Abstract
For a proper rehabilitation of the knee following knee arthroplasty, a comprehensive understanding of bony and soft tissue structures and their effects on biomechanics of the individual patient is essential. Musculoskeletal models have the potential, however, to predict dynamic interactions of the knee joint and provide knowledge to the understanding of knee biomechanics. Our goal was to develop a generic musculoskeletal knee model which is adaptable to subject-specific situations and to use in-vivo kinematic measurements obtained under full-weight bearing condition in a previous Upright-MRI study of our group for a proper validation of the simulation results.
The simulation model has been developed and adapted to subject-specific cases in the multi-body simulation software AnyBody. For the implementation of the knee model a reference model from the AnyBody Repository was adapted for the present issue. The standard hinge joint was replaced with a new complex knee joint with 6DoF. The 3D bone geometries were obtained from an optimized MRI scan and then post-processed in the mesh processing software MeshLab. A homogenous dilation of 3 mm was generated for each bone and used as articulating surfaces.
The anatomical locations of viscoelastic ligaments and muscle attachments were determined based on literature data. Ligament parameters, such as elongation and slack length, were adjusted in a calibration study in two leg stance as reference position.
For the subject-specific adaptation a general scaling law, taking segment length, mass and fat into account, was used for a global scaling. The scaling law was further modified to allow a detailed adaption of the knee region, e.g. align the subject-specific knee morphology (including ligament and muscle attachments) in the reference model.
The boundary conditions were solely described by analytical methods since body motion (apart from the knee region) or force data were not recorded in the Upright-MRI study. Ground reaction forces have been predicted and a single leg deep knee bend was simulated by kinematic constraints, such as that the centre of mass is positioned above the ankle joint. The contact forces in the knee joint were computed using the force dependent kinematic algorithm.
Finally, the simulation model was adapted to three subjects, a single leg deep knee bend was simulated, subject-specific kinematics were recorded and then compared to their corresponding in-vivo kinematic measurements data.
We were able to simulate the whole group of subjects over the complete range of motion. The tibiofemoral kinematics of three subjects could be simulated showing the overall trend correctly, whereas absolute values partially differ.
In conclusion, the presented simulation model is highly adaptable to an individual situation and seems to be suitable to approximate subject-specific knee kinematics without consideration of cartilage and menisci. The model enables sensitivity analyses regarding changes in patient specific knee kinematics following e.g. surgical interventions on bone or soft tissue as well as related to the design and placement of partial or total knee joint replacement. However, model optimisation, a higher case number, sensitivity analyses of selected parameters and a semi-automation of the workflow are parts of our ongoing work.