any potential effects on implant survival. Cite this article: Bone Joint J 2016;98-B:1360–8


Bone & Joint Open
Vol. 5, Issue 8 | Pages 628 - 636
2 Aug 2024
Eachempati KK Parameswaran A Ponnala VK Sunil A Sheth NP

Aims. The aims of this study were: 1) to describe extended restricted kinematic alignment (E-rKA), a novel alignment strategy during robotic-assisted total knee arthroplasty (RA-TKA); 2) to compare residual medial compartment tightness following virtual surgical planning during RA-TKA using mechanical alignment (MA) and E-rKA, in the same set of osteoarthritic varus knees; 3) to assess the requirement of soft-tissue releases during RA-TKA using E-rKA; and 4) to compare the accuracy of surgical plan execution between knees managed with adjustments in component positioning alone, and those which require additional soft-tissue releases. Methods. Patients who underwent RA-TKA between January and December 2022 for primary varus osteoarthritis were included. Safe boundaries for E-rKA were defined. Residual medial compartment tightness was compared following virtual surgical planning using E-rKA and MA, in the same set of knees. Soft-tissue releases were documented. Errors in postoperative alignment in relation to planned alignment were compared between patients who did (group A) and did not (group B) require soft-tissue releases. Results. The use of E-rKA helped restore all knees within the predefined boundaries, with appropriate soft-tissue balancing. E-rKA compared with MA resulted in reduced residual medial tightness following surgical planning, in full extension (2.71 mm (SD 1.66) vs 5.16 mm (SD 3.10), respectively; p < 0.001), and 90° of flexion (2.52 mm (SD 1.63) vs 6.27 mm (SD 3.11), respectively; p < 0.001). Among the study population, 156 patients (78%) were managed with minor adjustments in component positioning alone, while 44 (22%) required additional soft-tissue releases. The mean errors in postoperative alignment were 0.53 mm and 0.26 mm among patients in group A and group B, respectively (p = 0.328). Conclusion. E-rKA is an effective and reproducible alignment strategy during RA-TKA, permitting a large proportion of patients to be managed without soft-tissue releases. The execution of minor alterations in component positioning within predefined multiplanar boundaries is a better starting point for gap management than soft-tissue releases. Cite this article: Bone Jt Open 2024;5(8):628–636


The Bone & Joint Journal
Vol. 99-B, Issue 5 | Pages 640 - 646
1 May 2017
Matsumoto T Takayama K Ishida K Hayashi S Hashimoto S Kuroda R

Aims. The aim of this study was to compare the post-operative radiographic and clinical outcomes between kinematically and mechanically aligned total knee arthroplasties (TKAs). . Patients and Methods. A total of 60 TKAs (30 kinematically and 30 mechanically aligned) were performed in 60 patients with varus osteoarthritis of the knee using a navigation system. The angles of orientation of the joint line in relation to the floor, the conventional and true mechanical axis (tMA) (the line from the centre of the hip to the lowest point of the calcaneus) were compared, one year post-operatively, on single-leg and double-leg standing long leg radiographs between the groups. The range of movement and 2011 Knee Society Scores were also compared between the groups at that time. Results. The angles of orientation of the joint line in the kinematic group changed from slight varus on double-leg standing to slight valgus with single-leg standing. The mechanical axes in the kinematic group passed through a neutral position of the knee in the true condition when the calcaneus was considered. The post-operative angles of flexion and functional activity scores were significantly better in the kinematic than in the mechanical group (p < 0.003 and 0.03, respectively). Conclusion. A kinematically aligned TKA results in a joint line which has a more parallel orientation in relation to the floor during single- and double-leg standing, and more neutral weight-bearing in tMA than a mechanically aligned TKA. Cite this article: Bone Joint J 2017;99-B:640–6


The Bone & Joint Journal
Vol. 101-B, Issue 3 | Pages 331 - 339
1 Mar 2019
McEwen P Balendra G Doma K

Aims. The results of kinematic total knee arthroplasty (KTKA) have been reported in terms of limb and component alignment parameters but not in terms of gap laxities and differentials. In kinematic alignment (KA), balance should reflect the asymmetrical balance of the normal knee, not the classic rectangular flexion and extension gaps sought with gap-balanced mechanical axis total knee arthroplasty (MATKA). This paper aims to address the following questions: 1) what factors determine coronal joint congruence as measured on standing radiographs?; 2) is flexion gap asymmetry produced with KA?; 3) does lateral flexion gap laxity affect outcomes?; 4) is lateral flexion gap laxity associated with lateral extension gap laxity?; and 5) can consistent ligament balance be produced without releases?. Patients and Methods. A total of 192 KTKAs completed by a single surgeon using a computer-assisted technique were followed for a mean of 3.5 years (2 to 5). There were 116 male patients (60%) and 76 female patients (40%) with a mean age of 65 years (48 to 88). Outcome measures included intraoperative gap laxity measurements and component positions, as well as joint angles from postoperative three-foot standing radiographs. Patient-reported outcome measures (PROMs) were analyzed in terms of alignment and balance: EuroQol (EQ)-5D visual analogue scale (VAS), Knee Injury and Osteoarthritis Outcome Score (KOOS), KOOS Joint Replacement (JR), and Oxford Knee Score (OKS). Results. Postoperative limb alignment did not affect outcomes. The standing hip-knee-ankle (HKA) angle was the sole positive predictor of the joint line convergence angle (JLCA) (p < 0.001). Increasing lateral flexion gap laxity was consistently associated with better outcomes. Lateral flexion gap laxity did not correlate with HKA angle, the JLCA, or lateral extension gap laxity. Minor releases were required in one third of cases. Conclusion. The standing HKA angle is the primary determinant of the JLCA in KTKA. A rectangular flexion gap is produced in only 11% of cases. Lateral flexion gap laxity is consistently associated with better outcomes and does not affect balance in extension. Minor releases are sometimes required as well, particularly in limbs with larger preoperative deformities. Cite this article: Bone Joint J 2019;101-B:331–339


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 7 | Pages 940 - 945
1 Jul 2005
Pandit H Ward T Hollinghurst D Beard DJ Gill HS Thomas NP Murray DW

Abnormal sagittal kinematics after total knee replacement (TKR) can adversely affect functional outcome. Two important determinants of knee kinematics are component geometry and the presence or absence of a posterior-stabilising mechanism (cam-post). We investigated the influence of these variables by comparing the kinematics of a TKR with a polyradial femur with a single radius design, both with and without a cam-post mechanism. We assessed 55 patients, subdivided into four groups, who had undergone a TKR one year earlier by using an established fluoroscopy protocol in order to examine their kinematics in vivo. The kinematic profile was obtained by measuring the patellar tendon angle through the functional knee flexion range (0° to 90°) and the results compared with 14 normal knees. All designs of TKR had abnormal sagittal kinematics compared with the normal knee. There was a significant (p < 0.05) difference between those of the two TKRs near to full extension. The presence of the cam-post mechanism did not influence the kinematics for either TKR design. These differences suggest that surface geometry is a stronger determinant of kinematics than the presence or absence of a cam-post mechanism for these two designs. This may be because the cam-post mechanism is ineffective


Objectives. Preservation of both anterior and posterior cruciate ligaments in total knee arthroplasty (TKA) can lead to near-normal post-operative joint mechanics and improved knee function. We hypothesised that a patient-specific bicruciate-retaining prosthesis preserves near-normal kinematics better than standard off-the-shelf posterior cruciate-retaining and bicruciate-retaining prostheses in TKA. Methods. We developed the validated models to evaluate the post-operative kinematics in patient-specific bicruciate-retaining, standard off-the-shelf bicruciate-retaining and posterior cruciate-retaining TKA under gait and deep knee bend loading conditions using numerical simulation. Results. Tibial posterior translation and internal rotation in patient-specific bicruciate-retaining prostheses preserved near-normal kinematics better than other standard off-the-shelf prostheses under gait loading conditions. Differences from normal kinematics were minimised for femoral rollback and internal-external rotation in patient-specific bicruciate-retaining, followed by standard off-the-shelf bicruciate-retaining and posterior cruciate-retaining TKA under deep knee bend loading conditions. Moreover, the standard off-the-shelf posterior cruciate-retaining TKA in this study showed the most abnormal performance in kinematics under gait and deep knee bend loading conditions, whereas patient-specific bicruciate-retaining TKA led to near-normal kinematics. Conclusion. This study showed that restoration of the normal geometry of the knee joint in patient-specific bicruciate-retaining TKA and preservation of the anterior cruciate ligament can lead to improvement in kinematics compared with the standard off-the-shelf posterior cruciate-retaining and bicruciate-retaining TKA. Cite this article: Y-G. Koh, J. Son, S-K. Kwon, H-J. Kim, O-R. Kwon, K-T. Kang. Preservation of kinematics with posterior cruciate-, bicruciate- and patient-specific bicruciate-retaining prostheses in total knee arthroplasty by using computational simulation with normal knee model. Bone Joint Res 2017;6:557–565. DOI: 10.1302/2046-3758.69.BJR-2016-0250.R1


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 27 - 27
1 Mar 2021
Pathy R Liquori B Gorton G Gannotti M
Full Access

To assess long and short term kinematic gait outcomes after rectus femoris transfers (RFT) in ambulatory children with cerebral palsy (CP). A retrospective review was conducted of ambulatory children with spastic diplegic CP, who had RFT plus motion analysis preoperatively and 1 year post-operatively. Those with 5 and 10 year post-operative motion analysis were also included. The primary variables were: peak knee flexion range of motion in swing (PKFSW), timing of peak knee flexion in swing as a percent of the gait cycle (PKF%GC), and knee range of motion from peak to terminal swing (KROM). Responders and non-responders were identified. Descriptive, kinematic and kinetic variables were evaluated as predictors of response. 119 ambulatory children (237 limbs) with spastic diplegic CP who had RFT were included. Mean age at surgery was 10.2 years (range 5.5 to 17.5). Sixty-seven participants were classified at GMFCS Level II and 52 at GMFCS Level III. All participants (237 limbs) had a preoperative and 1 year postoperative motion analysis. Motion analysis at 5 and 10 years post-operatively included 82 limbs and 28 limbs, respectively. Ninety-three (39%) limbs improved in both PKFSW and PKF%GC. PKFSW improved in 59% of limbs. Responders started 1.2 SD below the mean PKFSW preoperatively, and improved by an average of 1.9 SD to reach a normal range at 1 year post-operatively (p < 0.05). Improvement was maintained at 5 and 10 years postoperatively. Those at GMFCS level II were more likely [OR 1.71, CI 1.02, 2.89] to have improved PKFSW at 1 year postoperatively than those at GMFCS level III. PKF%GC improved in 70% of limbs. Responders had delayed PKF%GC, starting 10 SD above the mean (later in the gait cycle) preoperatively. Their timing improved towards normal values: 5 SD, 5.9 SD, 3.5 SD from the mean, (earlier in the gait cycle) at 1, 5 and 10 years postoperatively, respectively (p<0.05). KROM improved in only 24% of limbs. For all variables, there was a significant difference in mean preoperative values between responders and non-responders (p<0.05). RFT improves short and long-term kinematic gait outcomes. The majority of children responded to RFT with improvements in PKFSW or PKF%GC at 1, 5, and 10 years post RFT. GMFCS level is a predictor of improved PKFSW, with children at GMFCS Level II having an increased likelihood of improvement at 1 year post surgery. Children who have worse preoperative values of PKFSW, PKF%GC, and KROM have a greater potential for benefit from RFT. Characteristics associated with responders who maintain long term positive outcomes need to be identified


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 33 - 33
1 Apr 2019
Bandi M Siggelkow E Oswald A Parratte S Benazzo F
Full Access

Introduction. Partial knee arthroplasty (PKA) has demonstrated the potential to improve patient satisfaction over total knee arthroplasty. It is however perceived as a more challenging procedure that requires precise adaptation to the complex mechanics of the knee. A recently developed PKA system aims to address these challenges by anatomical, compartment specific shapes and fine-tuned mechanical instrumentation. We investigated how closely this PKA system replicates the balance and kinematics of the intact knee. Materials and Methods. Eight post-mortem human knee specimens (age: 55±11 years, BMI: 23±5, 4 male, 4 female) underwent full leg CT scanning and comprehensive robotic (KUKA KR140 comp) assessments of tibiofemoral and patellofemoral kinematics. Specimens were tested in the intact state and after fixed bearing medial PKA. Implantations were performed by two experienced surgeons. Assessments included laxity testing (anterior-posterior: ±100 N, medial-lateral: ±100 N, internal-external: ±3 Nm, varus- valgus: ±12 Nm) under 2 compressive loads (44 N, 500 N) at 7 flexion angles and simulations of level walking, lunge and stair descent based on in-vivo loading profiles. Kinematics were tracked robotically and optically (OptiTrack) and represented by the femoral flexion facet center (FFC) motions. Similarity between intact and operated curves was expressed by the root mean square of deviations (RMSD) along the curves. Group data were summarized by average and standard deviation and compared using the paired Student's T-test (α = 0.05). Results. During the varus-valgus balancing assessment the medial and lateral opening of the PKAs closely resembled the intact openings across the full arch of flexion, with RMSD values of 1.0±0.5 mm and 0.4±0.2 mm respectively. The medial opening was nearly constant across flexion, its average was not statistically different between intact (3.8±1.0 mm) and PKA (4.0±1.1 mm) (p=0.49). Antero-posterior envelope of motion assessments revealed a close match between the intact and PKA group for both compression levels. Net rollback was not statistically different, either under low compression (intact: 10.9±1.5 mm, PKA: 10.7±1.2, p=0.64) or under high compression (intact: 13.2±2.3 mm, PKA: 13.0±1.6 mm, p=0.77). Similarly, average laxity was not statistically different, either under low (intact: 7.7±3.2 mm, PKA: 8.6±2.5 mm, p=0.09) or under high (intact: 7.2±2.6 mm, PKA: 7.8±2.2 mm, p=0.08) compression. Activities of daily living exhibited a close match in the anterior-posterior motion profile of the medial condyle (RMSD: lunge: 2.2±1.0 mm, level walking: 2.4±0.9 mm, stair descent: 2.2±0.6 mm) and lateral condyle (RMSD: lunge: 2.4±1.4 mm, level walking: 2.2±1.4 mm, stair descent: 2.7±2.0 mm). Patellar medial-lateral tilt (RMSD: 3.4±3.8°) and medial-lateral shift (RMDS: 1.5±0.6 mm) during knee flexion matched closely between groups. Conclusion. Throughout the comprehensive functional assessments the investigated PKA system behaved nearly identical to the intact knee. The small residuals are unlikely to have a clinical effect; further studies are necessary as cadaveric studies are not necessarily indicative of clinical results. We conclude that PKA with anatomical, compartment specific shapes and fine-tuned mechanical instrumentation can be adapted precisely to the complex mechanics of the knee and replicates intact knee balance and kinematics very closely


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_5 | Pages 34 - 34
1 Feb 2016
Hamad C Bertrand F Jenny J Cross M Angibaud L Hohl N Dai Y
Full Access

Although total knee arthroplasty (TKA) is a largely successful procedure to treat end-stage knee osteoarthritis (OA), some studies have shown postoperative abnormal knee kinematics. Computer assisted orthopaedic surgery (CAOS) technology has been used to understand preoperative knee kinematics with an open joint (arthrotomy). However, limited information is available on the impact of arthrotomy on the knee kinematics. This study compared knee kinematics before and after arthrotomy to the native knee using a CAOS system. Kinematics of a healthy knee from a fresh frozen cadaver with presumably intact PCL were evaluated using a custom software application in an image-free CAOS system (ExactechGPS, Blue-Ortho, Grenoble, FR). At the beginning of the test, four metal hooks were inserted into the knee away from the joint line (one on each side of the proximal tibia and the distal femur) for the application of 50N compressive load to simulate natural knee joint. Prior to incision, one tracker was attached to each tibia and femur on the diaphysis. Intact knee kinematics were recorded using the CAOS system by performing passive range of motion 3 times. Next, a computer-assisted TKA procedure was initiated with acquisition of the anatomical landmarks. The system calculated the previously recorded kinematics within the coordinate system defined by the landmarks. The test was then repeated with closed arthrotomy, and again with open arthrotomy with patella maintained in the trochlea groove. The average femorotibial AP displacement and rotation, and HKA angle before and after knee arthrotomy were compared over the range of knee flexion. Statistical analysis (ANOVA) was performed on the data at ∼0° (5°), 30°, 60°, 90° and 120° flexion. The intact knee kinematics were found to be similar to the kinematics with closed and open arthrotomy. Differences between the three situations were found, in average, as less than 0.25° (±0.2) in HKA, 0.7mm (±0.4) in femorotibial AP displacement and 2.3° (±1.4) in femorotibial rotation. Although some statistically significant differences were found, especially in the rotation of the tibia for low and high knee flexion angles, the majority is less than 1°/mm, and therefore clinically irrelevant. This study suggested that open and closed arthrotomy do not significantly alter the kinematics compared to the native intact knee (low RMS). Maintaining the patella in the trochlea groove with an open arthrotomy allows accurate assessment of the intact knee kinematics


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_11 | Pages 20 - 20
7 Jun 2023
Navacchia A Pagkalos J Davis E
Full Access

We have previously reported on the improved all-cause revision and improved revision for instability risk in lipped liner THAs using the NJR dataset. These findings corroborate studies from the Australian (AOANJRR) and New Zealand (NZOA) joint registries. The optimal orientation of the lip in THAs utilising a lipped liner remains unclear to many surgeons. The aim of this study was to identify impingement-free optimal liner orientations whilst considering femoral stem version, cup inclination and cup version. A cementless THA kinematic model was developed using a 20 degree XLPE liner. Physiological ROM and provocative dislocation manoeuvre analyses were performed. A total of 9 cup positions were analysed (inclination 30–40–50 degrees, anteversion 5-15-25 degrees) and combined with 3 stem positions (anteversion 0-15-30 degrees) and 5 lip orientations (right hip 11 to 7 o'clock). Some lip orientation/component position combinations lead to impingement within the physiological ROM range. Using a lipped liner increases the femoral head travel distance prior to dislocation when impingement occurs in the plane of the lip. In THAs with a cup inclination of 30 and 40 degrees, inferior lip orientations (7–8 o'clock for a right hip) performed best. Superior lip orientation performed best with a cup inclination of 50 degrees. Femoral stem version has a significant effect on the range of movement prior to impingement and hence the preferred lip orientation. The optimal orientation of the lip in lipped liner THA is dependent on the position of both the acetabular and femoral components. In the common component orientation combination of stem anteversion 15, cup inclination 40 and cup anteversion 15, the optimal lip orientation was postero-inferiorly (8 o'clock for a right hip). Preventing impingement during physiological ROM is possible with appropriate lip liner orientation


Aims. Nearly 99,000 total knee arthroplasties (TKAs) are performed in UK annually. Despite plenty of research, the satisfaction rate of this surgery is around 80%. One of the important intraoperative factors affecting the outcome is alignment. The relationship between joint obliquity and functional outcomes is not well understood. Therefore, a study is required to investigate and compare the effects of two types of alignment (mechanical and kinematic) on functional outcomes and range of motion. Methods. The aim of the study is to compare navigated kinematically aligned TKAs (KA TKAs) with navigated mechanically aligned TKA (MA TKA) in terms of function and ROM. We aim to recruit a total of 96 patients in the trial. The patients will be recruited from clinics of various consultants working in the trust after screening them for eligibility criteria and obtaining their informed consent to participate in this study. Randomization will be done prior to surgery by a software. The primary outcome measure will be the Knee injury and Osteoarthritis Outcome Score The secondary outcome measures include Oxford Knee Score, ROM, EuroQol five-dimension questionnaire, EuroQol visual analogue scale, 12-Item Short-Form Health Survey (SF-12), and Forgotten Joint Score. The scores will be calculated preoperatively and then at six weeks, six months, and one year after surgery. The scores will undergo a statistical analysis. Discussion. There is no clear evidence on the best alignment for a knee arthroplasty. This randomized controlled trial will test the null hypothesis that navigated KA TKAs do not perform better than navigated MA TKAs. Cite this article: Bone Jt Open 2021;2(11):945–950


Aims. Patient-specific instrumentation of total knee arthroplasty (TKA) is a technique permitting the targeting of individual kinematic alignment, but deviation from a neutral mechanical axis may have implications on implant fixation and therefore survivorship. The primary objective of this randomized controlled study was to compare the fixation of tibial components implanted with patient-specific instrumentation targeting kinematic alignment (KA+PSI) versus components placed using computer-assisted surgery targeting neutral mechanical alignment (MA+CAS). Tibial component migration measured by radiostereometric analysis was the primary outcome measure (compared longitudinally between groups and to published acceptable thresholds). Secondary outcome measures were inducible displacement after one year and patient-reported outcome measures (PROMS) over two years. The secondary objective was to assess the relationship between alignment and both tibial component migration and inducible displacement. Patients and Methods. A total of 47 patients due to undergo TKA were randomized to KA+PSI (n = 24) or MA+CAS (n = 23). In the KA+PSI group, there were 16 female and eight male patients with a mean age of 64 years (. sd. 8). In the MA+CAS group, there were 17 female and six male patients with a mean age of 63 years (. sd. 7). Surgery was performed using cemented, cruciate-retaining Triathlon total knees with patellar resurfacing, and patients were followed up for two years. The effect of alignment on tibial component migration and inducible displacement was analyzed irrespective of study group. Results. There was no difference over two years in longitudinal migration of the tibial component between the KA+PSI and MA+CAS groups (reaching median maximum total point motion migration at two years of 0.40 mm for the KA+PSI group and 0.37 mm for the MA+CAS group, p = 0.82; p = 0.68 adjusted for age, sex, and body mass index (BMI) for all follow-ups). Both groups had mean migrations below acceptable thresholds. There was no difference in inducible displacement (p = 0.34) or PROMS (p = 0.61 for the Oxford Knee Score) between groups. There was no correlation between alignment and tibial component migration or alignment and inducible displacement. These findings support non-neutral alignment as a viable option with this component, with no evidence that it compromises fixation. Conclusion. Kinematic alignment using patient-specific instrumentation in TKA was associated with acceptable tibial component migration, indicating stable fixation. These results are supportive of future investigations of kinematic alignment. Cite this article: Bone Joint J 2019;101-B:929–940


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 54 - 54
1 Jan 2017
Slane J Heyse T Dirckx M Dworschak P Peersman G Scheys L
Full Access

Despite high success rates following total knee arthroplasty (TKA), knee kinematics are altered following TKA. Additionally, many patients report that their reconstructed knee does not feel ‘normal’ [1], potentially due to the absence of the anterior cruciate ligament (ACL), an important knee stabilizer and proprioceptive mechanism. ACL-retaining implants have been introduced with the aim of replicating native knee kinematics, however, there has yet to be a detailed comparison between knee kinematics in the native knee and one reconstructed with an ACL-retaining implant. Six fresh-frozen right legs (77±10 yr, 5 male) were mounted in a kinematic rig and subjected to squatting (40°-105°) motions. The vertical positon of the hip was manipulated with a linear actuator to induce knee flexion while the quadriceps were loaded with an actuator to maintain a vertical load of 90 N at the ankle [2]. Medial/lateral hamstring forces were applied with 50 N load springs. During testing, an infrared camera system recorded the trajectories of spherical markers rigidly attached to the femur and tibia. Two trials were performed per specimen. Following testing on the native knee, specimens were implanted with an ACL-retaining TKA (Vanguard XP, Zimmer Biomet) and all trials were repeated. Three inlay thicknesses were tested to simulate optimal balancing as well as over- (1 mm thicker) and understuffing (1 mm thinner) relative to the optimal thickness. Pre-operative computed tomography scans allowed identification of bony landmarks and marker orientation, which were used define anatomically relevant coordinate systems. The recorded marker trajectories were transformed to anatomical translations/rotations and resampled at increments of 1° of knee flexion. Translations of the medial and lateral femoral condyle centers were scaled to maximum anterior-posterior (AP) width of the medial and lateral tibial plateau, respectively. For all kinematics, statistical analysis between knee conditions was conducted using repeated measures ANOVA in increments of 10° knee flexion. Internal rotation of the tibia was significantly lower (p<0.05) for the three reconstructed conditions relative to the native knee at flexion angles of 60° and below. No significant differences in tibial rotation were observed between the balanced, overstuffed, or understuffed conditions. The varus orientation was not significantly influenced by implantation, regardless of inlay thickness, for all flexion angles. At 40° flexion, the AP position of the femoral medial condyle was significantly more anterior for the native knee relative to the balanced and understuffed conditions. This finding was not significant for the other flexion angles. No significant differences were found for the lateral condyle center AP position at any flexion angle. Preservation of the cruciate ligaments during total knee arthroplasty may allow better physiologic representation of knee kinematics. The implants tested in this study were able to replicate kinematics of the native knee, except for tibial rotation and AP position of the medial femoral condyle in early knee flexion. Interestingly, the impact of inlay thickness was generally small, suggesting some tolerance in the choice of inlay thickness


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 143 - 143
1 May 2016
Yoon S Lee C Hur J Kwon O Lee H
Full Access

Introduction. Mechanically aligned total knee arthroplasty(TKA) relies on restoring the hip-knee-ankle angle of the limb to neutral or as close to a straight line as possible. This principle is based on studies that suggest limb and knee alignment is related long term survival and wear. For that cause, there has been recent attention concerning computer-assisted TKA and robot is also one of the most helpful instruments for restoring neutral alignment as known. But many reported data have shown that 20% to 25% of patients with mechanically aligned TKA are dissatisfied. Accordingly, kinematically aligned TKA was implemented as an alternative alignment strategy with the goal of reducing prevalence of unexplained pain, stiffness, and instability and improving the rate of recovery, kinematics, and contact forces. So, we want to report our extremely early experience of robot-assisted TKA planned by kinematic method. Materials and Methods. This study evaluated the very short term results (6 weeks follow up) after robot-assisted TKA aligned kinematically. 50 knees in 36 patients, who could be followed up more than 6 weeks after surgery from December 2014 to January 2015, were evaluated prospectively. The diagnosis was primary osteoarthritis in all cases. The operation was performed with ROBODOC (ISS Inc., CA, USA) along with the ORTHODOC (ISS Inc., CA, USA) planning computer. The cutting plan was made by single radius femoral component concept, each femoral condyles shape-matched method along the transverse axis using multi-channel CT and MRI to place the implant along the patient's premorbid joint line. Radiographic measurements were made from long bone scanograms. Clinical outcomes and motion were measured preoperatively and 6 weeks postoperatively. Results. The range of motion increased from preoperative mean 113.4 (±5.4, 85 to 130) to postoperative mean 127.3 (±7.4, 90 to 140) at last follow up. The mean knee score and functional score improved from 35.4 (±10.3, 10 to 55) and 30.1 (±7.7, 10 to 60) before surgery to 88.6 (±5.8, 60 to 100) and 90.7 (±9.6, 60 to 100) at last follow up. The WOMAC score was improved from 52(±15.5) to 20(±14.8) at last follow up. The postoperative Hip-knee-ankle alignment was −1.3±2.8. The femoral component was 2.1 valgus and tibial component was 2.8 varus along the mechanical axis in coronal plane. There were no complications and failures. Conclusion. On the basis of our results, we are cautiously optimistic about robot-assisted TKA by kinematically alignment. More anatomic alignment of the implant can be associated with better flexion and better clinical outcomes scores in the kinematically aligned method in our thinking. But, at this starting point, more comparative studies with mechanical aligned group are needed and we must explore about implant survivalship issues and implant loading issues in dynamic and static condition that someone is worrying about. If the problem can be solved, there is no use worrying about it in our thinking. And what is more, the robot-assisted surgery will be very useful especially in those cases of severely deformed knees and distorted anatomy to be aligned kinematically


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 80 - 80
1 Dec 2020
Kahveci A Cengiz BC Alcan V Zinnuroğlu M Gürses S
Full Access

Differences at motor control strategies to provide dynamic balance in various tasks in diabetic polyneuropatic (DPN) patients due to losing the lower extremity somatosensory information were reported in the literature. It has been stated that dynamics of center of mass (CoM) is controlled by center of pressure (CoP) during human upright standing and active daily movements. Indeed analyzing kinematic trajectories of joints unveil motor control strategies stabilizing CoM. Nevertheless, we hypothesized that imbalance disorders/CoM destabilization observed at DPN patients due to lack of tactile information about the base of support cannot be explained only by looking at joint kinematics, rather functional foot usage is proposed to be an important counterpart at controlling CoM. In this study, we included 14 DPN patients, who are diagnosed through clinical examination and electroneuromyography, and age matched 14 healthy subjects (HS) to identify control strategies in functional reach test (FRT). After measuring participants’ foot arch index (FAI) by a custom-made archmeter, they were tested by using a force plate, motion analysis system, surface electromyography and pressure pad, all working in synchronous during FRT. We analyzed data to determine effect of structural and functional foot pathologies due to neuropathy on patient performance and postural control estimating FAI, reach length (FR), FR to height (H) ratio (FR/H; normalized FR with respect to height), displacement of CoM and CoP in anteroposterior direction only, moment arm (MA, defined as the difference between CoP and CoM at the end of FRT), ankle, knee and hip joint angles computed at the sagittal plane for both extremities. Kinematic metrics included initial and final joint angles, defined with respect to start and end of reaching respectively. Further difference in the final and initial joint angles was defined as Δ. FAI was founded significantly lower in DPN patients (DPN: 0.3404; HS: 0.3643, p= <0.05). The patients’ FR, FR/H and absolute MA and displacement of CoM were significantly shorter than the control group (p= <0.05). Displacement of CoP between the two groups were not significant. Further we observed that CoM was lacking CoP in DPN patients (mean MA: +0.88 cm), while leading CoP in HS (mean MA: −1.59 cm) at the end of FRT. All initial angles were similar in two groups, however in DPN patients final right and left hip flexion angle (p=0.016 and p=0.028 respectively) and left ankle plantar flexion angle (p=0.04) were smaller than HS significantly. DPN patients had significantly less (p=0.029) hip flexion (mean at right hip angle, Δ=25.0°) compared to HS (Δ=33.53°) and ankle plantar flexion (DPN mean at right ankle angle, Δ=6.42°, HS mean Δ=9.07°; p=0.05). The results suggest that movement of both hip and ankle joints was limited simultaneously in DPN patients causing lack of CoM with respect to CoP at the end of reaching with significantly lower FAI. These results lead to the fact that cutaneous and joint somatosensory information from foot and ankle along with the structure of foot arch may play an important role in maintaining dynamic balance and performance of environmental context. In further studies, we expect to show that difference at control strategies in DPN patients due to restricted functional foot usage might be a good predictor of how neuropathy evolves to change biomechanical aspects of biped erect posture


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 141 - 141
1 Feb 2017
Matsumoto T Takayama K Ishida K Tanaka T Inokuchi T Matsushita T Kuroda R
Full Access

Purpose. Recently, kinematic aligned total knee arthroplasty (TKA) has gained interest for achieving better clinical outcomes over mechanical aligned TKA. The primary goal of kinematic aligned TKA is to position the femoral and tibial components so that the angles and levels of the distal and posterior femoral joint lines and the tibial joint line are each restored to the patient's natural alignment, and not to a neutral limb alignment that is unnatural for most patients. Despite good clinical outcomes reported at short to mid-term follow-up, surgeons should know reasons why this method is useful and safe surgery and carefully assess the long-term outcomes until this new technique is settled as standardized procedure for TKA. The main purpose of the present study was to compare postoperative radiography and clinical scores following kinematic and mechanical aligned TKA. Methods. Sixty TKAs—30 kinematic and 30 mechanical aligned—were performed in patients with varus-type osteoarthritis using a navigation system. Using postoperative double-leg and single-leg standing long leg radiographs, joint line orientation angle to the floor, conventional mechanical axis (cMA), and true mechanical axis (tMA; line from hip center to the lowest point of calcaneus) were compared between the two groups. One-year after surgeries, range of motion and the patient-derived score of the 2011 Knee Society Score (2011 KSS), which includes four categories: symptoms, patient satisfaction, patient expectations, and functional activities, e.g., walking/standing, standard activities, advanced activities, and discretionary activities, were compared between the two groups. Results. Joint line orientation angles were 1.3 ±1.8 ° varus in the kinematic and 3.2 ± 2.7° valgus in the mechanical group with double-leg standing condition (p<0.05), which were shifted to 0.7 ± 1.7° valgus and 4.3 ± 1.9° valgus with single-leg standing condition, respectively. In double-leg standing condition, cMAs passed through 43.8 ± 10.2 % in the kinematic and 48.7 ± 7.6 % in the mechanical group (p<0.05), which were shifted to 49.2 ± 12.2 % and 53.7 ± 7.5 % in tMA assessment, respectively. Postoperative flexion angle was significantly better in kinematic aligned TKA compared with mechanical aligned TKA (121.7±9.1 vs. 117.3±14.8, p<0.05). Among 4 contents of 2011 KSS, only functional activity score showed better results in the kinematic group compared with the mechanical group (p<0.05). Conclusions. Kinematic aligned TKA exhibited parallel joint line to the floor during single and double-leg standing and neutral weight-bearing in tMA when compared with mechanical aligned TKA, which might result in better functional score


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 32 - 32
1 Aug 2013
Shandiz MA Saevarsson S Yoo S Anglin C
Full Access

Knee kinematics are altered by total knee arthroplasty (TKA) both intentionally and unintentionally. Knowledge of how and why kinematics change may improve patient outcome and satisfaction through improved implant design, implant placement or through rehabilitation. In the present study we imaged and compared the 6 degree-of-freedom (DOF) patellofemoral (PF) and tibiofemoral (TF) kinematics of 9 pre-TKA subjects to the kinematics of 15 post-TKA subjects (Zimmer NexGen LPS implants) using a novel sequential-biplanar radiographic protocol that allowed imaging the postoperative patellofemoral joint under weightbearing throughout the range of motion, which has not been done previously to our knowledge. There were clear, statistically significant differences between the pre-TKA and post-TKA kinematics: for the TF joint, the tibia was more posterior and inferior (max 20 mm and 15 mm, respectively) in the post-TKA group compared to the pre-TKA group (p<0.001), and had neutral alignment in the post-TKA group compared to varus alignment (max 9°) in the pre-TKA group (p<0.001). For the PF joint, the patella was shifted more posteriorly and medially, and tilted more medially in the post-TKA group compared to the pre-TKA group (p<0.001). There were no significant differences in PF superior/inferior translation and flexion/extension (p>0.5). Both groups showed differences from normal kinematics, based on the literature. The kinematic differences are likely due to a combination of surgical, implant and patient factors. To investigate this further, we imaged the 9 pre-TKA subjects a minimum one year after their surgery; analysis of these data is in progress. Computed tomography (CT) scans and quality of life surveys were also taken before and after surgery. By comparing the preoperative and postoperative kinematics and shape for the same subjects, and analysing the interrelationships amongst these, we aim to determine if a different implant shape or different component positioning could create more normal kinematics, resulting in a better clinical outcome


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 12 - 12
1 Apr 2019
Zumbrunn T Schuetz P von Knoch F Preiss S List R Ferguson SJ
Full Access

BACKGROUND. UKA is functionally superior to TKA, with kinematics similar to native knees, nevertheless, UKA implants are used in less than 10% of cases. While advantages of UKA are recognized, ACL-deficiency is generally considered a contraindication. The hypothesis of this study was that fix bearing UKA in ACL-deficient knees, with appropriate adaptation of implant placement, would result in similar kinematic trends to conventional UKA with an intact ACL. METHODS. Ten conventional UKA patients were compared to eight patients with the same implant but a deficient ACL. A 50% tibial slope reduction was applied to compensate for instability resulting from the deficient ACL. Knee kinematics were evaluated using a moving fluoroscope allowing to track the knee joint during deep knee bend, level walking, ramp descent and stair descent. The results were further compared to six TKA patients. RESULTS. During standing, a posterior shift of the femur was observed for the ACL-deficient UKA patients compared to conventional UKA patients. This posterior shift was also present during the first 25% of deep knee bend. Most parameters revealed no difference in range of motion across all activities between the two UKA groups. This is in contrast to TKA patients showing different motion trends and decreased range of motion. CONCLUSIONS. Despite the posterior femoral shift due to ACL-deficiency, both UKA groups showed similar kinematic trends, indicating that posterior tibial slope reduction can partially compensate for ACL function. This confirmed our hypothesis that fix bearing UKA can be a viable treatment option for selected ACL-deficient patients


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 87 - 87
23 Feb 2023
Orsi A Wakelin E Plaskos C McMahon S Coffey S
Full Access

Inverse Kinematic Alignment (iKA) and Gap Balancing (GB) aim to achieve a balanced TKA via component alignment. However, iKA aims to recreate the native joint line versus resecting the tibia perpendicular to the mechanical axis. This study aims to compare how two alignment methods impact 1) gap balance and laxity throughout flexion and 2) the coronal plane alignment of the knee (CPAK). Two surgeons performed 75 robotic assisted iKA TKA's using a cruciate retaining implant. An anatomic tibial resection restored the native joint line. A digital joint tensioner measured laxity throughout flexion prior to femoral resection. Femoral component position was adjusted using predictive planning to optimize balance. After femoral resection, final joint laxity was collected. Planned GB (pGB) was simulated for all cases posthoc using a neutral tibial resection and adjusting femoral position to optimize balance. Differences in ML balance, laxity, and CPAK were compared between planned iKA (piKA) and pGB. ML balance and laxity were also compared between piKA and final (fiKA). piKA and pGB had similar ML balance and laxity, with mean differences <0.4mm. piKA more closely replicated native MPTA (Native=86.9±2.8°, piKA=87.8±1.8°, pGB=90±0°) and native LDFA (Native=87.5±2.7°, piKA=88.9±3°, pGB=90.8±3.5°). piKA planned for a more native CPAK distribution, with the most common types being II (22.7%), I (20%), III (18.7%), IV (18.7%) and V (18.7%). Most pGB knees were type V (28.4%), VII (37.8%), and III (16.2). fiKA and piKA had similar ML balance and laxity, however fiKA was more variable in midflexion and flexion (p<0.01). Although ML balance and laxity were similar between piKA and pGB, piKA better restored native joint line and CPAK type. The bulk of pGB knees were moved into types V, VII, and III due to the neutral tibial cut. Surgeons should be cognizant of how these differing alignment strategies affect knee phenotype


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 124 - 124
1 Apr 2019
Karia M Ali A Harris S Abel R Cobb J
Full Access

Background. Defining optimal coronal alignment in Total Knee Replacement (TKR) is a controversial and poorly understood subject. Tibial bone density may affect implant stability and functional outcomes following TKR. Our aim was to compare the bone density profile at the implant-tibia interface following TKR in mechanical versus kinematic alignment. Methods. Pre-operative CT scans for 10 patients undergoing medial unicompartmental knee arthroplasty were obtained. Using surgical planning software, tibial cuts were made for TKR with 7 degrees posterior slope and either neutral (mechanical) or 3 degrees varus (kinematic) alignment. Signal intensity, in Hounsfield Units (HU), was measured at 25,600 points throughout an axial slice at the implant-tibia interface and density profiles compared along defined radial axes from the centre of the tibia towards the cortices (Hotelling's t-squared and paired t-test). Results. From the tibial centre towards the lateral cortex, trabecular bone density for kinematic and mechanical TKR are similar in the inner 50% but differ significantly beyond this (p= 0.012). There were two distinct density peaks, with peak trabecular bone density being higher in kinematic TKR (p<0.001) and peak cortical bone density being higher in mechanical TKR (p<0.01). The difference in peak cortical to peak trabecular signal was 43 HU and 185 HU respectively (p<0.001). On the medial side there was no significant difference in density profile and a linear increase from centre to cortex. Conclusions. In the lateral proximal tibia, there is significantly less difference between peak cortical and peak trabecular bone densities in kinematic TKR compared to mechanical TKR. Laterally, mechanical TKR may be more dependent upon cortical bone for support compared to kinematic TKR, where trabecular bone density is higher. This may have implications for surgical planning and implant design


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 53 - 53
1 Nov 2018
Karia M Ali A Harris S Abel R Cobb J
Full Access

Tibial bone density may affect implant stability and functional outcomes following total knee replacement (TKR). Our aim was to characterise the bone density profile at the implant-tibia interface following TKR in mechanical versus kinematic alignment. Pre-operative computed tomography scans for 10 patients were obtained. Using surgical planning software, tibial cuts were made for TKR either neutral (mechanical) or 3 degrees varus (kinematic) alignment. Signal intensity, in Hounsfield Units (HU), was measured at 25,600 points throughout an axial slice at the implant-tibia interface and density profiles compared along defined radial axes from the centre of the tibia towards the cortices. From the tibial centre towards the lateral cortex, trabecular bone density for kinematic and mechanical TKR are similar in the inner 50% but differ significantly beyond this (p= 0.012). There were two distinct density peaks, with peak trabecular bone density being higher in kinematic TKR (p<0.001) and peak cortical bone density being higher in mechanical TKR (p<0.01). The difference in peak cortical to peak trabecular signal was 43 HU and 185 HU respectively (p<0.001). On the medial side there was no significant difference in density profile and a linear increase from centre to cortex. In the lateral proximal tibia, peak cortical and peak trabecular bone densities differ between kinematic TKR and mechanical TKR. Laterally, mechanical TKR may be more dependent upon cortical bone for support compared to kinematic TKR, where trabecular bone density is higher. This may have implications for surgical planning and implant design


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 111 - 111
1 Apr 2017
Van Onsem S Lambrecht D Verstraete M Van Der Straeten C Victor J
Full Access

Introduction. Better functional outcomes, lower pain and better stability have been reported with knee designs which restore physiological knee kinematics. Also the ability of the TKA design to properly restore the physiological femoral rollback during knee flexion, has shown to be correlated with better restoration of the flexor/extensor mechanism, which is fundamental to the function of the human knee. The purpose of the study is to compare the kinematics of three different TKA designs, by evaluating knee motion during Activities of Daily Living. The second goal is to see if there is a correlation between the TKA kinematics and the patient reported outcomes. Methods. Ten patients of each design, who are at least 6 months after their Total Knee Replacement, will be included in this study. Seven satisfied and 3 dissatisfied patients will be selected for each design. In this study 5 different movements will be analysed: flexion/extension; Sitting on and rising from a chair, Stair climbing, descending stairs, Flexion and extension open chain and squatting. These movements will be captured with a fluoroscope. The 2D images that are obtained, will be matched with the 3D implants. This 3D image will be processed with custom-made software to be able to analyse the movement. Tibio-femoral contact points of the medial and lateral condyles, tibio-femoral axial rotation, determination of the pivot-point will be analysed and described. After this analysis, a correlation between the kinematics and the KOOS and KSS will be investigated. Results. (The results of the first six patients are shown, more patients are currently being tested.) The average weight-bearing ROM of the implants is 108.48° +/− 19.68°


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 476 - 476
1 Dec 2013
Banks S Watanabe T Kreuzer SW Leffers K Conditt M Jones J Park B Dunbar N Iorgulescu A
Full Access

INTRODUCTION. There is strong current interest to provide reliable treatments for one- and two-compartment arthritis in the cruciate-ligament intact knee. An alternative to total knee arthroplasty is to resurface only the diseased compartments with discrete compartmental components. Placing multiple small implants into the knee presents a greater surgical challenge than total knee arthroplasty, and it is not certain natural knee mechanics can be maintained. The goal of this study was to compare functional kinematics in cruciate-intact knees with either medial unicondylar (mUKA), mUKA plus patellofemoral (mUKA+PF), or bi-unicondylar (biUNI) arthroplasty using discrete compartmental implants with preparation and placement assisted by haptic robotic technology. METHODS. Nineteen patients with 21 knee arthroplasties consented to participate in an I.R.B. approved study of knee kinematics with a cruciate-retaining multicompartmental knee arthroplasty system. All subjects presented with knee OA, intact cruciate ligaments, and coronal deformity ranging from 7° varus to 4° valgus. All subjects received multicompartmental knee arthroplasty using haptic robotic-assisted bone preparation an average of 13 months (6–29 months) before the study. Eleven subjects received mUKA, five subjects received mUKA+PF, and five subjects received biUKA. Subjects averaged 62 years of age and had an average body mass index of 31. Combined Knee Society Pain/Function scores averaged 102 ± 28 preoperatively and 169 ± 26 at the time of study. Knee range of motion averaged −3° to 120° preoperatively and −1° to 129° at the time of the study. Knee motions were recorded using video-fluoroscopy while subjects performed step-up/down, kneeling and lunging activities. The three-dimensional position and orientation of the implant components were determined using model-image registration techniques (Fig. 1). The AP locations of the medial and lateral condyles were determined by computing a distance map between the femoral condyles and the tibial articular surfaces. RESULTS. Knee kinematics during maximum flexion kneeling and lunging showed tibial internal rotation, and posterior lateral condylar translation for all three treatments (Fig. 2). All knees showed femoral external rotation and posterior condylar translation with flexion during the step activity (Fig. 3). In all three activities, knees with mUKA and mUKA+PF arthroplasty showed the most femoral external rotation and posterior translation, and knees with biUKA showed the least. DISCUSSION. Knees with tricompartmental arthroplasty usually sacrifice one or both cruciate ligaments and also exhibit kinematics which differ from the normal knee. In particular, tibiofemoral rotations are almost always significantly less than the normal knee, and often the femur translates forward with flexion over some portion of the motion arc. In contrast, knees with accurately-placed uni- or bi-compartmental arthroplasty exhibited stable knee kinematics consistent with intact and functioning cruciate ligaments. The patterns and magnitudes of tibiofemoral motion were more similar to natural knees in the mUKA and mUKA+PF groups than commonly has been observed in knees with total knee arthroplasty. These results demonstrate the potential to restore or maintain closer-to-normal knee kinematics by retaining intact structures and compartments. Knees with an intact lateral compartment had kinematics closer to normal than those where both tibiofemoral compartments were diseased/replaced


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 64 - 64
1 Jan 2016
Ishikawa M Kuriyama S Furu M Matsuda S
Full Access

Objective. Kinematically aligned total knee arthroplasty (TKA) is of increasing interest because this method may improve patient satisfaction. However, the biomechanics of kinematically aligned TKA remain largely unknown. Therefore, we analyzed whether the kinematic alignment method cause to increase the contact force on patellofemoral and tibiofemoral joints. Methods. A musculoskeletal computer simulation was used to determine the effects of kinematically or mechanically aligned TKA. Patellofemoral and tibiofemoral contact forces were examined for a mechanically aligned model and a kinematically aligned model using finite element analysis. Results. The peak contact stress on the patellofemoral joint in the kinematically aligned model was greater than that in the mechanically aligned model at 30° and 60°. Maximum peak contact stress was found at 30° flexion in the kinematically aligned model (73 MPa) and this was 221% higher than the stress in the mechanically aligned model (33 MPa). Similarly, peak contact stress of 33.0 MPa at 60° flexion occurred in the kinematically aligned model and this was 114% higher than that in the mechanically aligned model (29 MPa). The peak contact stress on the tibiofemoral joint in the kinematically aligned model was greater than that in the mechanically aligned model at 30°, 60° and 90° flexion. Maximum peak contact stress was found at 30° flexion in the kinematically aligned model (22 MPa) and this was 200% higher than the stress in the mechanically aligned model (11 MPa). Conclusions. Kinematically aligned TKA may have increased risks for implant longevity. Therefore, a strict surgical indication, including age and implant design, is needed to achieve excellent longevity after kinematically aligned TKA


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 133 - 133
1 Jan 2016
Kutsuna T Hino K Onishi Y Watamori K Miura H
Full Access

Purpose. The purpose of this study was to analyze rotational kinematic patterns in knees treated with either cruciate-retaining (CR) or posterior-stabilized (PS) total knee arthroplasty (TKA), using an intra-operative navigation technique, and to clarify the factors that affect of the rotational kinematics and the difference rotational kinematics patterns between CR- and PS- TKA. Methods. A total of 35 knees (35 patients) were included in this study, deformed valgus, sever flexion contractures, and highly unstable knees were excluded. These knees were allocated to CR (NexGen CR-Flex) or PS (NexGen PS-Flex) implants and underwent TKA with a computer navigation technique (precision N Knee Navigation Software v4.0; Stryker). There was no significant difference in pre-operative parameters between CR- and PS-TKA group: age, femorotibial angle (FTA), and chondylar twist angle (CTA). We measured two points during surgery. First, the skin incision was made and subcutaneous tissue was exposed. The joint capsule was temporality closed by three or four strand suture. Second, after the surgery was completed with satisfactory alignment and soft tissue balance, immediately following wound closure the measurement procedure was repeated. The surgeon gently applied a manual range of motion from full extension to flexion. The angle of internal rotation in tibia to the functional plane of tibia and femur was measured automatically at max extension, 0, 30, 45, 60, 90 degrees, and max flexion throughout the passive knee motion. Result. We categorized the post-operative rotational kinematics patterns to five types. Type A was increasing with the internal rotation angle in tibia with knee flexion. Type B was decreasing the internal rotation with knee flexion. Type C was decreasing the internal rotation from 0 to 45 or 60 degrees, Then graduated increasing until full flexion. Type D was the opposite type of type C. Type E was not able to categorize any pattern. (Figure 1) The individual kinematic pattern was variable in pre- and post-operative knee motion. Both CR- and PS-TKA had a tendency to remain the preoperative kinematic pattern (CR-TKA 66% and PS-TKA 59%) by comparing the pre- and post-operative kinematic pattern. But, type A was increased in post-operative PS-TKA. (Figure 2) We analyzed factors (age, pre-operative FTA, CTA, pre-operative knee extension, and post-operative FTA) that affect the change of rotational kinematics patterns before and after TKA. In CR-TKR, there were not any factors that influence with the changes of kinematic pattern. In PS-TKR, pre-operative knee extension angle affected accompanied by significant difference in the change of rotational kinematics patterns. Discussion & Conclusion. We analyzed the rotational kinematics patterns in knees treated with either CR- or PS-TKR, using an intra-operative navigation. Pre- and post-operative knee kinematics of TKA patients had a variety of rotational kinematics patterns. Both CR- and PS-TKA had a tendency to remain the preoperative kinematic pattern by comparing the pre- and post-operative kinematic pattern Pre-operative knee extension affected to the change of rotational kinematics pattern in PS-TKR


Bone & Joint Research
Vol. 8, Issue 3 | Pages 126 - 135
1 Mar 2019
Sekiguchi K Nakamura S Kuriyama S Nishitani K Ito H Tanaka Y Watanabe M Matsuda S

Objectives. Unicompartmental knee arthroplasty (UKA) is one surgical option for treating symptomatic medial osteoarthritis. Clinical studies have shown the functional benefits of UKA; however, the optimal alignment of the tibial component is still debated. The purpose of this study was to evaluate the effects of tibial coronal and sagittal plane alignment in UKA on knee kinematics and cruciate ligament tension, using a musculoskeletal computer simulation. Methods. The tibial component was first aligned perpendicular to the mechanical axis of the tibia, with a 7° posterior slope (basic model). Subsequently, coronal and sagittal plane alignments were changed in a simulation programme. Kinematics and cruciate ligament tensions were simulated during weight-bearing deep knee bend and gait motions. Translation was defined as the distance between the most medial and the most lateral femoral positions throughout the cycle. Results. The femur was positioned more medially relative to the tibia, with increasing varus alignment of the tibial component. Medial/lateral (ML) translation was smallest in the 2° varus model. A greater posterior slope posteriorized the medial condyle and increased anterior cruciate ligament (ACL) tension. ML translation was increased in the > 7° posterior slope model and the 0° model. Conclusion. The current study suggests that the preferred tibial component alignment is between neutral and 2° varus in the coronal plane, and between 3° and 7° posterior slope in the sagittal plane. Varus > 4° or valgus alignment and excessive posterior slope caused excessive ML translation, which could be related to feelings of instability and could potentially have negative effects on clinical outcomes and implant durability. Cite this article: K. Sekiguchi, S. Nakamura, S. Kuriyama, K. Nishitani, H. Ito, Y. Tanaka, M. Watanabe, S. Matsuda. Bone Joint Res 2019;8:126–135. DOI: 10.1302/2046-3758.83.BJR-2018-0208.R2


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 97 - 97
1 Jan 2017
Fujito T Tomita T Futai K Yamazaki T Kenichi K Yoshikawa H Sugamoto K
Full Access

We hypothesized that using the navigation system, intra-operative knee kinematics after implantation measured may predict that post-operative kinematic in activities of daily living. Our aim was to compare intra-operative knee kinematics by a computed tomography (CT)-based navigation system and post-operative by the 2- to 3-dimensional registration techniques (2D3D). This study were performed for 8 patients (10 knees, medial osteoarthritis) who underwent primary PS TKA using CT-based navigation system. The median follow-up period from operation date to fluoroscopic surveillance date was 13 months (range 5 – 37 months). Navigation and 2D3D had a common coordinate origin for components. Medial and lateral femoral condyle anterior-posterior translation (MFT and LFT) were respectively defined as the distance of the projection of the points (which was set on the top of the posterior femoral pegs) onto the axial plane of the tibial coordinate system. Intraoperative kinematics was measured using the navigation system after final implantation and closure of the retinaculum during passive full flexion and extension imposed by the surgeon. Under fluoroscopic surveillance in the sagittal plane, each patient was asked to perform sequential deep knee flexion under both weight bearing (WB) and non-weight bearing (NWB) conditions from full extension to maximum flexion. Repeated two-way ANOVA (tasks × flexion angles) were used, and then post-hoc test (paired t-tests with Boferroni correction) were performed. The level of statistical significant difference was set at 0.05 on two-way ANOVAs and 0.05 / 3 on post-hoc paired t-tests. Mean range of motion between femoral and tibial components were Intra-operative (Intra): 28.0 ± 9.7, NWB conditions: 120.6 ± 11.1, WB conditions: 125.1 ± 12.9°, respectively. Mean ER (+) / IR (−) from 0° to 120° were Intra-operative (Intra): 9.3 ± 10.2°, NWB conditions: 8.1 ± 8.9, WB conditions: 5.2 ± 7.0, respectively. Mean MFT /LFT from 0° to 90° were Intra; 4.4 ±14.8/ 4.2± 8.5mm, NWB; 6.2 ± 6.9 / 9.2 ± 3.1 mm, WB; 9.2 ± 3.5 / 7.4 ± 2.8 mm, respectively. Mean MFT /LFT from 90° to 120° were Intra; −4.4 ± 2.5 / −5.7 ± 2.9 mm, NWB; −5.5 ± 1.8 / −8.2 ± 0.6 mm, WB; −4.0 ± 1.9 / −5.4 ± 2.3mm, respectively. Mean ADD/ABD from 0° to 120° were Intra;-4.2 ± 3.0, NWB; −0.2 ± 2.1, WB; −0.1 ± 0.8, respectively. Repeated two-way ANOVA showed a significant all interaction on kinematic variables (p<0.05). No statistically significant difference at post-hoc test was found in ER/ IR of all tasks and MFT /LFT of Intra vs NWB and Intra vs WB from 0° to 120° (p>0.05 / 3). The Conditions of these tasks were different from each others. Our study demonstrated that intra-operative kinematics could predict post-operative kinematics


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 75 - 75
1 Jun 2018
Lewallen D
Full Access

Even though primary total knee arthroplasty involves resurfacing the joint with metal and plastic it is much more of a soft tissue operation than it is a bony procedure. The idea that altering the planned bony resection by a few degrees on either the tibial or femoral side of the joint might somehow eliminate the multifactorial pain complaints and reduced patient satisfaction seen in some 20% or more of cases in reported clinical series is clearly overly optimistic. Axial alignment is important, but no more so than the level of distal femoral resection, tibial and femoral rotation, tibial resection level and downslope and femoral sagittal plane alignment. The real problem is that errors in component positioning are common, rarely made one at a time, and are made more common by greater procedural complexity. No matter the resection method (let alone the resection target!) errors are commonly linked and iterative. For example: femoral malrotation on an under-resected distal femur (in a knee with minimal arthritic wear to begin with) can contribute to corresponding tibial malrotation helped by a “floated” tibial trial on an all too often overly resected and downsloped tibial surface that has been recut to allow full extension with the under-resected femur (and now also results in AP laxity in flexion). Small changes in the alignment target will not fix this!. On the other hand: Kinematic alignment individualised to the patient's anatomy as a means of reducing soft tissue imbalance and minimizing ligamentous releases is actually a reasonable objective and a laudable goal on the surface. The problem with operationalizing this widely relates to what is currently required to try and reliably achieve this goal using currently available implants and technology. In the early 1980's the proponents of “anatomic” alignment with a residual 2- to 3-degree varus tibial resection and corresponding joint obliquity were Hungerford and Krackow. This concept was widely adopted but proved to be fraught with difficulty in the hands of community based surgeons in that era due to common excessive varus tibial resection errors and resulting premature implant failures. Recent reports on kinematic alignment involve a plethora of technology combinations including pre-operative CT (or MRI) for 3D reconstruction and planning, custom jig fabrication, and navigated bony preparation or individualised bony cuts off of patient specific jigs. The goal is to allow customised resections that “estimate” original cartilage thickness and bone erosion and seek to replicate the original however native anatomy and provide better precision for bone resection. Even when successful this is often followed by placement of a standard implant not too different from those in the 80's and 90's which may well have one femoral articular “J curve” for all patents, a single patellofemoral groove design and anatomic shape for all, and that makes use of a central keel on a nonanatomic tibial design with limited sizing increments, all implanted into a patient without an ACL and not infrequently PCL deficient as well. And all of this is done with the hope of restoring the normal original knee kinematics!. The frequent combination of several of the above factors clinically in a single knee may help explain some of the variability in results of kinematic alignment reported by some authors even after excluding certain pre-operative deformities (excess valgus or varus). For now mechanical alignment methods and instrumentation should remain the standard of care for routine TKA practice for most, and in complex primary cases for all


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_12 | Pages 56 - 56
1 Oct 2019
Barnes CL Severin AC Tackett SA Mannen E
Full Access

Introduction. Golf is a recommended form of physical activity for older adults. However, clinicians have no evidence-based research regarding the demands on the hips of older adults during golf. The purpose of our in vivoobservational study was to quantify the hip biomechanics of older adult golfers. Methods. Seventeen healthy older male golfers(62.2±8.8 years, handicap 8.7±4.9) free from orthopaedic injuries and surgeries volunteered for participation in this IRB-approved study. A 10-camera motion capture system recorded kinematics, and two force plates collected kinetic data. Participants performed eight shots using their own driver. Data processing was performed in Visual3D. The overall range of excursion and three-dimensional net joint moments normalized to body weight for the lead and trail hips were extracted. Results. Kinematics (mean excursion and range) of lead and trail hips in all three planes during a golf swing are presented in Table 1. The trail leg experiences higher excursion in the sagittal plane, while the lead leg has more frontal plane movement. Average maximum net joint moments of the lead and trail hips were 1.2 ± 0.2 and 1.7 ± 0.3 Nm/kg, respectively. Conclusion. Our study is the first to quantify the kinematics and kinetics of the hip joint in healthy older male golfers. While the golf swing is often considered to be a predominant transverse plane motion, our results indicate considerable excursion at the hip joints in all three planes. Furthermore, the trail leg experiences 40% greater loading than the lead leg throughout the swing, suggesting that the trail leg may have a larger impact on golf performance while also leaving it more susceptible to overuse injury. For clinicians with patients who experience osteoarthritis of the hip or who have recently undergone hip surgery, this study may provide novel insight into the demands of golf on the hips. For any tables or figures, please contact the authors directly


Bone & Joint Research
Vol. 1, Issue 10 | Pages 263 - 271
1 Oct 2012
Sharma GB Saevarsson SK Amiri S Montgomery S Ramm H Lichti DD Lieck R Zachow S Anglin C

Objectives. Numerous complications following total knee replacement (TKR) relate to the patellofemoral (PF) joint, including pain and patellar maltracking, yet the options for in vivo imaging of the PF joint are limited, especially after TKR. We propose a novel sequential biplane radiological method that permits accurate tracking of the PF and tibiofemoral (TF) joints throughout the range of movement under weightbearing, and test it in knees pre- and post-arthroplasty. Methods. A total of three knees with end-stage osteoarthritis and three knees that had undergone TKR at more than one year’s follow-up were investigated. In each knee, sequential biplane radiological images were acquired from the sagittal direction (i.e. horizontal X-ray source and 10° below horizontal) for a sequence of eight flexion angles. Three-dimensional implant or bone models were matched to the biplane images to compute the six degrees of freedom of PF tracking and TF kinematics, and other clinical measures. Results. The mean and standard deviation for the six degrees of freedom of PF tracking and TF kinematics were computed. TF and PF kinematics were highly accurate (< 0.9 mm, < 0.6°) and repeatable. Conclusions. The developed method permitted measuring of in vivo PF tracking and TF kinematics before and after TKR throughout the range of movement. This method could be a useful tool for investigating differences between cohorts of patients (e.g., with and without pain) impacting clinical decision-making regarding surgical technique, revision surgery or implant design


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 13 - 13
1 Feb 2020
Tanaka S Tei K Minoda M Matsuda S Takayama K Matsumoto T Kuroda R
Full Access

Introduction. Acquiring adaptive soft-tissue balance is one of the most important factors in total knee arthroplasty (TKA). However, there have been few reports regarding to alteration of tolerability of varus/valgus stress between before and after TKA. In particular, there is no enough data about mid-flexion stability. Based on these backgrounds, it is hypothesized that alteration of varus/valgus tolerance may influence post-operative results in TKA. The purpose of this study is an investigation of in vivo kinematic analyses of tolerability of varus/valgus stress before and after TKA, comparing to clinical results. Materials and Methods. A hundred knees of 88 consecutive patients who had knees of osteoarthritis with varus deformity were investigated in this study. All TKAs (Triathlon, Stryker) were performed using computer assisted navigation system. The kinematic parameters of the soft-tissue balance, and amount of coronal relative movement between femur and tibia were obtained by interpreting kinematics, which display graphs throughout the range of motion (ROM) in the navigation system. Femoro-tibial alignments were recorded under the stress of varus and valgus before the procedure and after implantation of all components. In each ROM (0, 30, 60, 90, 120 degrees), the data of coronal relative movement between femur and tibia (tolerability) were analyzed before and after implantation. Furthermore, correlations between tolerability of varus/valgus and clinical improvement revealed by ROM and Knee society score (KSS) were analyzed by logistic regression analysis. Results. Evaluation of soft tissue balance with navigation system revealed that the tolerance of coronal relative movement between femur and tibia (varus/valgus) after implantation was significantly decreased compared with before implantation even in mid-flexion range. There were no significant correlations between tolerability of coronal relative movement and improvement of extension range and KSS. However, mid-flexion tolerability showed negative correlation with flexion range. Discussion. One of the most important principles for ligament balancing in TKA for varus knees is involved that the medial extension gap should be within 1–3mm to avoid flexion contracture and a feeling of instability, the medial flexion gap should be equal or 1–2mm larger to the medial extension gap, and lateral extension laxity up to 5 degrees is acceptable. However, there have been few reports measuring laxity from 30 to 60 degrees. In this study, the tolerance of coronal relative movement was significantly limited even in mid-flexion. However, mid-flexion tightness was not significantly correlated with clinical results except for flexion range. This result might be suggested that high tolerability of coronal relative movement in mid-flexion range may lead to widening of flexion range of motion of the knee after TKA. For any figures or tables, please contact authors directly


The Bone & Joint Journal
Vol. 96-B, Issue 9 | Pages 1214 - 1221
1 Sep 2014
d’Entremont AG McCormack RG Horlick SGD Stone TB Manzary MM Wilson DR

Although it is clear that opening-wedge high tibial osteotomy (HTO) changes alignment in the coronal plane, which is its objective, it is not clear how this procedure affects knee kinematics throughout the range of joint movement and in other planes. Our research question was: how does opening-wedge HTO change three-dimensional tibiofemoral and patellofemoral kinematics in loaded flexion in patients with varus deformity?Three-dimensional kinematics were assessed over 0° to 60° of loaded flexion using an MRI method before and after opening-wedge HTO in a cohort of 13 men (14 knees). Results obtained from an iterative statistical model found that at six and 12 months after operation, opening-wedge HTO caused increased anterior translation of the tibia (mean 2.6 mm, p <  0.001), decreased proximal translation of the patella (mean –2.2 mm, p <  0.001), decreased patellar spin (mean –1.4°, p < 0.05), increased patellar tilt (mean 2.2°, p < 0.05) and changed three other parameters. The mean Western Ontario and McMaster Universities Arthritis Index improved significantly (p < 0.001) from 49.6 (standard deviation (. sd. ) 16.4) pre-operatively to a mean of 28.2 (. sd. 16.6) at six months and a mean of 22.5 (. sd.  14.4) at 12 months. The three-dimensional kinematic changes found may be important in explaining inconsistency in clinical outcomes, and suggest that measures in addition to coronal plane alignment should be considered. . Cite this article: Bone Joint J 2014; 96-B:1214–21


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 54 - 54
1 Jul 2020
Vendittoli P Blakeney W Kiss M Puliero B Beaulieu Y
Full Access

Mechanical alignment (MA) techniques for total knee arthroplasty (TKA) introduces significant anatomic modifications and secondary ligament imbalances. A restricted kinematic alignment (rKA) protocol was proposed to minimise these issues and improve TKA clinical results. A total of 1000 knee CT-Scans were analyzed from a database of patients undergoing TKA. rKA tibial and femoral bone resections were simulated. rKA is defined by the following criteria: Independent tibial and femoral cuts within ± 5° of the bone neutral mechanical axis and, a resulting HKA within ± 3° of neutral. Medial-lateral (ΔML) and flexion-extension (ΔFE) gap differences were calculated and compared with MA results. With the MA technique, femoral rotation was aligned with either the trans-epicondylar axis (TEA) or with 3° of external rotation to the posterior condyles (PC). Extension space ML imbalances (>/=3mm) occurred in 33% of TKA with MA technique versus 8% of the knees with rKA (p /=5mm) were present in up to 11% of MA knees versus 1% rKA (p < 0 .001). Using the MA technique, for the flexion space ΔML, higher imbalance rates were created by the TEA technique (p < 0 .001). rKA again performed better than both MA techniques using TEA of 3 degrees PC techniques (p < 0 .001). When all the differences between ΔML and ΔFE are considered together: using TEA there were 40.8% of the knees with < 3 mm imbalances throughout, using PC this was 55.3% and using rKA it was 91.5% of the knees (p < 0 .001). Significantly less anatomic modifications with related ML or FE gap imbalances are created using rKA versus MA for TKA. Using rKA may help the surgeon to balance a TKA, whilst keeping the alignment within a safe range


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 111 - 111
1 May 2016
Park S Jeong S Lee S
Full Access

Introduction. Most surgeons that have performed kinematically aligned TKA have noticed an overall better clinical outcome, better motion, better patient satisfaction, and a quicker recovery than their patients treated with mechanically aligned TKA. Materials and Methods. We prospectively followed all 128 knees who underwent primary total knee arthroplasty. The Lysholm knee score and VAS scale was recorded initially and 12months after the surgery. Independent T-test was used for statistical analysis at probability level of 95%. SPSS for Windows (Version 12, Chicago, Illinois) was used. Results. VAS score and passive ROM; Not significant difference statistically. But improved compared the preoperative and postoperative data. WOMAC score and HSS score; Significantly improved statistically. Discussion. Our data suggest that kinematic alignment may lessen the surgical stress experienced by the patient, reduce the pain, and increase function of knee. There is a need for more studies to clarify benefits of kinematic alignment technique. Kinematically aligned TKA restores function by aligning the femoral and tibial components to the normal or prearthritic joint lines of the knee. We prospectively followed all 128 knees who underwent total knee arthroplasty. We assessed postoperative function using the VAS, WOMAC, HSS score and passive ROM. HSS score and WOMAC score were significantly improved statistically


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 106 - 106
1 May 2016
Verstraete M Van Onsem S Biebouw S Cortens W Arnout N Victor J
Full Access

Total knee arthroplasty aims at restoring the function of the native knee. An important aspect at this point are the knee kinematics, as it can be assumed that following TKA surgery these should resemble the native conditions. The use of cadaveric testing is since long an important step in the development and validation of implant designs and surgical techniques. However, this cadaveric testing has primarily focused on squatting under load bearing conditions. The main research question of this paper is therefore to evaluate the impact of TKA surgery on the knee kinematics under a range of boundary conditions. A set of five cadaveric knees have been tested in a newly developed and validated knee simulator at Ghent University. In contrast to other simulators, this simulator allows simulating a wide range of conditions as it facilitates a controlled movement of the ankle in the sagittal plane under continuously variable hamstring and quadriceps loading. In the framework of this study, two different motion patterns have been studied. First, the knees were subjected to a traditional squatting motion maintaining constant quadriceps loading. Second, the knees were tested while performing a cycling movement with a highly variable quadriceps load during the extension phase. For both cases, the studied motion patterns have been repeated five times. Following the evaluation of the native knee kinematics, TKA surgery was performed using a single radius implant. During surgery, the implant alignment has been controlled using computer navigation. Subsequently, the same boundary conditions have been applied and the kinematics again recorded. Focusing on the native knee, the measured kinematic patterns for the squatting motion significantly differ from the ones observed for the cycling movement for similar flexion angles. This is attributed to a difference in quadriceps loading. However, following TKA surgery, the kinematic patterns are remarkably comparable between the squatting and cycling experiments. These observations suggest that the TKA design considered in this study displays a highly constrained behavior. More specifically, the design appears to favor the squatting behavior. Further study is however required to thoroughly evaluate this observation for other implant designs and a wider range of motion patterns


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 52 - 52
1 Feb 2021
De Grave PW Luyckx T Claeys K Gunst P
Full Access

Purpose. Various alignment philosophies for total knee arthroplasty (TKA) have been described, all striving to achieve excellent long-term implant survival and good functional outcomes. In recent years, in search of higher functionality and patient satisfaction, a shift towards more patient-specific alignment is seen. Robotics is the perfect technology to tailor alignment. The purpose of this study was to describe ‘inverse kinematic alignment’ (iKA) technique, and to compare clinical outcomes of patients that underwent robotic-assisted TKA performed by iKA versus adjusted mechanical alignment (aMA). Methods. The authors analysed the records of a consecutive series of patients that received robotic assisted TKA with iKA (n=40) and with aMA (n=40). Oxford Knee Score (OKS) and satisfaction on a visual analogue scale (VAS) were collected at a follow-up of 12 months. Clinical outcomes were assessed according to patient acceptable symptom state (PASS) thresholds, and uni- and multivariable linear regression analyses were performed to determine associations of OKS and satisfaction with 6 variables (age, sex, body mass index (BMI), preoperative hip knee ankle (HKA) angle, preoperative OKS, alignment technique). Results. The iKA and aMA techniques yielded comparable outcome scores (p=0.069), with OKS respectively 44.6±3.5 and 42.2±6.3. VAS Satisfaction was better (p=0.012) with iKA (9.2±0.8) compared to aMA (8.5±1.3). The number of patients that achieved OKS and satisfaction PASS thresholds was significantly higher (p=0.049 and p=0.003, respectively) using iKA (98% and 80%) compared to aMA (85% and 48%). Knees with preoperative varus deformity, achieved significantly (p=0.025) better OKS using iKA (45.4±2.0) compared to aMA (41.4±6.8). Multivariable analyses confirmed better OKS (β=3.1; p=0.007) and satisfaction (β=0.73; p=0.005) with iKA. Conclusions. The results of this study suggest that iKA and aMA grant comparable clinical outcomes at 12-months follow-up, though a greater proportion of knees operated by iKA achieved the PASS thresholds for OKS and satisfaction. Notably. in knees with preoperative varus deformity, iKA yielded significantly better OKS and satisfaction than aMA


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 7 | Pages 907 - 913
1 Jul 2011
Ward TR Burns AW Gillespie MJ Scarvell JM Smith PN

Bicruciate-stabilised total knee replacement (TKR) aims to restore normal kinematics by replicating the function of both cruciate ligaments. We performed a prospective, randomised controlled trial in which bicruciate- and posterior-stabilised TKRs were implanted in 13 and 15 osteo-arthritic knees, respectively. The mean age of the bicruciate-stabilised group was 63.9 years (. sd. 10.00) and that of the posterior-stabilised group 63.2 years (. sd. 6.7). A control group comprised 14 normal subjects with a mean age of 67.9 years (. sd. 7.9). The patellar tendon angle (PTA) was measured one week pre-operatively and at seven weeks post-operatively during knee extension, flexion and step-up exercises. At near full extension during step-up, the bicruciate-stabilised TKR produced a higher mean PTA than the posterior-stabilised TKR, indicating that the bicruciate design at least partially restored the kinematic role of the anterior cruciate ligament. The bicruciate-stabilised TKR largely restored the pre-operative kinematics, whereas the posterior-stabilised TKR resulted in a consistently lower PTA at all activities. The PTA in the pre-operative knees was higher than in the control group during the step-up and at near full knee extension. Overall, both groups generated a more normal PTA than that seen in previous studies in high knee flexion. This suggested that both designs of TKR were more effective at replicating the kinematic role of the posterior cruciate ligament than those used in previous studies


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 8 | Pages 1016 - 1021
1 Aug 2006
Delport HP Banks SA De Schepper J Bellemans J

Mobile-bearing posterior-stabilised knee replacements have been developed as an alternative to the standard fixed- and mobile-bearing designs. However, little is known about the in vivo kinematics of this new group of implants. We investigated 31 patients who had undergone a total knee replacement with a similar prosthetic design but with three different options: fixed-bearing posterior cruciate ligament-retaining, fixed-bearing posterior-stabilised and mobile-bearing posterior-stabilised. To do this we used a three-dimensional to two-dimensional model registration technique. Both the fixed- and mobile-bearing posterior-stabilised configurations used the same femoral component. We found that fixed-bearing posterior stabilised and mobile-bearing posterior-stabilised knee replacements demonstrated similar kinematic patterns, with consistent femoral roll-back during flexion. Mobile-bearing posterior-stabilised knee replacements demonstrated greater and more natural internal rotation of the tibia during flexion than fixed-bearing posterior-stabilised designs. Such rotation occurred at the interface between the insert and tibial tray for mobile-bearing posterior-stabilised designs. However, for fixed-bearing posterior-stabilised designs, rotation occurred at the proximal surface of the bearing. Posterior cruciate ligament-retaining knee replacements demonstrated paradoxical sliding forward of the femur. We conclude that mobile-bearing posterior-stabilised knee replacements reproduce internal rotation of the tibia more closely during flexion than fixed-bearing posterior-stabilised designs. Furthermore, mobile-bearing posterior-stabilised knee replacements demonstrate a unidirectional movement which occurs at the upper and lower sides of the mobile insert. The femur moves in an anteroposterior direction on the upper surface of the insert, whereas the movement at the lower surface is pure rotation. Such unidirectional movement may lead to less wear when compared with the multidirectional movement seen in fixed-bearing posterior-stabilised knee replacements, and should be associated with more evenly applied cam-post stresses


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 39 - 39
1 Jan 2016
Suzuki K Hara N Mikami S Tomita T Iwamoto K Yamazaki T Sugamoto K Matsuno S
Full Access

Backgrounds. Most of in vivo kinematic studies of total knee arthroplasty (TKA) have reported on varus knee. TKA for the valgus knee deformity is a surgical challenge. The purposes of the current study are to analyze the in vivo kinematic motion and to compare kinematic patterns between weight-bearing (WB) and non-weight-bearing (NWB) knee flexion in posterior-stabilized (PS) fixed-bearing TKA with pre-operative valgus deformity. Methods. A total of sixteen valgus knees in 12 cases that underwent TKA with Scorpio NRG PS knee prosthesis operated by modified gap balancing technique were evaluated. The mean preoperative femorotibial angle (FTA) was 156°±4.2°. During the surgery, distal femur and proximal tibia was cut perpendicular to the mechanical axis of each bone. After excision of the menisci and cruciate ligaments, balancer (Stryker joint dependent kinematics balancer) was inserted into the gap between both bones for evaluation of extension gap. Lateral release was performed in extension. Iliotibial bundle (ITB) was released from Gerdy tubercle then posterolateral capsule was released at the level of the proximal tibial cut surface. If still unbalanced, pie-crust ITB from inside-out was added at 1 cm above joint line until an even lateral and medial gap had been achieved. Flexion gap balance was obtained predominantly by the bone cut of the posterior femoral condyle. Good postoperative stability in extension and flexion was confirmed by stress roentgenogram and axial radiography of the distal femur. We evaluated the in vivo kinematics of the knee using fluoroscopy and femorotibial translation relative to the tibial tray using a 2-dimentional to 3-dimensional registration technique. Results. The average flexion angle was 111.3°±7.5° in weight-bearing and 114.9°±8.4° in non-weight-bearing. The femoral component demonstrated a mean external rotation of 5.9°±5.8° in weight-bearing and 7.4°±5.2° in non-weight-bearing (Fig.1). In weight-bearing, the femoral component showed medial pivot pattern from 0° to midflexion and a bicondylar rollback pattern from midflexion to full flexion (Fig2). Medial condyle moved similarly in non-weight-bearing condition and in weight-bearing condition. Lateral condyle moved posterior in slightly earlier angle during weight-bearing condition than during non-weight-bearing condition (Fig.3). Discussion. Numerous kinematic analyses of a normal knee have demonstrated greater posterior motion of the lateral femoral condyle relative to the medial condyle, leading to a mean external rotation and a bicondylar rollback motion with progressive knee flexion. A kinematic analysis of valgus knee was reported to show a different kinematic pattern from a physiological knee motion. Many valgus knees showed paradoxical anterior translation from extension to mid-flexion and greater posterior translation in the medial condyle than in the lateral condyle. Kitagawa et al. reported that this non-physiologic pattern wasn't completely restored after TKA using medial pivot knee system. In the present study, we showed kinematic patterns of the TKA performed on the valgus knee to be similar to the normal knee for the first time, even though the magnitude of external rotation was small. Conclusions. We conclude that the medial pivot pattern followed by posterior rollback motion can be obtained in TKA with modified gap balancing technique for the preoperative valgus deformity


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 3 | Pages 324 - 330
1 Mar 2006
Scarvell JM Smith PN Refshauge KM Galloway HR Woods KR

This prospective study used magnetic resonance imaging to record sagittal plane tibiofemoral kinematics before and after anterior cruciate ligament reconstruction using autologous hamstring graft. Twenty patients with anterior cruciate ligament injuries, performed a closed-chain leg-press while relaxed and against a 150 N load. The tibiofemoral contact patterns between 0° to 90° of knee flexion were recorded by magnetic resonance scans. All measurements were performed pre-operatively and repeated at 12 weeks and two years. Following reconstruction there was a mean passive anterior laxity of 2.1 mm (. sd. 2.3), as measured using a KT 1000 arthrometer, and the mean Cincinnati score was 90 (. sd. 11) of 100. Pre-operatively, the medial and lateral contact patterns of the injured knees were located posteriorly on the tibial plateau compared with the healthy contralateral knees (p = 0.014), but were no longer different at 12 weeks (p = 0.117) or two years postoperatively (p = 0.909). However, both reconstructed and healthy contralateral knees showed altered kinematics over time. At two years, the contact pattern showed less posterior translation of the lateral femoral condyle during flexion (p < 0.01)


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 60 - 60
1 Feb 2021
Lustig S Batailler C Servien E Foissey C
Full Access

Introduction. Increasingly young and active patients are concerned about revision arthroplasty forcing the manufacturers to think about revision prostheses that fit to this population while meeting the indications and fitting with bone losses and ligament deficiencies. One of those industrials claims that its system allows the surgeon to rise the constraint from a posterior stabilized (PS) prostheses to a semi-constraint total stabilized (TS) prostheses without modifying the gait pattern thanks to a similar single radius design. The aim of the study was to compare gait parameters in patients receiving either PS or TS knee prostheses. Methods. Nineteen patients in each groups were prospectively collected for this study and compared between each other. All subjects were assessed with a 3D knee kinematics analysis, performed with an optoelectronic knee assessment device (KneeKG®). Were measured for each knees range of motion (ROM) in flexion–extension, abduction–adduction, internal–external rotation and anterior–posterior displacement. Results. There were no significant kinematic differences between PS and TS groups. The ROM in flexion-extension was 44° in PS group vs 46° in TS group, the ROM in internal-external rotation was 5.5° in PS group vs 4°in TS group. Peak varus angle during loading was equal (2.5°) and higher in PS group during swing phases (5.5° vs 3.7°) without any significancy. There appeared to be less antero-posterior translation in the TS group (maximum posterior displacement of −1 mm vs −5 mm) linked to the larger central post-cam without any significancy. Conclusion. TS designed have comparable gait parameters than PS prostheses. Its use won't prejudice the patient concerning the walking pattern


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 109 - 109
1 Jan 2016
Kitahata S Rickers K Orias AE Ringgaard S Andersson G Bunger C Peterson J Robie B Inoue N
Full Access

Introduction. Kinematics analyses of the spine have been recognized as an effective method for functional analysis of the spine. CT is suitable for obtaining bony geometry of the vertebrae but radiation is a clinical concern. MRI is noninvasive but it is difficult to detect bone edges especially at endplates and processes where soft tissues attach. Kinematics analyses require tracking of solid bodies; therefore, bony geometry is not always necessary for kinematics analysis of the spine. This study aimed to develop a reliable and robust method for kinematics analysis of the spine using an innovative MRI-based 3D bone-marrow model. Materials and Methods. This IRB-approved study recruited 17 patients undergoing lumbar decompression surgery to treat a single-level symptomatic herniation as part of a clinical trial for a new dynamic stabilization device. T1 & T2 sagittal MRI scans were acquired as part of the pre-operative evaluation in three positions: supine and with the shoulders rotated 45° to the left and right to induce torsion of the lumbar spine. 3D bone-marrow models of L5 and S1 at the neutral and rotated positions were created by selecting a threshold level of the bone-marrow intensity at bone-marrow/bone interface. Validated 3D-3D registration techniques were used to track movements of L5 and S1. Segmental movements at L5/S1 during torsion were calculated. Results. Bone-marrow models were created not only in the vertebral body but also in superior/inferior, transverse and spinous processes, pedicles and laminae. Segmental rotation (mean±SD) at L5/S1 was shown to be symmetric for both left and right motions (p=0.149; Left: 1.04°±0.93° and Right: 1.33°±0.80°). The range of motion recorded was: left [0.05°-3.70°] and right [0.35°-3.25°]. These values were equivalent to previously reported values of axial lumbar rotation measured by 3D CT lumbar models. Conclusions. This study demonstrated feasibility of kinematic analyses using the 3D bone-marrow model created with clinical MRI. The bone-marrow model shows the bone-marrow/bone interface geometry –the internal structure of the vertebra rather than outside geometry usually used for kinematic analyses– that is easily and consistently detected due to its high-contrast interface MRI intensity, which does not require lengthy manual tracing of the bony contour. The bone-marrow model includes key elements of the vertebra including posterior elements and the 3D-3D registration technique used for 3D-CT model can be applied (Fig.1). This type of methodology can be used in the clinic to evaluate with sufficient accuracy subject-specific spinal kinematics without exposure to additional radiation. The MRI-based 3D bone-marrow model may also be useful for kinematic analyses of other major joints such as hip, knee, ankle and shoulder joints


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 52 - 52
1 Nov 2018
Kono K Tomita T Yamazaki T Ishibashi T Fujito T Konda S Futai K Tanaka S Sugamoto K
Full Access

There are few studies that have compared between continuous flexion activities and extension activities of normal knees. The purpose of this study is to compare in vivo kinematic comparison of normal knees between flexion activities and extension activities. Total of 8 normal male knees were investigated. We evaluated in vivo three-dimensional kinematics using 2D/3D registration technique. We compared femoral rotation angle relative to tibia, anterior/posterior (AP) translation of medial femoral sulcus (medial side) and lateral femoral epicondyle (lateral side) onto tibial plane perpendicular to tibial functional axis between flexion activities (F groups) and extension activities (E groups). Femoral external rotation was observed with the knee bending during both groups. The external rotation angle of F group was larger than that of E group significantly from 20 to 30 degrees with flexion (p < 0.05). Regarding medial side, anterior translation was observed up to 40 degrees in F group. From 40 to 140 degrees, posterior translation was observed. In E group, anterior translation was observed from 140 to 40 degrees with extension. From 40 degrees, posterior translation was observed. From 30 to 40 degrees, F group located anterior than E group (p < 0.05). Regarding lateral side, posterior translation was observed with flexion in F group. On the other hand, anterior translation was observed with extension in E group. Regarding AP location with flexion angle, there was no significant difference between two groups. In conclusion, there were different kinematics between flexion activities and extension activities


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_II | Pages 316 - 316
1 May 2010
Azmy C Sandra B Xavier B Francois G Wafa S
Full Access

Purpose of the study: Knowledge of the normal kinematics of the knee joint, and particularly the femoropatellar joint, is indispensable for evaluating prosthetic implants. Accurate measurements are however necessary, especially for patellar tracking. The purpose of this study was to propose a new experimental set up for analysis of the knee joint and to validate its pertinence in terms of accuracy and incertitude. Materials and Methods: Eight anatomic specimens of non-embalmed healthy knees were tested on the new setup with a fixed femur and a tibia left free to move. The flexion-extension movement was created by applying force to the quadriceps tendon and resistance to the distal end of the tibia. The femorotibial and femoropatellar kinematics were monitored with an infrared optoelectronic tracking system after acquisition of the bone geometry and the position of the markers on stereoradiographs coupled with a specific 3D reconstruction software. The landmarks used to interpret the kinematic measurements were calculated from the reconstructions of anatomic specimens. Incertitude linked to the determination of these landmarks was assessed as was its impact on the kinematic measurements. Results: Trials were run on eight knees to validate the experimental setup and study knee kinematics during flexion-extension movements. Method-related measurement incertitude was less than 0.2° in rotation (1 SD) and less than 0.9 mm in translation (1 SD) for the tibia and less than 0.2° in rotation (1 SD) and 0.6 mm in translation (1 SD) for the patella. Quantitative analysis was completed by an animation to visualise any anomalies under different angles. Discussion: This protocol which couples 3D imaging with a kinematic analysis enables real time tracking of the bone pieces during the experimental trials. This in vitro setup produces femoropatellar and tibial kinematics in agreement with data in the literature. Observations will enable better understanding of femoropatellar function and provide objective data on potential kinematic anomalies. Conclusion: This experimental evaluation combining bone geometry and kinematic monitoring specifically designed for the knee joint should enable objective evaluation of implants and a validation of personalised finite elements models of the knee


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 83 - 83
1 Mar 2017
Meneghini M Ishmael M Deckard E Ziemba-Davis M Warth L
Full Access

Introduction. Reports cite up to 20% of total knee arthroplasty (TKA) patients are not satisfied. Recent focus on alignment and balance has perhaps overshadowed kinematics as a key determinant of outcomes. Some propose that reproducing the native knee kinematics of lateral-pivot motion in early flexion during walking will enact optimal TKA outcomes. The purpose of this study was to determine if intra-operative kinematic patterns correlate with patient function, pain and satisfaction after TKA. Methods. A retrospective review of consecutive TKA's performed by two surgeons was performed. After final components were implanted and balanced, sensor-embedded tibial trials were inserted and kinematic patterns were recorded through range-of-motion. Femoro-tibial contact points were recorded at four distinct flexion points (0°, 45°, 90° and full flexion). Center of rotation kinematic patterns were calculated and categorized as medial pivot, lateral pivot or translation at each measurement range via established criteria. Knees with lateral (L) pivot in early flexion between 0 and 45 ° and medial (M) pivot beyond 90°, regardless of the mid-flexion pivot pattern, formed the experimental group designated as LXM. All other patterns were designated non-LXM and formed the control group. Modern, validated clinical outcome measures (Knee Society Score, EQ5D, UCLA) were obtained preoperatively and at minimum one-year postoperatively. Results. 185 consecutive TKAs were analyzed and 33 were excluded due to sensor device malfunction, atypical hardware, unresurfaced patella, surgery at a non-study hospital, early infection, aseptic loosening revision, ipsilateral hip disease, or subsequent neurologic disease or death unrelated to the index TKA resulting in a final sample size of 152 patients. Twelve patients (7.9%) were lost to minimum one-year follow-up, and two were excluded from analysis due to outlier values. Seventy-five percent of the final sample was female. Mean age, height, weight, and BMI were 63.6 years, 167.0 cm, 94.5 kg, and 33.9, respectively. Patients in the LXM group tended to be slightly older (66 vs. 63 years, p = 0.062) and had fewer months of follow-up (18.3 vs. 21.6 months, p = 0.030). Controlling for age and follow-up, patients with the LXM kinematic pattern demonstrated better postoperative function scores (mean 74.6 vs. 66.3 points, p = 0.032) and greater functional improvement from preoperative baseline (mean 40.3 vs. 30.0 points, p = 0.001). The LXM kinematic pattern also was associated with greater improvement in the Knee Society objective score (mean 39.6 vs. 32.3 points, p = 0.053). There was a trend for LXM to demonstrate greater improvement in satisfaction (mean 20.1 vs. 17.3 points, p 0.086). EQ-5D health care quality of life and UCLA activity level score were unrelated to kinematic pattern. Conclusion. TKA patients with a lateral pivot kinematic pattern in the early range of motion and a medial pattern in high flexion beyond 90-degrees demonstrated superior functional outcomes and objective clinical knee scores. This supports the premise that TKA kinematic patterns that replicate native knee kinematics unique to certain degrees of flexion will have optimal function, improved clinical outcome, and less pain


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 118 - 118
1 Jan 2016
Park SE Lee SH Jeong SH
Full Access

Background. Recent studies reported that the kinematic alignment of an implant is more physiological than the traditional methods, and therefore results in better clinical outcomes. They found that for kinematic alignment of the implant, the femoral component should be positioned valgus 2 degrees and tibial component in varus 2 degrees without femoral rotation. Other study also claimed that kinematically aligned TKA does not cause any significant failure; rather, it restores the function of the knee. Therefore kinematic alignment was raised for further patient's functional satisfaction. Purpose. The purpose of our study is to certify correlation between parameters of implant position and postoperative clinical outcomes after kinematic alignment of TKA. Materials and methods. We obtained 32 patients with primary osteoarthritis who need surgical treatment. During operation we targeted tibial varus of 2 degree and femoral valgus of 2 degree on coronal plane, and neutral rotation on axial plane of the knee. ROM (range of motion) was checked at final visit to office with radiology. Average follow up was 44.5 months (range 36–60). We used the Pearson correlation coefficient to determine any relationship between coronal deformity and PCA or TRA for the entire population and individually for each gender. Clinical outcomes including post op active knee ROM, TRA (the angle between the perpendicular line to the TEA and Akagi's line), varus and valgus angle of the knee were also analyzed. Results. Clinical outcomes including post op knee scoring and ROM was improved. There were negative linear relationships between the femoral component rotation (internal and external) and active and passive range of motion after kinematic alignment of TKA. And we also found a negative linear relationship between the tibial rotation of the component and active and passive range of motion. And we also found a negative linear relationship between the gamma angle and active and passive range of motion. The gamma angle is most powerful predictive parameter of postoperative range of motion of the knee. Conclusion. The alignment of the component set into the kinematic alignment of the knee: internal rotation of femur implant with good gamma angle in sagittal plane will assure better clinical outcome; ROM and scores. Coronal alignments of component (valgus or varus) were weak predictive parameters


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 10 | Pages 1334 - 1340
1 Oct 2011
Nicholson JA Sutherland AG Smith FW

Abnormal knee kinematics following reconstruction of the anterior cruciate ligament may exist despite an apparent resolution of tibial laxity and functional benefit. We performed upright, weight-bearing MR scans of both knees in the sagittal plane at different angles of flexion to determine the kinematics of the knee following unilateral reconstruction (n = 12). The uninjured knee acted as a control. Scans were performed pre-operatively and at three and six months post-operatively. Anteroposterior tibial laxity was determined using an arthrometer and patient function by validated questionnaires before and after reconstruction. In all the knees with deficient anterior cruciate ligaments, the tibial plateau was displaced anteriorly and internally rotated relative to the femur when compared with the control contralateral knee, particularly in extension and early flexion (mean lateral compartment displacement: extension 7.9 mm (. sd 4.8), p = 0.002 and 30° flexion 5.1 mm (. sd.  3.6), p = 0.004). In all ten patients underwent post-operative scans. Reconstruction reduced the subluxation of the lateral tibial plateau at three months, with resolution of anterior displacement in early flexion, but not in extension (p = 0.015). At six months, the reconstructed knee again showed anterior subluxation in both the lateral (mean: extension 4.2 mm (sd 4.2), p = 0.021 and 30° flexion 3.2 mm (. sd. 3.3), p = 0.024) and medial compartments (extension, p = 0.049). . Our results show that despite improvement in laxity and functional benefit, abnormal knee kinematics remain at six months and actually deteriorate from three to six months following reconstruction of the anterior cruciate ligament


The Bone & Joint Journal
Vol. 99-B, Issue 10 | Pages 1319 - 1328
1 Oct 2017
Shelton TJ Nedopil AJ Howell SM Hull ML

Aims. The aims of this study were to determine the proportion of patients with outlier varus or valgus alignment in kinematically aligned total knee arthroplasty (TKA), whether those with outlier varus or valgus alignment have higher forces in the medial or lateral compartments of the knee than those with in-range alignment and whether measurements of the alignment of the limb, knee and components predict compartment forces. Patients and Methods. The intra-operative forces in the medial and lateral compartments were measured with an instrumented tibial insert in 67 patients who underwent a kinematically aligned TKA during passive movement. The mean of the forces at full extension, 45° and 90° of flexion determined the force in the medial and lateral compartments. Measurements of the alignment of the limb and the components included the hip-knee-ankle (HKA) angle, proximal medial tibial angle (PMTA), and distal lateral femoral angle (DLFA). Measurements of the alignment of the knee and the components included the tibiofemoral angle (TFA), tibial component angle (TCA) and femoral component angle (FCA). Alignment was measured on post-operative, non-weight-bearing anteroposterior (AP) scanograms and categorised as varus or valgus outlier or in-range in relation to mechanically aligned criteria. Results. The proportion of patients with outlier varus or valgus alignment was 16%/24% for the HKA angle, 55%/0% for the PMTA, 0%/57% for the DLFA, 25%/12% for the TFA, 100%/0% for the TCA, and 0%/64% for the FCA. In general, the forces in the medial and lateral compartments of those with outlier alignment were not different from those with in-range alignment except for the TFA, in which patients with outlier varus alignment had a mean paradoxical force which was 6 lb higher in the lateral compartment than those with in-range alignment. None of the measurements of alignment of the limb, knee and components predicted the force in the medial or lateral compartment. Conclusion. Although kinematically aligned TKA has a high proportion of varus or valgus outliers using mechanically aligned criteria, the intra-operative forces in the medial and lateral compartments of patients with outlier alignment were comparable with those with in-range alignment, with no evidence of overload of the medial or lateral compartment of the knee. Cite this article: Bone Joint J 2017;99-B:1319–28


The Bone & Joint Journal
Vol. 102-B, Issue 1 | Pages 117 - 124
1 Jan 2020
MacDessi SJ Griffiths-Jones W Chen DB Griffiths-Jones S Wood JA Diwan AD Harris IA

Aims. It is unknown whether kinematic alignment (KA) objectively improves knee balance in total knee arthroplasty (TKA), despite this being the biomechanical rationale for its use. This study aimed to determine whether restoring the constitutional alignment using a restrictive KA protocol resulted in better quantitative knee balance than mechanical alignment (MA). Methods. We conducted a randomized superiority trial comparing patients undergoing TKA assigned to KA within a restrictive safe zone or MA. Optimal knee balance was defined as an intercompartmental pressure difference (ICPD) of 15 psi or less using a pressure sensor. The primary endpoint was the mean intraoperative ICPD at 10° of flexion prior to knee balancing. Secondary outcomes included balance at 45° and 90°, requirements for balancing procedures, and presence of tibiofemoral lift-off. Results. A total of 63 patients (70 knees) were randomized to KA and 62 patients (68 knees) to MA. Mean ICPD at 10° flexion in the KA group was 11.7 psi (SD 13.1) compared with 32.0 psi in the MA group (SD 28.9), with a mean difference in ICPD between KA and MA of 20.3 psi (p < 0.001). Mean ICPD in the KA group was significantly lower than in the MA group at 45° and 90°, respectively (25.2 psi MA vs 14.8 psi KA, p = 0.004; 19.1 psi MA vs 11.7 psi KA, p < 0.002, respectively). Overall, participants in the KA group were more likely to achieve optimal knee balance (80% vs 35%; p < 0.001). Bone recuts to achieve knee balance were more likely to be required in the MA group (49% vs 9%; p < 0.001). More participants in the MA group had tibiofemoral lift-off (43% vs 13%; p < 0.001). Conclusion. This study provides persuasive evidence that restoring the constitutional alignment with KA in TKA results in a statistically significant improvement in quantitative knee balance, and further supports this technique as a viable alternative to MA. Cite this article: Bone Joint J. 2020;102-B(1):117–124


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 120 - 120
1 Mar 2017
Zeller I LaCour M Meccia B Kurtz W Cates H Anderle M Komistek R
Full Access

Introduction. Historically, knee implants have been designed using average patient anatomy and despite excellent implant survivorship, patient satisfaction is not consistently achieved. One possibility for this dissatisfaction relates to the individual patient anatomic variability. To reduce this inter-patient variability, recent advances in imaging and manufacturing have allowed for the implementation of patient specific posterior cruciate retaining (PCR) total knee arthroplasty (TKA). These implants are individually made based on a patient's femoral and tibial anatomy determined from a pre-operative CT scan. Although in-vitro studies have demonstrated promising results, there are few studies evaluating these implants in vivo. The objective of this study was to determine the in vivo kinematics for subjects having a customized, individually made(CIM) knee implant or one of several traditional, off-the-shelf (OTS) TKA designs. Methods. In vivo kinematics were assessed for 108 subjects, 44 having a CIM-PCR-TKA and 64 having one of three standard designs, OTS-PCR-TKA which included symmetric TKA(I), single radius TKA(II) and asymmetric TKA(III) designs. A mobile fluoroscopic system was used to observe subjects during a weight-bearing deep knee bend (DKB), a Chair Rise and Normal Gait. All the subjects were implanted by one of two surgeons and were clinically successful (HSS Score>90). The kinematic comparison between the three designs involved range of motion, femoral translation, axial rotation, and condylar lift-off. Results. During the DKB, subjects having a CIM-TKA experienced 5.72 (σ=3.03) mm of lateral condyle posterior femoral rollback (PFR) compared to 3.81 (σ=3.08) mm, 1.12 (σ=3.15) mm, and 0.19 (σ=3.53) mm for subjects having the three OTS-TKA designs respectively (Figure 1). For the CIM-TKA 87.5% of subjects demonstrated overall PFR compared to 81%, 72% and 64% of the traditional designs respectively. With Respect to axial rotation, the CIM-TKA demonstrated 4.44° (σ=5.4) of axial rotation compared to 4.59° (σ=3.19), 5.8° (σ=5.58), and 4.41° (σ=5.84) for subjects having the three OTS-TKA designs respectively (Figure 2) and 87.5%, 92%, 76% and 71.4% of the subjects respectively showing normal rotation. These trends were similar with respect to the chair rise activity. During DKB, subjects having a CIM-TKA achieved 107° of weight-bearing knee flexion, while subjects having an OTS-TKA achieved 100°, 97° and 102°, respectively. Discussion. Subjects with a CIM-TKA experienced posterior motion of their lateral condyle during flexion and an anterior motion during extension, while 19–28% of patients having an OTS-TKA experienced lateral condyle moving in the anterior direction during flexion, paradoxical to the normal knee pattern. In general, the CIM-TKA experienced translation and rotation patterns more similar to the normal knee pattern than the OTS-TKA designs (figure 3). Additionally subjects having an OTS-TKA experienced a higher incidence of anterior sliding and reverse axial rotation. The DKB range of motion was slightly larger for the CIM-TKA and the standard deviation of the lateral condyle motion was smaller for the subjects having a CIM-TKA demonstrating less variability between patients. Significance. This study found that CIM-CR-TKA Implants demonstrate kinematic patterns more similar to the normal knee, but less in magnitude while experiencing less variability between subjects compared to the OTS-CR-TKA designs. For any figures or tables, please contact authors directly (see Info & Metrics tab above).


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 132 - 132
1 Mar 2017
Sakai T Koyanagi J Takao M Hamada H Sugano N Yoshikawa H Sugamoto K
Full Access

INTRODUCTION. The purpose of this study is to elucidate longitudinal kinematic changes of the hip joint during heels-down squatting after THA. METHODS. 66 patients with 76 primary cementless THAs using a CT-based navigation system were investigated using fluoroscopy. An acetabular component and an anatomical femoral component were used through the mini-posterior approach with repair of the short rotators. The femoral head size was 28mm (9 hips), 32mm (12 hips), 36mm (42 hips), and 40mm (12 hips). Longitudinal evaluation was performed at 3 months, 1 year, and 2≤ years postoperatively. Successive hip motion during heels-down squatting was recorded as serial digital radiographic images in a DICOM format using a flat panel detector. The coordinate system of the acetabular and femoral components based on the neutral standing position was defined. The images of the hip joint were matched to 3D-CAD models of the components using a2D/3D registration technique. In this system, the root mean square errors of rotation was less than 1.3°, and that of translation was less than 2.3 mm. We estimated changes in the relative angle of the femoral component to the acetabular component, which represented the hip ROM, and investigated the incidence of bony and/or prosthetic impingement during squatting (Fig.1). We also estimated changes in the pelvic posterior tilting angle (PA) using the acetabular component position change. In addition, when both components were positioned most closely during squatting, we estimated the minimum angle (MA) up to theoretical prosthetic impingement as the safety margin (Fig.2). RESULTS. No prosthetic or bony impingement and no dislocation occurred in any hips. The mean maximum hip flexion ROM was 92.4° (range, 76.6° – 107.9°) at 3 months, 103.4° (range, 81.5° – 115.2°) at 1 year, and 102.4° (range, 87.1° – 120.6°) at 2≤ years (3 months vs 1 year, p<0.05; 1 year vs 2≤ years, p>0.05, paired t-test). The mean PA was 26.7° (range, 0.9° – 49.8°) at 3 months, 21.7° (range, 3.4° – 43.8°) at 1 year, and 21.2° (range, −0.7° – 40.4°) at 2≤ years (3 months vs 1 year, p<0.05; 1 year vs 2≤ years, p>0.05). The mean flexion ROM and MA at 2≤ years were 98.4±20.8° and 14.3±7.3° in 28 mm heads, 102.3±10.7° and 15.6±4.8° in 32 mm heads, 102.8±14.5° and 20.3±9.6° in 36 mm heads, and 103.2±16.9° and 23.4±10.9° in 40 mm heads, respectively. There were no significant differences in the hip flexion ROM between 28, 32, 36, and 40 mm head cases, whereas MA significantly increased as the femoral head diameter was larger (p<0.05, unpaired t-test). DISCUSSION AND CONCLUSION. Three-dimensional assessment of dynamic squatting motion after THA using the 2D/3D registration technique enabled us to elucidate longitudinal kinematic change of the hip joint. Longitudinal kinematic analysis indicated that hip flexion ROM and posterior tilt during squatting changed significantly by 1 year postoperatively, and there were no significant changes after 1 year while safety margin kept > 10°. For figures/tables, please contact authors directly.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 205 - 205
1 Mar 2013
Jenny J Wasser L
Full Access

INTRODUCTION. We wanted to assess the possible correlation between the intra-operative kinematics of the knee and the clinical results after total knee replacement (TKR). MATERIAL. 187 cases of TKR implanted with help of a navigation system for end-stage osteoarthritis have been prospectively analyzed. There were 127 women and 60 men, with a mean age of 71.4 years. Indication for TKR was osteoarthritis in 161 cases and inflammatory arthritis in 26 cases. METHODS. A floating platform, PCL preserving, cemented TKR was implanted in all cases. A non-image based navigation system was used in all cases to help for accuracy of bone resections and ligamentous balancing. The standard navigation system was modified to allow recording the three-dimensional tibio-femoral movement during passive knee flexion during the surgical procedure. Two sets of records have been performed: before any intra-articular procedure and after final implantation. Only antero-posterior femoral translation (in mm) and internal-external femoral rotation (in degrees) have been recorded. Kinematic data have been analyzed in a quantitative manner (total amount of displacement) and in a qualitative manner (restoration of the physiological posterior femoral translation and femoral external rotation during knee flexion). Clinical and functional results have been analyzed according to the Knee Society scoring system with a minimal follow-up of one year. Statistical links between kinematic data and Knee Society scores have been analyzed with an ANOVA test and a Spearman correlation test at a 0.05 level of significance. RESULTS. 101 knees had a posterior femoral translation during flexion before and after TKR. 18 knees had a paradoxical anterior femoral translation during flexion before and after TKR. 51 knees had the pre-TKR paradoxical anterior femoral translation corrected to posterior femoral translation after TKR. 14 knees had the pre-TKR posterior femoral translation modified to a paradoxical anterior femoral translation after TKR. 91 knees had a femoral external rotation during flexion before and after TKR. 34 knees had a paradoxical femoral internal rotation during flexion before and after TKR. 50 knees had the pre-TKR paradoxical femoral internal rotation corrected to a femoral external rotation after TKR. 9 knees had the pre-TKR femoral external rotation modified to a paradoxical femoral internal rotation after TKR. There was a moderate statistical link between the reconstruction of a physiological kinematics after TKR and the Knee Society scores, with higher scores in the group of physiological kinematics after reconstruction. There was no correlation between the quantitative data and the Knee Society scores. DISCUSSION. To record the knee kinematics during TKR is feasible. This information might help the surgeon choosing the optimal reconstruction compromise. However, it is not well defined how to influence final kinematics during knee replacement. The exact influence of the quality of the kinematic reconstruction measured during surgery on the clinical and functional results has to be investigated more extensively. SUMMARY. There is a statistical relationship between the intra-operative knee kinematics and the clinical and functional results


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 399 - 399
1 Sep 2009
Pink M Lisý M Pink T Janecek M
Full Access

To evaluate first short term results of the 82 Articular Surface Replacements (ASR) of the hip joint with kinematic navigation. Between March 2006 and March 2007 we performed 82 resurfacings of the hip. In all cases we used Articular Surface Replacement of the Hip joint (ASR-DePuy) with kinematic navigation (Ci system). Our group included 47 women and 35 men. Patients’ mean age at surgery was 68.2 years. The indication for resurfacing was just primary osteoarthritis. Clinical evaluations were conducted using the Harris Hip Scoring system. Imaging studies: AP, axial X-rays. Patients were followed for an average 12 months postoperative (7–20 months). The average postoperative Harris Hip Total Score was 97%, and 98% of the patients were in the good to excellent range of 80–100 points. No patients were lost to follow-up. We noted a greater range of movement, faster postoperative rehabilitation and shorter time of hospitalization compared with traditional total hip arthroplasty. There were no cases of neurological complication, deep infection, wound dehiscence or dislocation. All X-rays refer correct position of femoral component in both projections. Our experiences with Articular Surface Replacement of the Hip Joint (ASR-DePuy) powered by Ci navigation system are good, but long term followup will be continued. Articular Surface Replacement of the Hip Joint with modern design, reproductible instrumentation and kinematic navigation can eliminate the previous cause of early resurface failures and loosening. The patient selection must be strict regarding. The kinematic navigation define precise position of the components of ASR. A continued long term follow-up is necessary after minimum 10 years


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 32 - 32
1 May 2016
Carroll K Barlow B Mclawhorn A Esposito C Mayman D
Full Access

Introduction. Neutral mechanical alignment in TKA has been shown to be an important consideration for survivorship, wear, and aseptic loosening. However, native knee anatomy is described by a joint line in 3° of varus, 2–3° of mechanical distal femoral valgus, and 2–3° of proximal tibia varus. Described kinematic planning methods replicate native joint alignment in extension without changing tibiofemoral alignment, but do not account for native alignment through a range of motion. An asymmetric TKA femoral component with a thicker medial femoral condyle and posterior condylar internal rotation paired with an asymmetric polyethylene insert aligns the joint line in 3° of varus while maintaining distal femoral and proximal tibial cuts perpendicular to mechanical axis. The asymmetric components recreate an anatomic varus joint line while avoiding tibiofemoral malalignment or femoral component internal rotation, a risk factor for patellofemoral maltracking. The study seeks to determine how many patients would be candidates for a kinematically planned knee without violating the principle of a neutral mechanical axis (0° ± 3°). Methods. A cohort comprised of 55 consecutive preoperative THA patients with asymptomatic knees and 55 consecutive preoperative primary unilateral TKA patients underwent simultaneous biplanar radiographic imaging. Full length coronal images from the thoracolumbar junction to the ankles were measured by two independent observers for the following: mechanical tibiofemoral angle (mTFA), mechanical lateral distal femoral angle (mLDFA), and mechanical medial proximal tibial angle (mMPTA). Patients who met the following conditions: mTFA 0°±3°; mLDFA 87°±3°; and mMPTA 87°±3°, were considered candidates for TKA with an asymmetric implant that would achieve a kinematic joint line and neutral mechanical axis. Similarly, patients with the following conditions: mTFA 0°±3°; mLDFA 90°±3°; and mMPTA 90°±3°, were considered candidates for TKA with a symmetric implant that would achieve a kinematic joint line and neutral mechanical axis. Results. In this cohort of 110 patients, the mean mTFA was 1° varus ± 5°, the mean mLDFA was 87° ± 3°, mMPTA 87°± 2°. The comparison of patients meeting each of the three conditions required for a TKA with a neutral mechanical axis and a kinematic joint line are outlined in Table 1. Conclusion. A TKA with kinematic 3° varus joint line and neutral mechanical axis was possible in 52% of patients using an asymmetric implant and 23% of patients using a symmetric implant. Previous descriptions of kinematic planning using standard TKA components required compromise of neutral mechanical axis alignment with detrimental effects on overall survivorship. Knee arthroplasty using an asymmetric implant may achieve the best of both worlds, neutral mechanical axis and a kinematic joint line, in a large percentage of patients


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 4 - 4
1 Oct 2014
Jenny J Diesinger Y Firmbach F
Full Access

Modern total knee replacements aim to reconstruct a physiological kinematic behaviour, and specifically femoral roll-back and automatic tibial rotation. A specific software derived from a clinically used navigation system was developed to allow in vivo registration of the knee kinematics before and after total knee replacement. The study was designed to test for the feasibility of the intra-operative registration of the knee kinematics during standard, navigated total knee replacement. The software measures the respective movement of the femur and the tibia, and specially antero-posterior translation and tibial rotation during passive knee flexion. Kinematic registration was performed twice during an usual procedure of navigated total knee replacement: 1) Before any bone resection or ligamentous balancing; 2) After fixation of the final implants. 200 cases of total knee replacement have been analysed. Post-operative kinematic was classified as following: 1) Occurrence of a normal femoral roll-back during knee flexion, no roll-back or paradoxical femoral roll-forward. 2) Occurrence of a normal tibial internal rotation during knee flexion, no tibial rotation or paradoxical tibial external rotation. All patients were followed up for a minimal period of 12 months, and reevaluated at the latest follow-up visit for clinical and functional results with completion of the Knee Society Scores. Recording the kinematic was possible in all cases. The results of both pre-operative and post-operative registrations were analysed on a qualitative manner. The results were close to those already published in both experimental and clinical studies. About femoral roll-back, 54% had a normal femoral roll-back during knee flexion after total knee replacement, 13% had no significant roll-back and 33% had a paradoxical femoral roll-forward. About tibia rotation, 65% had a normal tibia internal rotation during knee flexion, 16% had no significant tibia rotation and 19 had a paradoxical tibia external rotation. The mean Knee Score was 92/100 ± 10 points. There was a significant correlation between the post-operative kinematic behaviour and the Function Score, with better score for the patients having a physiological femoral roll-back and a physiological tibial internal rotation during knee flexion (p<0.01). Intra-operative analysis of the kinematic of the knee during total knee replacement may offer the chance to modify the kinematic behaviour of the implant and to choose the best fitted constraint to the patient's native knee in order to impact positively the functional result


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 41 - 41
1 Jan 2016
Hino K Onishi Y Kutsuna T Watamori K Kiyomatsu H Miura H
Full Access

Introduction. Correct alignment is important for a successful result after total knee arthroplasty (TKA). During most activities of daily living, the knee is loaded not only in full extension but also in mid-flexion. However, there are few methods to evaluate mid-flexion varus-valgus alignment, despite its clinical significance. Computer navigation systems are useful for intra-operative monitoring of joint positioning and movements. Knee ligaments contribute to induce kinematics of the joint. It is likely that the presence of posterior cruciate ligament has some effects on kinematics throughout flexion. The purpose of this study was to evaluate changes in the varus–valgus alignment of the femoral–tibial mechanical axis in each flexion angle before and after TKA by using a navigation system, and to evaluate varus–valgus kinematic patterns throughout flexion, and compare preoperative and postoperative changes of kinematic patterns in CR-TKA and PS-TKA procedures. Material and Method. Forty knees that underwent TKA with computer navigation system were evaluated (CR-TKA 20; PS-TKA 20). CR and PS TKRs were implanted in alternating sequence. The investigator applied manual mild passive knee flexion, while moving the leg from full extension to flexion and the varus-valgus angle of femoral-tibial mechanical axis was measured automatically by the navigation system at every 10 ° throughout flexion. We classified kinematic patterns in the varus–valgus direction throughout flexion. Results. The mean change in size of the varus–valgus angle associated with full movement was 8.0º preoperatively and 5.3º postoperatively. There was no difference between CR-TKA and PS-TKA. We then evaluated the distribution of changes in size of the varus–valgus angle. Postoperatively, this was limited to 3º or less in many patients, but was also around 6º in many cases, and in some cases it exceeded 10º. For CR-TKA, it was 7º or less in all except one patient, but conversely the change was around 6º in most cases. For PS-TKA, it was limited to 3º or less in most patients, but did exceed 10º in some cases. (Fig.1). We could classify kinematic patterns throughout flexion movement into five broad types. Type A: Varus movement associated with flexion; Type B: Valgus movement associated with flexion; Type C: Same angle position maintained; Type D: Varus movement in the intermediate flexed position; Type E: Valgus movement in the intermediate flexed position. (Fig.2) Kinematic patterns changed before and after TKA in some patients, but in others they remained similar. Among those who underwent CR-TKA, preoperative and postoperative kinematic patterns were similar in 61% of patients, whereas they were different in 80% of those who underwent PS-TKA. Discussion). Our results showed that with respect to postoperative varus–valgus kinematic patterns, the effect of the preoperative varus–valgus kinematic pattern persisted more strongly after CR-TKA compared with PS-TKA. This may have been because in CR-TKA the conserved PCL affects the restriction of varus–valgus movement throughout flexion movements, whereas in PS-TKA it is the post-cam that restricts knee joint movement while also affecting the induction of varus−valgus kinematics with loss of PCL influence


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 87 - 87
1 Nov 2018
Fujito T Tomita T Yamazaki T Tamaki M Ishibashi T Kono K Konda S Yoshikawa H Sugamoto K
Full Access

Our aim was to investigate whether it is possible to predict post-operative kinematics (Post-Ope) from intra-operative kinematics (Intra-Ope) after total knee arthroplasty. Our study were performed for 11 patients (14 knees) who underwent primary PS TKA using CT-based navigation system between Sept.2012 and Sept.2014. The mean subject age was 71.5 ± 5.5 years at the time of surgery. Intra-Ope was measured using the navigation system after implantation during passive full extension and flexion imposed by the surgeon. Under fluoroscopic surveillance, each patient was asked to perform sequential deep knee flexion under both non-weight bearing (NWB) and weight bearing (WB) conditions from full extension to maximum flexion. To estimate the spatial position and orientation, we used a 2- to 3- dimensional (2D3D) registration technique. Intra-Ope and Post-Ope had a common coordinate axis for bones. Evaluations were range of motion (ROM), external rotation angles (ER). The level of statistical significant difference was set at 0.05. Mean ROM in Intra-Ope(130°± 7.9°) was statistically larger than both NWB(121.1°±10.5°) and WB(124.0°±14.7°). No Statistically significant difference was found in the mean ER from 10° to 120° among Intra-Ope (11.2°± 8.5°) and NWB(7.1°±6.0°) and WB(5.3°±3.2°). It is suggested that we could predict Post-Ope from Intra-Ope by considering the increase of the range of motion due to the muscle relaxation condition and the amount of change in the ER


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 305 - 305
1 Sep 2005
Scarvell J Smith P Refshauge K Galloway H Woods K
Full Access

Introduction and Aims: Late degeneration of the ACL injured knee may be in part due to repeat injury, but also due to aberrant kinematics altering the wear pattern at the chondral surface. The aim of this study was to use tibio-femoral contact mapping by MRI to examine kinematic changes due to chronic ACL deficiency. Method: Twenty subjects with a recent unilateral ACL deficiency (mean 13 months since injury) and 23 subjects with a chronic ACL deficiency (mean 18 years since injury) were recruited. Passive ligament laxity was quantified using a KT1000® device. Subjects performed a closed-chain leg press, relaxed and against a 15 kg weight. MRI recorded the tibio-femoral contact position at 15-degree intervals from zero to 90 degrees of knee flexion. Tibio-femoral contact points were measured at each position. Damage to the knee was recorded for all subjects by MRI, and at arthroscopy. Results: The tibio-femoral contact pattern of the ACL injured knee was different from the healthy contralateral knee (p = 0.001). The contact pattern of the recently injured knees was different to the chronic ACL deficient knees (p = 0.034). In the recently injured knees the lateral compartment of the knee showed a posterior pattern of femoral contact, and in the chronic ACL deficient knees the medial compartment showed a posterior femoral contact pattern, particularly at zero and 15 degrees of knee flexion (p < 0.01), with the femur two millimetres (mean, SD 3.2mm) posterior on the tibial plateau. There was no difference in passive laxity between the recent and chronic injured knees (side-to-side difference: 5.8mm±2.4 for the recently injured knees, and 4.6±2.8mm for the chronic ACL-deficient knees). Nine of 20 recently injured knees had associated joint damage: three medial and three lateral meniscal tears, two with medial femoral condyle and two with patello-femoral damage. Eleven of 23 chronic ACL deficient subjects had associated joint damage: 15 medial and 16 lateral meniscus tears, 16 with medial and 12 with lateral compartment chondral damage. Greater kinematic changes in the chronic ACL deficient knees were associated with more severe chondral damage in the medial compartment. Conclusion: ACL injury shifts the axis of rotation of the knee medially. In chronic ACL deficiency the tibio-femoral contact pattern is altered in the medial compartment, where it is associated with joint damage. These findings describe the relationship between aberrant kinematics and wear in the ACL deficient knee


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 89 - 89
1 Oct 2012
Jenny J Wasser L
Full Access

We wanted to assess the possible correlation between the intra-operative kinematics of the knee and the clinical results after total knee replacement (TKR). 187 cases of TKR implanted with help of a navigation system for end-stage osteoarthritis have been prospectively analyzed. There were 127 women and 60 men, with a mean age of 71 years. Indication for TKR was osteoarthritis in 161 cases and inflammatory arthritis in 26 cases. A floating platform, PCL preserving, cemented TKR was implanted in all cases. A non-image based navigation system was used in all cases to help for accuracy of bone resections and ligamentous balancing. The standard navigation system was modified to allow recording the three-dimensional tibio-femoral movement during passive knee flexion during the surgical procedure. Two sets of records have been performed: before any intra-articular procedure and after final implantation. Only antero-posterior femoral translation (in mm) and internal-external femoral rotation (in degrees) have been recorded. Kinematic data have been analyzed in a quantitative manner (total amount of displacement) and in a qualitative manner (restoration of the physiological posterior femoral translation and femoral external rotation during knee flexion). Clinical and functional results have been analysed according to the Knee Society scoring system with a minimal follow-up of one year. Statistical links between kinematic data and Knee Society scores have been analysed with an ANOVA test and a Spearman correlation test at a 0.05 level of significance. 101 knees had a posterior femoral translation during flexion before and after TKR. 18 knees had a paradoxical anterior femoral translation during flexion before and after TKR. 51 knees had the pre-TKR paradoxical anterior femoral translation corrected to posterior femoral translation after TKR. 14 knees had the pre-TKR posterior femoral translation modified to a paradoxical anterior femoral translation after TKR. 91 knees had a femoral external rotation during flexion before and after TKR. 34 knees had a paradoxical femoral internal rotation during flexion before and after TKR. 50 knees had the pre-TKR paradoxical femoral internal rotation corrected to a femoral external rotation after TKR. Nine knees had the pre-TKR femoral external rotation modified to a paradoxical femoral internal rotation after TKR. There was a moderate statistical link between the reconstruction of a physiological kinematics after TKR and the Knee Society scores, with higher scores in the group of physiological kinematics after reconstruction. There was no correlation between the quantitative data and the Knee Society scores. To record the knee kinematics during TKR is feasible. This information might help the surgeon choosing the optimal reconstruction compromise. However, it is not well defined how to influence final kinematics during knee replacement. The exact influence of the quality of the kinematic reconstruction measured during surgery on the clinical and functional results has to be investigated more extensively


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 105 - 105
1 Mar 2017
Yamazaki T Kamei R Tomita T Yoshikawa H Sugamoto K
Full Access

Purpose. To achieve 3D kinematic analysis of total knee arthroplasty (TKA), 2D/3D registration techniques, which use X-ray fluoroscopic images and computer aided design model of the knee implants, have been applied to clinical cases. However, most conventional methods have needed time-consuming and labor-intensive manual operations in some process. In particular, for the 3D pose estimation of tibial component model from X-ray images, these manual operations were carefully performed because the pose estimation of symmetrical tibial component get severe local minima rather than that of unsymmetrical femoral component. In this study, therefore, we propose an automated 3D kinematic estimation method of tibial component based on statistical motion model, which is created from previous analyzed 3D kinematic data of TKA. Methods. The used 2D/3D registration technique is based on a robust feature-based (contour-based) algorithm. In our proposed method, a statistical motion model which represents average and variability of joint motion is incorporated into the robust feature-based algorithm, particularly for the pose estimation of tibial component. The statistical motion model is created from previous a lot of analyzed 3D kinematic data of TKA. In this study, a statistical motion model for relative knee motion of the tibial component with respect to the femoral component was created and utilized. Fig. 1 shows each relative knee motion model for six degree of freedom (three translations and three rotations parameter). Thus, after the pose estimation of the femoral component model, 3D pose of the tibial component model is determined by maximum a posteriori (MAP) estimation using the new cost function introduced the statistical motion model. Experimental results. To validate the feasibility and effectiveness of 3D pose estimation for the tibial component using the proposed method, experiments using X-ray fluoroscopic images of 20 TKA patients under the squatting knee motion were performed. For the creation of correct pose (reference data) and the statistical motion model, we used the 3D pose data which were got by carefully applying previous method to the contour images which spurious edges and noises were removed manually. In order to ensure the validity for the statistical motion model of the proposed method, leave-one-out cross validation method was applied. In the 3D pose estimation of tibial component model, for the only first frame, initial guess pose of the model was manually given. For all images except for the first frame, the 3D pose of the model was automatically estimated without manual initial guess pose of the model. To assess the automation performance, the automation rate was calculated, and the rate was defined as the X-ray frame number of satisfying clinical required accuracy (error within 1mm, 1 degree) relative to all X-ray frame number. As results of the experiments, 3D pose of the tibial component model for all X-ray images except for the first frame was full-automatically stably-estimated, and the automation rate was 80.1 %. Conclusions. The proposed method by MAP estimation introduced the statistical motion model was successfully performed, and did not need labor-intensive manual operations for 3D pose estimation of tibial component. For any figures or tables, please contact authors directly (see Info & Metrics tab above).


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 121 - 121
1 Mar 2010
Asano T Matsuki H Narita A Takakubo Y Ogino T
Full Access

Introduction: It is difficult to measure the knee kinematics after TKA, navigation system can measure the knee kinematics during TKA operation. The purpose of this study is to describe the knee kinematic analysis in TKA using navigation system. Patients and methods: TKA kinematics was measured in 24 patients (7 men and 17 women) 27 knees (7 rheumatoid arthritis knees and 20 osteoarthritis knees) in this study. Mean age was 72.8 (55–81). The TKA implant was Vanguard PS (Biomet, Warsaw) and navigation system was Vector Vision Knee ver. 1.6 (BrainLab Inc). All patients were operated using navigation system. This system was CT-based navigation system. We cut the bone independently and released medial collateral ligament, joint capsule and other tight structures to equal the joint balance. Femoral component was implanted parallel to clinical epicondylar line. Kinematic Analysis: We measured the joint gap (mm), coronal alignment (degree), antero-posterior translation (mm) and femoral rotation angle (degree) using navigation workstation just after all prostheses implantation and closure of joint capsule. The patient’s leg was held by operator and moved passively. All joint kinematic data were recorded at every 10 degrees in full range of motion (0 to 130 degrees). The joint gap is the distance between proximal tibial cut surface and that of distal femur (extension range: 0–40) and posterior femur (flexion range: 50–130). Medial and lateral distances were measured. Results: In extension range, medial joint gap was 21.7mm at 0 degrees and decreased to 15.2mm with knee flexion. Lateral joint gap was 22.1mm at 0 knee extension, slightly decreased up to 40 degrees. Coronal alignment was 0.47 varus at 0 deg. and increased to 6.64 varus at 40 flexion. In flexion range, medial and lateral joint gap were increased 20.7 to 25.3, 17.2 to 31.2mm. Coronal alignment was c hanged from 4.94 valgus (60 flexion) to 8.94 varus (130 full flexion). Regarding to AP translation, femoral component was once moved 7.4 mm forward in early knee flexion and 15.2mm backward with flexion. Femoral components were rotated internally to 50 degrees flexion and then rotated externally with flexion. Conclusion: The balance of TKA was still varus alignment after soft tissue release. Femoral components were moved backward and external rotation. Our results demonstrated that femoral rollback movement and medial pivot knee motion were recognized. The limitation of this study was the situation of under anesthesia and no muscle strain were loaded during the measurement of knee kinematics. However navigation system is available not only for the accurate implantation but also the measurement of intra operative knee kinematics


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 168 - 168
1 Jul 2014
Oosterwaal M Telfer S Woodburn J Witlox A Hermus J van Rhijn L Meijer K
Full Access

Summary Statement. An alternative way to assess three dimensional skin motion artefacts of kinematic models is presented and applied to a novel kinematic foot model. Largest skin motion is measured in the tarsal region. Introduction. Motion capture systems are being used in daily clinical practise for gait analysis. Last decade several kinematic foot models have been presented to gain more insight in joint movement in various foot pathologies. No method is known to directly measure bone movement in a clinical setting. Current golden standard is based on measurement of motion of skin markers and translation to joint kinematics. Rigid body assumptions and skin motion artefacts can seriously influence the outcome of this approach and rigorous validation is required before clinical application is feasible. Validation of kinematic models is currently done via comparison with bone pin studies. However, these studies can only assess major bones in a highly invasive way; another problem is the non-synchronous measurement of skin markers and bone pins. Recently the Glasgow Maastricht kinematic foot model, which comprises all 26 foot segments, has been presented. To validate the model we propose a novel non-invasive method for the assessment of skin motion artefact, involving loaded CT data. Patients & Methods. 25 subjects (healthy and pathological feet) have undertaken CT scans. These CT-scans have been obtained in 1 unloaded and 3 varying loading conditions. CT-slices are 3D reconstructed and segmented. The principal axes of the segmented bones were derived from the surface points of the bones. These principal axes are used to compute bone orientation. Subsequently, coordinate systems of bones in the different loading conditions were matched. Markers were translated and rotated to orientations of their corresponding bones. Maximal distance between markers is calculated per subject to asses the influence of skin motion. Results. Preliminary results of 9 subjects show largest positional differences for markers associated with the cuneiform lateralis (5.7 ± 3.2 mm) and cuneiform intermedium (7.7 ± 3.7 mm). Smallest positional differences are found on the hallux proximalis (0.9 ± 0.34mm). Spatial resolution is too small to accurately calculate orientation of smaller bones, therefor distal phalanges 2–5 are not taken into account in the analysis. Discussion/Conclusion. Skin motion is a major cause of inaccuracy in gait analysis. This is the first study presenting an automated non-invasive method to calculate the 3D orientation of skin markers with respect to the coordinate system of the corresponding bone(s). Largest skin motion is measured in the tarsal region. Future work will be in calculation of the effect of skin motion in the accuracy of joint angle calculation


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 270 - 270
1 Jul 2008
AZMY C GABRIELLI F ASSELINEAU A LAPORTE S BENJAMEN A MITTON D SKALLI W
Full Access

Purpose of the study: The issue of patellar kinematics remains a difficult problem for patellar resurfacing during conventional or computer-assisted knee surgery, yet adequate knowledge is required for appropriate orientation of the patellar cut and insert positioning. The purpose of this study was to develop a non-invasive tool for in vivo kinematic analysis of the patellar tract and to compare results with the gold-standard invasive method. Material and methods: A special experimental set-up designed for this study enabled experimental simulation of load-bearing flexion-extension cycles of the knee joint. Range of motion from 0 to 102° was imposed with a computer-controlled motor. The analysis was conduced on 14 complete lower limb cadaver specimens. Patellar kinematics was analyzed for each knee simultaneously with two systems: a non-invasive method using a low-dose stereoradiographic scan linked to a 3D reconstruction software; and the reference system using tripodes implanted on the patella and radio-opaque spherical markers. Six degrees of freedom were considered: three translations and three rotations. Sequential kinematic recordings were made by calculating the position of a patellar landmark in relation to a femoral landmark. Results: The mean difference between the results obtained with the two systems was less than 1 mm for anteroposterior and vertical translations, greater for mediolateral translations. It was less than 2° for patellar flexion-extension, to the order of the motion itself for abduction-adduction, and to the order of 5° for horizontal tilt. Discussion and conclusion: The non-invasive technique proposed here appears to be reliable for patellar translations and flexion, but need further improvement for tilt and adduction-abduction. This is particularly true for the 45° to 90° range of motion because of the difficult problem of determining the contours of the patella. Further developments for this tool are under way


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 12 | Pages 1591 - 1595
1 Dec 2006
Price AJ Oppold PT Murray DW Zavatsky AB

The Oxford medial unicompartmental knee replacement was designed to reproduce normal mobility and forces in the knee, but its detailed effect on the patellofemoral joint has not been studied previously. We have examined the effect on patellofemoral mechanics of the knee by simultaneously measuring patellofemoral kinematics and forces in 11 cadaver knee specimens in a supine leg-extension rig. Comparison was made between the intact normal knee and sequential unicompartmental and total knee replacement. Following medial mobile-bearing unicompartmental replacement in 11 knees, patellofemoral kinematics and forces did not change significantly from those in the intact knee across any measured parameter. In contrast, following posterior cruciate ligament retaining total knee replacement in eight knees, there were significant changes in patellofemoral movement and forces. The Oxford device appears to produce near-normal patellofemoral mechanics, which may partly explain the low incidence of complications with the extensor mechanism associated with clinical use


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_IV | Pages 479 - 480
1 Apr 2004
Scarvell J Smith P Refshauge K Galloway H Woods K
Full Access

Introduction Late degeneration of the ACL injured knee may be in part due to repeat injury, but also due to aberrant kinematics altering the wear pattern at the chondral surface. The aim of this study was to use tibio-femoral contact mapping by MRI to examine kinematic changes due to chronic ACL deficiency. Methods Twenty-three subjects with a history of chronic ACL deficiency (mean 18 years since injury) performed a closed chain leg press, relaxed and against a 15 kilogram weight. MRI recorded the tibio-femoral contact position at 15° intervals from 0° to 90° of knee flexion. Intra-articular pathology was assessed for all subjects by MRI, and at arthroscopy for 10 subjects. Results The tibio-femoral contact pattern of the ACL injured knee differed from the healthy contralateral knee (p=0.003). This difference was greatest in the medial compartment, particularly at 0° and 15° of knee flexion (p< 0.01), with the femur two millimetres (mean, SD 3.2 mm) posterior on the tibial plateau. Damage to the chondral surface was seen in the medial compartment in 16 subjects and lateral compartment in 12; medial meniscus damage was present in 16 subjects and lateral meniscus in 15. Chondral surface damage correlated with the difference in the tibio-femoral contact pattern between the healthy and injured knee in the medial compartment of the knee. Joint damage was not related significantly to time since injury, or Cincinnati knee score. Joint damage was related to level of sports participation, but probably indicates that as the joint failed, subjects curtailed their activity. Conclusions The kinematic consequences of chronic ACL injury may in part be responsible for the pattern of degenerative change, especially in the medial compartment of the knee. In relation to the conduct of this study, one or more of the authors is in receipt of a research grant from a non-commercial source


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 156 - 156
1 Jul 2014
Fitzgerald L Titchener A Miles A
Full Access

Summary Statement. The tensile properties of a number of synthetic fibre constructs and porcine MCLs were experimentally determined and compared to allow the selection of an appropriate synthetic collateral ligament model for use in a kinematic knee simulator. Introduction. As patient expectations regarding functional outcomes of total knee arthroplasty rise the need to assess the kinematics of new implants in vitro has increased. This has traditionally been done using cadaveric models, which can demonstrate high physiological relevance but also substantial inter-specimen variability. More recently there has been a shift towards the use of in silico and non-cadaveric methods. Such methods require significant simplifications of the joint and the modelling of soft tissue structures such as the collateral ligaments. Collateral ligaments are often modelled in in silico studies but have not, in the published literature, been modelled in in vitro knee kinematic simulators. Tensile testing of ligament tissue, to provide reference data, and the subsequent analysis of potential synthetic analogues was carried out. The overall aim of the study was to develop a synthetic ligament analogue for use in kinematic knee simulators. Methods. Porcine MCLs were chosen as these are of a similar size and are a readily available alternative to human ligaments. Six porcine knee specimens were sourced and the MCLs dissected by an orthopaedic registrar. Testing was carried out on an Instron MTS fitted with a 5kN load cell. Each specimen was subjected to 5 pre-conditioning loading cycles before cross-sectional and length measurements were made. Each specimen was then cyclically loaded from 0–200N for 30 cycles before being loaded to failure at a rate of 100mm/min. Ten potential synthetic analogues were also assessed using the same procedure: the Lars 80 (Corin Ltd) synthetic ligament reconstruction system and a selection of readily available synthetic constructs. Results. The porcine specimens demonstrated 6% ± 1% strain (mean ± standard error) after 30 cycles of loading, and a tensile stiffness of 100 N/mm ± 8.9 N/mm. The results of the load to failure tests also indicated a substantial toe region and highlighted the substantial variability associated with cadaveric specimens. The Lars system demonstrated a tensile stiffness of nearly 9 times that of the porcine specimens. However, non-parametric Mann-Whitney U analyses indicated that three of the synthetic samples did not have statistically significantly different tensile stiffness values compared to the porcine specimens (p < 0.05). Of these samples, the polyester braided cord demonstrated the longest and most physiologically relevant toe region. All of the polyester load-displacement traces fell within the range demonstrated by the porcine specimens. Discussion/Conclusion. The tensile properties of the porcine specimens analysed were similar to those reported in in the literature for human ligaments1. Porcine MCLs are thus a fair model of human collateral ligaments and were a suitable reference material for the selection of a synthetic analogue. The tensile testing carried out in the present study indicated that commercially available synthetic ligaments are over engineered in terms of strength and inappropriate for use in kinematic analysis. However, a polyester braided cord did demonstrate appropriate basic mechanical properties and would be appropriate as an analogue model on kinematic knee rigs


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 29 - 29
1 Oct 2014
Yamazaki T Kamei R Tomita T Sato Y Yoshikawa H Sugamoto K
Full Access

To achieve 3D kinematic analysis of total knee arthroplasty (TKA), 2D/3D registration techniques which use X-ray fluoroscopic images and computer-aided design (CAD) model of the knee implants, have been applied to clinical cases. These techniques are highly valuable for dynamic 3D kinematic measurement of TKA implants, but have needed time-consuming and labor-intensive manual operations in some process. To overcome a manual operations problem of initial pose estimation for 2D/3D registration, this study proposes an improvement method for semi-automated 3D kinematic measurement of TKA using X-ray fluoroscopic images. To automatically estimate the initial pose of the implant CAD model, we utilise a transformation with feature points extracted from the previous and next frames. A transform matrix which has three degree of freedom (translations parallel to the image, and a rotation perpendicular to the image) is calculated by registration of corresponding feature points between the previous and next frame extracted with speeded up robust features (SURF) algorithm. While, the corresponding point sets extracted by SURF sometimes include some error sets. Therefore, in this study, least median of squares method is employed to detect the error corresponding sets and calculate a transform matrix accurately. Finally, the 3D pose of the model estimated (by the 2D/3D registration) in previous frame is transformed with the accurately calculated transform matrix, and the transformed pose is used as an initial 3D pose of the model (for the 2D/3D registration) in next frame. To validate the feasibility of the improved semi-automated 3D kinematic measurement method, experiments using X-ray fluoroscopic images of four TKA patients during knee motions were performed. In order to assess the performance of the improved method, automation rate was calculated, and the rate was defined as the X-ray frame number of satisfying clinical required accuracy (error within 1mm, 1 degree) relative to all X-ray frame number. As results of the experiments, 3D pose of the model for all X-ray images except for the first frame is automatically stably-estimated, the automation rate of the femoral and tibial component were 83.7 % and 73.5 %, respectively. The improved method doesn't need labor-intensive manual operations for 3D kinematic measurement of TKA, and is thought to be very helpful for actual clinical practice


Background. There are limited previous findings detailed biomechanical properties following implantation with mechanical and kinematic alignment method in robotic total knee arthroplasty (TKA) during walking. The purpose of this study was to compare clinical and radiological outcomes between two groups and gait analysis of kinematic, and kinetic parameters during walking to identify difference between two alignment method in robotic total knee arthroplasty. Methods. Sixty patients were randomly assigned to undergo robotic-assisted TKA using either the mechanical (30 patients) or the kinematic (30 patients) alignment method. Clinical outcomes including varus and valgus laxities, ROM, HSS, KSS and WOMAC scores and radiological outcomes were evaluated. And ten age and gender matched patients of each group underwent gait analysis (Optic gait analysis system composed with 12 camera system and four force plate integrated) at minimum 5 years post-surgery. We evaluated parameters including knee varus moment and knee varus force, and find out the difference between two groups. Results. The mean follow up duration of both group was 8.1 years (mechanical method) and 8.0 years (kinematic method). Clinical outcome between two groups showed no significant difference in ROM, HSS, WOMAC, KSS pain score at last follow up. Varus and valgus laxity assessments showed no significant inter-group difference. We could not find any significant difference in mechanical alignment of the lower limb and perioperative complicatoin. In gait analysis, no significant spatiotemporal, kinematic or kinetic parameter differences including knee varus moment (mechanical=0.33, kinematic=0.16 P0.5) and knee varus force (mechanical=0.34, kinematic=0.37 P0.5) were observed between mechanical and kinematic groups. Conclusions. The results of this study show that mechanical and kinematic alignment method provide comparable clinical and radiological outcomes after robotic total knee arthroplasty in average 8 years follow-up. And no functional difference were found between two knee alignment methods during walking


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 20 - 20
1 Oct 2014
Asseln M Al Hares G Eschweiler J Radermacher K
Full Access

For a proper rehabilitation of the knee following knee arthroplasty, a comprehensive understanding of bony and soft tissue structures and their effects on biomechanics of the individual patient is essential. Musculoskeletal models have the potential, however, to predict dynamic interactions of the knee joint and provide knowledge to the understanding of knee biomechanics. Our goal was to develop a generic musculoskeletal knee model which is adaptable to subject-specific situations and to use in-vivo kinematic measurements obtained under full-weight bearing condition in a previous Upright-MRI study of our group for a proper validation of the simulation results. The simulation model has been developed and adapted to subject-specific cases in the multi-body simulation software AnyBody. For the implementation of the knee model a reference model from the AnyBody Repository was adapted for the present issue. The standard hinge joint was replaced with a new complex knee joint with 6DoF. The 3D bone geometries were obtained from an optimized MRI scan and then post-processed in the mesh processing software MeshLab. A homogenous dilation of 3 mm was generated for each bone and used as articulating surfaces. The anatomical locations of viscoelastic ligaments and muscle attachments were determined based on literature data. Ligament parameters, such as elongation and slack length, were adjusted in a calibration study in two leg stance as reference position. For the subject-specific adaptation a general scaling law, taking segment length, mass and fat into account, was used for a global scaling. The scaling law was further modified to allow a detailed adaption of the knee region, e.g. align the subject-specific knee morphology (including ligament and muscle attachments) in the reference model. The boundary conditions were solely described by analytical methods since body motion (apart from the knee region) or force data were not recorded in the Upright-MRI study. Ground reaction forces have been predicted and a single leg deep knee bend was simulated by kinematic constraints, such as that the centre of mass is positioned above the ankle joint. The contact forces in the knee joint were computed using the force dependent kinematic algorithm. Finally, the simulation model was adapted to three subjects, a single leg deep knee bend was simulated, subject-specific kinematics were recorded and then compared to their corresponding in-vivo kinematic measurements data. We were able to simulate the whole group of subjects over the complete range of motion. The tibiofemoral kinematics of three subjects could be simulated showing the overall trend correctly, whereas absolute values partially differ. In conclusion, the presented simulation model is highly adaptable to an individual situation and seems to be suitable to approximate subject-specific knee kinematics without consideration of cartilage and menisci. The model enables sensitivity analyses regarding changes in patient specific knee kinematics following e.g. surgical interventions on bone or soft tissue as well as related to the design and placement of partial or total knee joint replacement. However, model optimisation, a higher case number, sensitivity analyses of selected parameters and a semi-automation of the workflow are parts of our ongoing work


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 128 - 128
1 Mar 2010
Kihara Y Hirokawa S Ueo T
Full Access

The objective of this study is to determine the in-vivo knee joint kinematics of patients having specially designed knee prosthesis (Bi-surface) at sitting sedentary (seiza) state. An increase in the demand for TKA has required improvement in the durability and flexibility of knee prostheses. One of the representative cases which have improved knee flexion is Bi-surface knee. Bi-surface knee has two joint surfaces; one for weight bearing and the other for flexion motion which has a unique ball-and-socket joint. This knee prosthesis, having been applied for two decades, has not yet been precisely analyzed how the femoral and tibial components are articulating at deep knee flexion. Since there is no practical method to measure directly prosthetic kinematics in-vivo; we applied indirect techniques, pattern matching method to the Bi-surface patients. The method has been originated by Banks and Hodge (1964), and we have improved it in order to obtain higher and more reliable accuracies. The number of subjects examined by X-ray apparatus was 18 knees of 14 patients (3 male and 11 female) who could attain the seiza. Patients were asked to sit at seiza state and their Bi-surface knees were X-ray photographed from lateral side. We focused if the internal rotation was shown at maximum flexion as commonly shown for a normal knee. We also represented the CAD models with the same position/orientation as the data from the pattern matching, thereby investigating the contact states between the ball and socket by viewing them from the desired direction. The following results were introduced. The mean maximum flexion angle was 144.1° (SD=5.3°), and the mean internal rotation angle at maximum flexion was 15.2° (SD=6.6). The maximum flexion angle among all subjects was 153.3° and internal rotation was 19.5° at that flexion angle. The number of subjects which had (a) contact point(s) on the tibio-femoral and/or ball-socket surface(s) was 5 knees (2 knees had contact point on both the ball-and-socket and the tibio-femoral lateral surfaces, 3 knees had only on either surface) and the other 13 knees had a slight gap between two components. Correlation was found between the value of the maximum flexion angle and the value of internal rotation angle at that flexion; the subjects of larger maximum flexion angle also demonstrated larger internal rotation angle. This suggests that at deep knee flexion, the tibial internal rotation may play an important role after TKA as a normal knee does. By checking the CAD representations, we found that the tibio-femoral and ball-socket surfaces were separate for most subjects at seiza state. Although serious impingements were not found, it was suggested the risk of subluxation when a patient rises up. The limitation of our study is that we used simple still X-ray pictures. In order to assess kinematics for ascending from seiza state, kinematic analyses from fluoroscopic images are needed


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 26 - 26
1 Mar 2013
Bruni D Iacono F Presti ML Raspugli G Sharma B Marcacci M
Full Access

INTRODUCTION. The purpose of our work was to evaluate changes in clinical scores, passive knee kinematics and stability after mobile bearing TKA surgery. MATERIAL AND METHODS. 60 patients were treated with a mobile bearing prosthesis (Gemini, Waldemar Link, Hamburg, Germany). PCL was always resected. Inclusion criteria were BMI >30, age range 60–80 yrs. Preoperative KSS, KOOS and SF36 scores were recorded. Surgeries were performed with a navigation system (BLU-IGS, Orthokey Italia, Firenze, Italy) to verify bone cuts, ligament balancing and implant positioning. Kinematic tests were executed to determine: tibial rotation and femoral translation through flexion range. Stability tests were performed using varus-valgus stress in extension and at 30° of flexion and drawer test. Acquisition were perfomed with menisci and cruciate ligaments intact, and repeated after final implant fixation. Clinical scores were recorded at 6 months follow-up. RESULTS. All clinical scores showed increased value at 6 months follow up. KSS changed from 35±16.6 to 89.6±17.2; KOOS changed from 45.1 ±15.7 to 89.4 ±20.6; SF 36 changed from 42.5±21.4 to 85.1±24.6. Average preoperative kinematics showed a rotation pattern of 10° during flexion, mostly occurring at first 30° of flexion. All tibiae resulted externally rotated preoperatively. After TKA the similar rotational pattern was maintained; screw-home was slighlty reduced, but tibial external rotation was corrected. Traslation patterns showed no statistically differences. VV stability was reduced in extension but not at 30° of flexion. AP stability at 90° of flexion increased after TKA (from 8.2 mm ± 4.9 to 13.2 mm ± 5.4). DISCUSSION. Mobile bearing PCS TKA was effective in increasing funtionality of the patients. Clinical scores improved after implant. Kinematics didn't change significantly. The correction of preoperative external rotation was noted, and similar AP translation pattern was obtained. Screw-home mechanism was reduced, and IE rotation pattern is more distributed throughout the flexion range. Stability in extension was restored, while it was not at 30° of flexion, as also drawer test resulted increased after TKA. This may be due to the absence of both cruciate ligaments


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 49 - 49
1 Oct 2014
Hart R
Full Access

Introduction. Valgus knee deformity is associated especially with differences in anatomy between medial and lateral femoral condyles. Vertically smaller lateral condyle and more distally located medial condyle cause valgus deformity in extension. The anteroposterior dimensions of both condyles influence the knee axis in flexion. In a „true“ valgus knee there is a mismatch between both condyles in both the vertical and anteroposterior dimensions, the lateral condyle is generally smaller. In a „false“ valgus knee there is no mismatch between anteroposterior dimensions of both condyles, the knee axis changes from valgus into varus with increased degree of flexion and lateral soft tissue structures are that's why not so contracted as in „true“ valgus knee deformity, where the knee stays in valgus deviation during the whole range of motion. The aim of the study was to preoperatively identify and analyse patterns of passive movement of osteoarthritic valgus knees with imageless navigation system to optimise surgical approach and intra-operative tissue handling during subsequent total knee replacement (TKR) surgery. Material and Methods. TKR were prospectively performed in 50 valgus knees. Cases with severe bony destruction and enormous soft tissue laxity were excluded from the study. The kinematic navigation system used was OrthoPilot® (Aesculap, Tuttlingen, Germany). It is designed to produce a numerical output of varus/valgus deviation of the knee against the degree of flexion. Before skin incision for TKR surgery, active markers were attached percutaneusly to the femur and the tibia with bicortical screws to create two ‘rigid bodies’. After the registration process the kinematic analysis was performed by passive movement of the knee. The mechanical axis was recorded at 0°, 30°, 60°, 90°, and 120° of flexion. The valgus deformity persistent through the whole range of motion was called „true“ and the valgus deformity passing into varus with flexion was called „false“. In „true“ valgus knees the lateral approach according to Keblish was used, in „false“ valgus knees we used standard medial parapatellar approach. Results. The pre-operative valgus deformity in extension ranged from 13° to 4° (mean 7,8°). We observed „true“ valgus type deformity during passive range of movement in 34 cases (68 %) and „false“ type of kinematics in 16 cases (32 %). The average value of valgus deviation in extension in „true“ group was 7,9° (range, 13° to 4°) and in „false“ group 7,5° (range, 9° to 6°), without statistically significant difference. In the „true“ valgus deviation group the value of deformity gradually decreased with flexion in all cases. The mean difference between axis deviation in 0° and 120° of flexion was 5,5° (range, 10° to 1°) in this group. In the „false“ valgus group the varus deviation was observed either already in 60° of flexion or in most cases in 90° of flexion. The mean difference between axis deviation in 0° and 120° of flexion in this group was much more significant – 12,0° (range, 14° to 10°) – there was statistically significant difference between both groups. The mean time necessary for data collection before surgery was 6 minutes (range, 4 to 11 minutes); afterwards, tha navigation was used for TKR implantation. No complications were observed regarding to the navigation usage. Subsequently correct soft tissue balance was achieved in all TKRs using this method. Conclusions. Computer navigation assistance can easily and fast help to identify the character of valgus deformity („true“ or „false“) just before skin incision. In „true“ valgus deviation lateral structures (iliotibial band, vastus lateralis tendon, lateral collateral ligament, and the popliteus muscle) are tight and lateral approach according to Keblish may be necessary for appropriate release and soft tissue balancing during TKR surgery. Mostly used standard medial parapatellar approach is always sufficient in „false“ valgus knees. Computer navigation can help surgeon to choose the appropriate parapatellar approach (medial or lateral) just before the surgery without significant time lost


The Journal of Bone & Joint Surgery British Volume
Vol. 78-B, Issue 6 | Pages 907 - 911
1 Nov 1996
Weir DJ Moran CG Pinder IM

We performed an independent survivorship analysis on 208 Kinematic Condylar knee replacements with a minimum follow-up of ten years and a mean of 12 years. Seven patients had been lost to follow-up. At ten years the estimated survival was 92% (95% confidence limits 95% and 87%) and when stratified for diagnosis and thickness of polyethylene there was no statistical difference (p > 0.05) in survivorship of knees with osteoarthritis or rheumatoid arthritis. We conclude that the original design of the Kinematic Condylar knee replacement has a good record and that adequate evaluation of new designs of implant should be undertaken before they are widely introduced