Advertisement for orthosearch.org.uk
Results 1 - 100 of 129
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 123 - 123
11 Apr 2023
Ghaffari A Rahbek O Lauritsen R Kappel A Rasmussen J Kold S
Full Access

The tendency towards using inertial sensors for remote monitoring of the patients at home is increasing. One of the most important characteristics of the sensors is sampling rate. Higher sampling rate results in higher resolution of the sampled signal and lower amount of noise. However, higher sampling frequency comes with a cost. The main aim of our study was to determine the validity of measurements performed by low sampling frequency (12.5 Hz) accelerometers (SENS) in patients with knee osteoarthritis compared to standard sensor-based motion capture system (Xsens). We also determined the test-retest reliability of SENS accelerometers. Participants were patients with unilateral knee osteoarthritis. Gait analysis was performed simultaneously by using Xsens and SENS sensors during two repetitions of over-ground walking at a self-selected speed. Gait data from Xsens were used as an input for AnyBody musculoskeletal modeling software to measure the accelerations at the exact location of two defined virtual sensors in the model (VirtualSENS). After preprocessing, the signals from SENS and VirtualSENS were compared in different coordinate axes in time and frequency domains. ICC for SENS data from first and second trials were calculated to assess the repeatability of the measurements. We included 32 patients (18 females) with median age 70.1[48.1 – 85.4]. Mean height and weight of the patients were 173.2 ± 9.6 cm and 84.2 ± 14.7 kg respectively. The correlation between accelerations in time domain measured by SENS and VirtualSENS in different axes was r = 0.94 in y-axis (anteroposterior), r = 0.91 in x-axis (vertical), r = 0.83 in z-axis (mediolateral), and r = 0.89 for the magnitude vector. In frequency domain, the value and the power of fundamental frequencies (F. 0. ) of SENS and VirtualSENS signals demonstrated strong correlation (r = 0.98 and r = 0.99 respectively). The result of test-retest evaluation showed excellent repeatability for acceleration measurement by SENS sensors. ICC was between 0.89 to 0.94 for different coordinate axes. Low sampling frequency accelerometers can provide valid and reliable measurements especially for home monitoring of the patients, in which handling big data and sensors cost and battery lifetime are among important issues


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 454 - 454
1 Sep 2009
Verlaan L Senden R Storken G Heyligers I Grimm B
Full Access

To clinically diagnose and postoperatively monitor the younger or more demanding orthopaedic patients it becomes increasingly important to measure function beyond the capacity of classic scores suffering from subjectivity, pain dominance and ceiling effects. This study investigates whether a stair climbing test with accelerometer derived motion parameters in a group of healthy subjects is clinically feasible and valid to distinguish between demographic differences. The ascending and descending of stairs (preferred speed, no handrails) was measured in 46 healthy subjects (19m/27f, no orthopaedic pathology) using a triaxial accelerometer attached with a belt to the sacrum. The study group was divided in two age groups: young group (15m/16f; age: 25 [21–38]) and old group (4m/11f; age: 67 [54–74]). Motion parameters were derived by acceleration peak detection algorithms based on step times: tup, tdown, tup-tdown,, step irregularity: irrup, irrdown and asymmetry: asymup, asymdown. Step times were slightly higher ascending (tup=606ms) than descending (tdown=575ms, p< 0.05). The step time difference between ascending and descending (tup-tdown=31ms) showed a significant difference between the young (47ms) and elderly (−7ms). All subjects with descending times ≥20ms slower than ascending (6/46) were elderly. Irregularity and asymmetry were similar between stepping direction and age groups. Asymmetry identified the dominant leg with equal or faster steps than the non-dominant leg in 43/46 cases. Motion parameters were not correlated to gender, height or BMI. Slower step times down than up seem a promising parameter to detect general or bilateral orthopaedic pathologies. Asymmetry identifying the dominant leg shall detect unilateral pathologies. The accelerometer assessed stair test seems suitable for routine clinical follow-up complementing classic scores


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 274 - 274
1 Jul 2014
Hendriks G Senden R Heyligers I Meijer K Grimm B
Full Access

Summary. Upper extremity activity was similar in patients and healthy subjects, showing no significant asymmetry between arms within subjects. Further improvements (e.g. thresholds, filters, inclinometer function) are needed to show the clinical value of AM for patients suffering shoulder complaints. Introduction. Activity monitoring is becoming a popular outcome tool especially in orthopaedics. The suitability of a single 3D acceleration-based activity monitor (AM) for patients with lower-extremity problems has been shown. However less is known about its feasibility to monitor upper-extremity activity. Insight into the amount and intensity of upper-extremity activity of the affected and non-affected arm (asymmetry) may be of added value for diagnostics, therapy choice and evaluating treatment effects. This study investigates the feasibility of a single AM to evaluate (asymmetry in) upper-extremity activity in daily life. Methods. Upper-extremity activity was measured in 12 patients with subacromial impingent syndrome (59±12yr) and 10 healthy subjects (29±11yrs). Subjects wore a single 3D accelerometer at both arms, just above the base of the Hueter triangle, for one day (min. 8 hours). Specific algorithms were used to derive quantity (activity duration, rest periods) and intensity (low-high) activity parameters (% of the day). The ratio in % activity between non-affected (dominant) and affected (non-dominant) arm was calculated. Asymmetry was expressed as the %-difference in activity between arms with regards to the non-affected (dominant) arm. Also popular PROMs were completed: DASH score (range 0–100;0=best) and SST score (range 0–12; 0=best). Independent t-test, Mann-Whitney U test, Pearson's r correlations were performed. Results. No significant differences in activity duration (Healthy: 50%, patients: 57% of the day) and intensity of upper-extremity activity were found between patients and healthy subjects, although PROMs were significantly worse in patients. Patients and healthy subjects use both arms in similar amounts of time per day. This corresponds to the ratio which almost equals 1 and the low asymmetry values (<10%) in both groups. Also the amount activity in low and high intensity was comparable between affected (non-dominant) and non-affected (dominant) arm. No correlations were found between AM data and PROMs. Discussion and Conclusion. Patients and healthy subjects move their upper arms approximately 53% of the day. No differences in amount and intensity of upper-extremity activity were found between healthy subjects and patients, neither between both arms. This suggests that subjects perform daily activities independent of pain, complaints or arm dominance. It could also hint at the algorithm operating with a too low activity threshold to include shuffling or misclassifying excitations from walking as intense arm movement. Both issues can be adjusted by adjusting thresholds and filter settings. The asymmetry in upper-extremity activity of healthy subjects (9.1%) assumes that a 10% asymmetry in arm activity seems natural, which coincides with similar values reported for functional shoulder tests (Koerver et al. CORS 2010). The lack of correlations between AM and PROMs suggests that both measure different outcome dimensions. The AM has some limitations which should be considered when improving the clinical feasibility of upper-extremity activity monitoring. The AM only allows to measure acceleration-related activities (speed, intensity), while upper-extremity activity often involves static force-related activities. However, the inclinometer capacity of accelerometers allows to measure upper-extremity activity at different elevations (upper arm above/below shoulder). This may add qualitative information, relevant for clinical purposes


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 275 - 275
1 Jul 2014
Hendriks G Aquilina A Senden R Blom A Meijer K Heyligers I Grimm B
Full Access

Summary. A single 3D accelerometer is accurate in measuring upper-extremity activity durations, rest periods and intensities, suggesting its feasibility for daily life measurements with patients. Further enhancements are feasible to reduce residual false classifications of intensity from certain activities. Introduction. Physical activity is an important outcome measure in orthopaedics as it reflects how surgically restored functional capacity is used in daily life. Accelerometer-based activity monitors (AM) are objective, reliable and valid to determine lower extremity activity in orthopaedic patients. However the suitability of a single AM to monitor upper-extremity activity, in terms of quantity and intensity, has not been investigated. This study investigates the suitability and validity of a single AM to measure quantity and intensity of upper-extremity activity. Method. Five healthy young subjects (25 ± 3 yrs) were included. Subjects underwent a standardised protocol consisting of walking, combing hair, cleaning a desk while standing, brushing teeth and cleaning a window. All one-handed activities were performed with the right arm, as all subjects were right handed. The activities were performed in a fixed order, at self selected speed, for at least 30s. Between the activities, subjects stood still for 10s with their arms next to the body. A light-weight (18g) 3D-accelerometer (f=40Hz) was taped to the right elbow, just above the base of the Hueter triangle, using double sided tape. During the measurement, patients were recorded by a video camera analyzed by an independent human observer as validation reference. AM data and video-recordings were analyzed per second. The time being active (% of time) was determined over the whole measurement and for every activity separately, the percentage of the active time spend in high and low intensity was determined. Video-recording and AM-output were compared by determining Mean Percentage Error (MPE) and the accuracy (100-MPE). Results. High agreement in measuring upper-extremity (in-) activity was found between AM and video-recordings, showing an accuracy of 93%. Except for walking and combing hair, high agreement between AM and video-recordings was found in measuring activity intensity (accuracy range: 83–100%). 97% of walking was misclassified: video-recordings classify walking as low intensity, the AM as high intensity. Low agreement (58% agreement) for intensity was also found for combing hair. Discussion and Conclusion. A single AM is accurate in measuring the duration of upper-extremity activity and rest periods in healthy subjects under controlled circumstances. This suggests the suitability of AM to monitor real life upper-extremity activity, which can serve as objective clinical outcome in patients with shoulder complaints. Beyond durations, the AM seems also suitable for measuring activity intensity, showing high accuracy for most activities. The low accuracy in intensity classification of walking and combing hair can be explained by the different interpretations of intensity by observer and AM. For the observer, intensity classification may be force-related (feeling a resistance may refer to high intensity), while intensity classification is acceleration-related for the AM. The false classification of shoulder movement during walking as intense can be resolved by dedicated filters in the detection algorithms. Future algorithms will allow measurement of arm elevations (elbow below/above shoulder) which may be another relevant outcome parameter. However, already this basic AM application validated here may help e.g. in therapeutic decision making, in evaluating therapy effects or providing biofeedback


Bone & Joint Research
Vol. 12, Issue 3 | Pages 165 - 177
1 Mar 2023
Boyer P Burns D Whyne C

Aims

An objective technological solution for tracking adherence to at-home shoulder physiotherapy is important for improving patient engagement and rehabilitation outcomes, but remains a significant challenge. The aim of this research was to evaluate performance of machine-learning (ML) methodologies for detecting and classifying inertial data collected during in-clinic and at-home shoulder physiotherapy exercise.

Methods

A smartwatch was used to collect inertial data from 42 patients performing shoulder physiotherapy exercises for rotator cuff injuries in both in-clinic and at-home settings. A two-stage ML approach was used to detect out-of-distribution (OOD) data (to remove non-exercise data) and subsequently for classification of exercises. We evaluated the performance impact of grouping exercises by motion type, inclusion of non-exercise data for algorithm training, and a patient-specific approach to exercise classification. Algorithm performance was evaluated using both in-clinic and at-home data.


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 405 - 410
1 Feb 2021
Leo DG Perry DC Abdullah B Jones H

Aims. The reduction in mobility due to hip diseases in children is likely to affect their physical activity (PA) levels. Physical inactivity negatively influences quality of life and health. Our aim was to objectively measure PA in children with hip disease, and correlate it with the Patient-Reported Outcomes Measurement Information System (PROMIS) Mobility Score. Methods. A total of 28 children (12 boys and 16 girls) with hip disease aged between 8and 17 years (mean 12 (SD 3)) were studied between December 2018 and July 2019. Children completed the PROMIS Paediatric Item Bank v. 2.0 – Mobility Short Form 8a and wore a hip accelerometer (ActiGraph) for seven consecutive days. Sedentary time (ST), light PA (LPA), moderate to vigorous PA (MVPA), and vigorous PA were calculated from the accelerometers' data. The PROMIS Mobility score was classified as normal, mild, and moderate functions, based on the PROMIS cut scores on the physical function metric. A one-way analysis of covariance (ANCOVA) was used to assess differences among mobility (normal; mild; moderate) and measured PA and relationships between these variables were assessed using bivariate Pearson correlations. Results. Children classified as normally functioning on the PROMIS had less ST (p = 0.002), higher MVPA, (p = 0.002) and VPA (p = 0.004) compared to those classified as mild or moderate function. A moderate correlation was evident between the overall PROMIS score and daily LPA (r = 0.462, n = 28; p = 0.013), moderate-to-vigorous PA (r = 0.689, n = 28; p = 0.013) and vigorous PA (VPA) (r = 0.535, n = 28; p = 0.013). No correlation was evident between the mean daily ST and overall PROMIS score (r = -0.282, n = 28; p = 0.146). Conclusion. PROMIS Pediatric Mobility tool correlates well with experimentally measured levels of physical activity in children with hip disease. We provide external validity for the use of this tool as a measure of physical activity in children. Cite this article: Bone Joint J 2021;103-B(2):405–410


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 90 - 90
19 Aug 2024
Sakai T Kaneoka T Okazaki T Matsuki Y Kawakami T Yamazaki K Imagama T
Full Access

Recently, some smart media devices including portable accelerometers have been used to measure objective physical activity (OPA) after total hip arthroplasty (THA). The aim of this study was to longitudinally assess OPA changes in patients who underwent THA using a compact triaxial accelerometer and to investigate the impact of this recovery process on patient-reported outcomes. This prospective cohort study involved 163 consecutive patients who had unilateral osteoarthritis of the hip and were followed up for 12 months after THA. There were 132 women and 31 men with average age of 66 years. OPA was measured using a compact triaxial accelerometer preoperatively and at 1, 3, 6, and 12 months postoperatively. This study investigated the recovery process of OPA in four patient groups classified by the median of age and preoperative activity levels (younger and higher activity (YH), younger and lower activity (YL), older and higher activity (OH), and older and lower activity (OL)), and examined its impact on patient-reported outcomes, including forgotten joint score-12 (FJS-12). The target period for regaining preoperative activity levels was approximately 3 months for patients with lower preoperative activity, and about 6 months for those with higher preoperative activity. The OPA at 12 months postoperatively was higher in the patients with higher preoperative activity levels than in those with lower preoperative activity levels. In patients with higher preoperative activity levels, FJS-12 scores significantly increased between 6 and 12 months postoperatively (p=0.018). FJS-12 at 12 months postoperatively was best in YH (81.7±18.9), followed by YL (73.5±22.9), OH (73.2±17.4), and OL (66.3±21.8). Differences in the recovery process of postoperative activity levels impacted the duration required for improvement in FJS-12 scores. These results can serve as indicators for setting activity goals in patients undergoing THA


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 134 - 134
4 Apr 2023
Arrowsmith C Alfakir A Burns D Razmjou H Hardisty M Whyne C
Full Access

Physiotherapy is a critical element in successful conservative management of low back pain (LBP). The aim of this study was to develop and evaluate a system with wearable inertial sensors to objectively detect sitting postures and performance of unsupervised exercises containing movement in multiple planes (flexion, extension, rotation). A set of 8 inertial sensors were placed on 19 healthy adult subjects. Data was acquired as they performed 7 McKenzie low-back exercises and 3 sitting posture positions. This data was used to train two models (Random Forest (RF) and XGBoost (XGB)) using engineered time series features. In addition, a convolutional neural network (CNN) was trained directly on the time series data. A feature importance analysis was performed to identify sensor locations and channels that contributed most to the models. Finally, a subset of sensor locations and channels was included in a hyperparameter grid search to identify the optimal sensor configuration and the best performing algorithm(s) for exercise classification. Models were evaluated using F1-score in a 10-fold cross validation approach. The optimal hardware configuration was identified as a 3-sensor setup using lower back, left thigh, and right ankle sensors with acceleration, gyroscope, and magnetometer channels. The XBG model achieved the highest exercise (F1=0.94±0.03) and posture (F1=0.90±0.11) classification scores. The CNN achieved similar results with the same sensor locations, using only the accelerometer and gyroscope channels for exercise classification (F1=0.94±0.02) and the accelerometer channel alone for posture classification (F1=0.91±0.03). This study demonstrates the potential of a 3-sensor lower body wearable solution (e.g. smart pants) that can identify proper sitting postures and exercises in multiple planes, suitable for low back pain. This technology has the potential to improve the effectiveness of LBP rehabilitation by facilitating quantitative feedback, early problem diagnosis, and possible remote monitoring


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 26 - 26
1 Feb 2021
Tanpure S Madje S Phadnis A
Full Access

The iASSIST system is a portable, accelerometer base with electronic navigation used for total knee arthroplasty (TKA) which guides the surgeon to align and validate bone resection during the surgical procedure. The purpose of this study was to compare the radiological outcome between accelerometer base iASSIST system and the conventional system. Method. A prospective study between two group of 36 patients (50 TKA) of primary osteoarthritis of the knee who underwent TKA using iASSIST ™ or conventional method (25 TKA in each group) from January 2018 to December 2019. A single surgeon performs all operations with the same instrumentation and same surgical approach. Pre-operative and postoperative management protocol are same for both groups. All patients had standardized scanogram (full leg radiogram) performed post operatively to determine mechanical axis of lower limb, femoral and tibial component alignment. Result. There was no significant difference between the 2 groups for Age, Gender, Body mass index, Laterality and Preoperative mechanical axis(p>0.05). There was no difference in proportion of outliers for mechanical axis (p=0.91), Coronal femoral component alignment angle (p=0.08), Coronal tibial component alignment angle (p=1.0). The mean duration of surgery, postoperative drop in Hb, number of blood transfusion didn't show significant difference between 2 groups (p>0.05). Conclusion. Our study concludes that despite being a useful guidance tool during TKA, iASSIST does not show any difference in limb alignment (mechanical axis), Tibial and femoral component alignment when compared with the conventional method


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 85 - 85
1 Feb 2020
Dessinger G LaCour M Komistek R
Full Access

Introduction. Diagnosis of osteoarthritis relies primarily on image-based analyses. X-ray, CT, and MRI can be used to evaluate various features associated with OA including joint space narrowing, deformity, articular cartilage integrity, and other joint parameters. While effective, these exams are costly, may expose the patient to ionizing radiation, and are often conducted under passive, non-weightbearing conditions. A supplemental form of analysis utilizing vibroarthrographic (VAG) signals provides an alternative that is safer and more cost-effective for the patient. The objective of this study is to correlate the kinematic patterns of normal, diseased (pre-operative), and implanted (post-operative) hip subjects to their VAG signals that were collected and to more specifically, determine if a correlation exists between femoral head center displacement and vibration signal features. Methods. Of the 28 hips that were evaluated, 10 were normal, 10 were diseased, and 8 were implanted. To collect the VAG signal from each subject, two uniaxial accelerometers were placed on bony landmarks near the joint; one was placed on the greater trochanter of the femur and the other along the anterior edge of the iliac crest. The subjects performed a single cycle gait (stance and swing phase) activity under fluoroscopic surveillance. The CAD models of the implanted components were supplied by the sponsoring company while the subject bone models were created from CT scans. 3D-to-2D registration was conducted on subject fluoroscopic images to obtain kinematics, contact area, and femoral center head displacement. The VAG signals were trimmed to time, passed with a denoise filter and wavelet decomposition. Results. When comparing the femoral head displacement to the vibration signals with respect to the normal hips, insignificant magnitudes of vibration were present (0.05 volts). For the diseased hips, greater magnitudes were seen (0.2 volts). For the implanted subjects, the overall vibration features were small (0.05 volts) much like the signals from the normal hips except for spikes that correlated to features within the gait cycle. Therefore, grinding sounds were heard from the degenerative hips, but not present for the normal or implanted hips in this study. Discussion. In regards to the normal hip subjects, the lesser magnitude of volts correlated well with the kinematic results showing no separation of the femoral head center (1 mm). For the diseased hips, the instances of greater feature quantity occurred at moments where the subjects experienced higher values of head center displacement (1 mm). These subjects also had an overall increase in average voltage magnitude likely due to the loss of cartilage about the articulating surface resulting in a rougher surface for the accelerometers to record. For the implanted subjects, due to no head center displacement and a smoother surface for joint articulation, the vibration signals were smaller than the diseased case but showed better correlation with features within the gait cycle. No exact quantification has been determined between separation and accelerometer voltage output, further studies and testing will need to be carried out in order to reach such a conclusion. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 113 - 113
2 Jan 2024
Ghaffari A Rasmussen J Kold S Rahbek O
Full Access

Gait measurements can vary due to various intrinsic and extrinsic factors, and this variability becomes more pronounced using inertial sensors in a free-living environment. Therefore, identifying and quantifying the sources of variability is essential to ensure measurement reliability and maintain data quality. This study aimed to determine the variability of daily accelerations recorded by an inertial sensor in a group of healthy individuals. Ten participants, four males and six females, with a mean age of 50 years (range: 29–61) and BMI of 26.9 kg/m. 2. (range: 21.4–36.8), were included. A single accelerometer continuously recorded lower limb accelerations over two weeks. We extracted and analyzed the accelerations of three consecutive strides within walking bouts if the time difference between the bouts was more than two hours. Multivariate mixed-effects modeling was performed on both the discretized acceleration waveforms at 101 points (0–100) and the harmonics of the signals in the frequency domain to determine the variance components for different subjects, days, bouts, and steps as the random effect variables. Intraclass correlation coefficients (ICCs) were calculated for between-day, between-bout, and between-step comparisons. The results showed that the ICCs for the between-day, between-bout, and between-step comparisons were 0.73, 0.82, 0.99 for the vertical axis; 0.64, 0.75, 0.99 for the anteroposterior axis; and 0.55, 0.96, 0.97 for the mediolateral axis. For the signal harmonics, the respective ICCs were 0.98, 0.98, 0.99 for the vertical axis; 0.54, 0.93, 0.98 for the anteroposterior axis; and 0.69, 0.78, 0.95 for the mediolateral axis. Overall, this study demonstrated that accelerations recorded continuously for multiple days in a free-living environment exhibit high variability, mainly between days, and some variability arising from differences between walking bouts during different times within days. However, reliable and repeatable gait measurements can be obtained by identifying and quantifying the sources of variability


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 65 - 65
17 Apr 2023
Tacchella C Lombardero SM Clutton E Chen Y Crichton M
Full Access

In this work, we propose a new quantitative way of evaluating acute compartment syndrome (ACS) by dynamic mechanical assessment of soft tissue changes. First, we have developed an animal model of ACS to replicate the physiological changes during the condition. Secondly, we have developed a mechanical assessment tool for quantitative pre-clinical assessment of ACS. Our hand-held indentation device provides an accurate method for investigations into the local dynamic mechanical properties of soft tissue and for in-situ non-invasive assessment and monitoring of ACS. Our compartment syndrome model was developed on the cranial tibial and the peroneus tertius muscles of a pig's leg (postmortem). The compartment syndrome pressure values were obtained by injecting blood from the bone through the muscle. To enable ACS assessment by a hand-held indentation device we combined three main components: a load cell, a linear actuator and a 3-axis accelerometer. Dynamic tests were performed at a frequency of 0.5 Hz and by applying an amplitude of 0.5 mm. Another method used to observe the differences in the mechanical properties inside the leg was a 3D Digital Image Correlation (3D-DIC). Videos were taken from two different positions of the pig's leg at different pressure values: 0 mmHg, 15 mmHg and 40 mmHg. Two strains along the x axis (Exx) and y axis (Eyy) were measured. Between the two pressure cases (15 mmHg and 40 mmHg) a clear deformation of the model is visible. In fact, the bigger the pressure, the more visible the increase in strain is. In our animal model, local muscle pressures reached values higher than 40 mmHg, which correlate with observed human physiology in ACS. In our presentation we will share our dynamic indentation results on this model to demonstrate the sensitivity of our measurement techniques. Compartment syndrome is recognised as needing improved clinical management tools. Our approach provides both a model that reflects physiological behaviour of ACS, and a method for in-situ non-invasive assessment and monitoring


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 53 - 53
2 Jan 2024
Ghaffari A Clasen P Boel R Kappel A Jakobsen T Kold S Rahbek O
Full Access

Wearable inertial sensors can detect abnormal gait associated with knee or hip osteoarthritis (OA). However, few studies have compared sensor-derived gait parameters between patients with hip and knee OA or evaluated the efficacy of sensors suitable for remote monitoring in distinguishing between the two. Hence, our study seeks to examine the differences in accelerations captured by low-frequency wearable sensors in patients with knee and hip OA and classify their gait patterns. We included patients with unilateral hip and knee OA. Gait analysis was conducted using an accelerometer ipsilateral with the affected joint on the lateral distal thighs. Statistical parametric mapping (SPM) was used to compare acceleration signals. The k-Nearest Neighbor (k-NN) algorithm was trained on 80% of the signals' Fourier coefficients and validated on the remaining 20% using 10-fold cross-validation to classify the gait patterns into hip and knee OA. We included 42 hip OA patients (19 females, age 70 [63–78], BMI of 28.3 [24.8–30.9]) and 59 knee OA patients (31 females, age 68 [62–74], BMI of 29.7 [26.3–32.6]). The SPM results indicated that one cluster (12–20%) along the vertical axis had accelerations exceeding the critical threshold of 2.956 (p=0.024). For the anteroposterior axis, three clusters were observed exceeding the threshold of 3.031 at 5–19% (p = 0.0001), 39–54% (p=0.00005), and 88–96% (p = 0.01). Regarding the mediolateral axis, four clusters were identified exceeding the threshold of 2.875 at 0–9% (p = 0.02), 14–20% (p=0.04), 28–68% (p < 0.00001), and 84–100% (p = 0.004). The k-NN model achieved an AUC of 0.79, an accuracy of 80%, and a precision of 85%. In conclusion, the Fourier coefficients of the signals recorded by wearable sensors can effectively discriminate the gait patterns of knee and hip OA. In addition, the most remarkable differences in the time domain were observed along the mediolateral axis


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 133 - 133
11 Apr 2023
Namayeshi T Lee P
Full Access

Falls in adults are a major problem and can lead to injuries and death. In order to better understand falls and successful recoveries, identifying kinematics, kinetics, and muscle forces during recovery from loss of balance is crucial. To obtain reactive gait patterns, participants must be subjected to unexpected perturbations such as trips and slips. Previous researchers have reported kinetics recovery data following stumbling; however, the muscle force recovery patterns remain unknown. To better target exercises to reduce the risk of falls, we must first understand which muscles, their magnitude, and their coordination patterns, play a role in a successful recovery from a trip and a slip. Additionally, knowing the successful patterns of lower limb function can help with the diagnosis of faulty movements. A total of 20 healthy adults in their twenties with similar athletic backgrounds were perturbed on a split-belt treadmill using Computer-Assisted Rehabilitation Environment (Motkforce Link) at a preset speed of 1.1m/s. Two kinds of perturbations were administered: slip and trip. Slips were simulated by accelerating one belt, whereas trips were simulated by decelerating one belt. Both perturbations had similar intensity and only differed in the direction. Computational modeling was used to obtain lower-limb function during the compensatory step. SPM paired t-test was used to compare differences in recovery strategies between slip and trip through magnitude and patterns of joints. There were no significant differences in joint angles post tripping vs post-slipping. Results of net joint moments showed that compensating for the loss of balance due to tripping required a higher ankle plantarflexion moment than slipping (at 22-52%; 1.2± 0.3vs0.4±0.2, p<0.001). Additionally, larger gluteus maximus (at 40-50%;8.7±3.8vs2.7±1.1N/kg, p=0.001), gluteus medius (at23~33%; 22.6±5.7vs6.8±3.6N/kg, p<0.001) were generated than post-slipping, respectively. These findings suggested that greater GMAX and GMED forces are required post-trip recovery than slip. Future analysis of trip recovery showed the importance of ankle joint in recovering from forward and backward fall. These results can be used as references in remote diagnosis of joint and muscle weakness and assessment of the risk of falls with the use of accelerometers


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 6 - 6
17 Nov 2023
Luo J Lee R
Full Access

Abstract. Objectives. The aim of this study was to investigate whether mechanical loading induced by physical activity can reduce risk of sarcopenia in middle-aged adults. Methods. This was a longitudinal study based on a subset of UK Biobank data consisting of 1,918 participants (902 men and 1,016 women, mean age 56 years) who had no sarcopenia at baseline (assessed between 2006 and 2010). The participants were assessed again after 6 years at follow-up, and were categorized into no sarcopenia, probable sarcopenia, or sarcopenia according to the definition and algorithm developed in 2018 by European Working Group on Sarcopenia in Older People (EWGSOP). Physical activity was assessed at a time between baseline and follow-up using 7-day acceleration data obtained from wrist worn accelerometers. Raw acceleration data were then analysed to study the mechanical loading of physical activity at different intensities (i.e. very light, light, moderate-to-vigorous). Multinominal logistic regression was employed to examine the association between the incidence of sarcopenia and physical activity loading, between baseline and follow up, controlled for other factors at baseline including age, gender, BMI, smoking status, intake of alcohol, vitamin D and calcium, history of rheumatoid arthritis, osteoarthritis, secondary osteoporosis, and type 2 diabetes. Results. Among the 1918 participants with no sarcopenia at baseline, 230 (69 men and 161 women) developed probable sarcopenia and 37 (14 men and 23 women) developed sarcopenia at follow-up. Physical activity loading at moderate-to-vigorous intensity was higher in men (p<0.05), while women had higher physical activity loading at very light intensity (p<0.05). No significant difference was found in physical activity loading at light intensity between men and women (p>0.05). Logistic regression models showed that increase in physical activity loading at moderate-to-vigorous intensity significantly reduced the risk of sarcopenia (odds ratio = 0.368, p<0.05), but not probable sarcopenia (odds ratio = 0.974, p>0.05), while loading at light or very light activity intensity were not associated with the risk of sarcopenia or probable sarcopenia (p>0.05). Conclusion. Loading of physical activity at moderate-to-vigorous intensity could reduce risk of sarcopenia in middle-aged adults. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 134 - 134
1 Apr 2019
Adekanmbi I Ehteshami Z Hunt C Dressler M
Full Access

Introduction. In cementless THA the incidence of intraoperative fracture has been reported to be as high 28% [1]. To mitigate these surgical complications, investigators have explored vibro-acoustic techniques for identifying fracture [2–5]. These methods, however, must be simple, efficient, and robust as well as integrate with workflow and sterility. Early work suggests an energy-based method using inexpensive sensors can detect fracture and appears robust to variability in striking conditions [4–5]. The orthopaedic community is also considering powered impaction as another way to minimize the risk of fracture [6– 8], yet the authors are unaware of attempts to provide sensor feedback perhaps due to challenges from the noise and vibrations generated during powered impaction. Therefore, this study tests the hypothesis that vibration frequency analysis from an accelerometer mounted on a powered impactor coupled to a seated femoral broach can be used to distinguish between intact and fractured bone states. Methods. Two femoral Sawbones (Sawbones AB Europe, SKU 1121) were prepared using standard surgical technique up to a size 4 broach (Summit, Depuy Synthes). One sawbone remained intact, while a calcar fracture approximately 40mm in length was introduced into the other sawbone. Broaching was performed with a commercially available pneumatic broaching system (Woodpecker) for approximately 4 secs per test (40 impactions/sec) with hand-held support. Tests were repeated 3 times for fractured and intact groups as well as a ‘control’ condition with the broach handle in mid-air (ie not inserted into the sawbone). Two accelerometers (PCB M353B18) positioned on the femoral condyle and the Woodpecker impactor captured vibration data from bone-broach-impactor system (Fig1). Frequency analysis from impaction strikes were postprocessed (Labview). A spectrogram and area under FFT (AUFFT) [4] were analysed for comparisons between fractured and intact bone groups using a nested ANOVA. Results. Vibration frequency patterns between respective groups were best observed using an accelerometer positioned on the impaction device rather than on a sawbone (fig1). Qualitative assessment revealed that spectrograms showed no obvious difference for characteristic vibration frequencies between intact and fractured bone groups. A frequency signal at approximately 10kHz was absent for control impactions but present with bone impactions (Fig2). Quantitative assessment revealed AU-FFT was noticeably higher for intact bone groups than fractured bone groups for sampled impactions using a nested experimental design for statistics (p=0.11). Discussion. Our pilot study demonstrates that application of powered impaction combined with vibration frequency analysis has the potential to distinguish between an intact and fractured sawbone in a way that minimises instrumentation footprint and complexity of workflow in OR with a new generation of impaction device targeted at reducing and detecting bone fractures. Further investigation should validate these methods by evaluating the variation with sawbones and simulated bone fractures


The Bone & Joint Journal
Vol. 101-B, Issue 4 | Pages 415 - 425
1 Apr 2019
Thewlis D Bahl JS Fraysse F Curness K Arnold JB Taylor M Callary S Solomon LB

Aims. The purpose of this exploratory study was to investigate if the 24-hour activity profile (i.e. waking activities and sleep) objectively measured using wrist-worn accelerometry of patients scheduled for total hip arthroplasty (THA) improves postoperatively. Patients and Methods. A total of 51 THA patients with a mean age of 64 years (24 to 87) were recruited from a single public hospital. All patients underwent THA using the same surgical approach with the same prosthesis type. The 24-hour activity profiles were captured using wrist-worn accelerometers preoperatively and at 2, 6, 12, and 26 weeks postoperatively. Patient-reported outcomes (Hip Disability and Osteoarthritis Outcome Score (HOOS)) were collected at all timepoints except two weeks postoperatively. Accelerometry data were used to quantify the intensity (sedentary, light, moderate, and vigorous activities) and frequency (bouts) of activity during the day and sleep efficiency. The analysis investigated changes with time and differences between Charnley class. Results. Patients slept or were sedentary for a mean of 19.5 hours/day preoperatively and the 24-hour activity pattern did not improve significantly postoperatively. Outside of sleep, the patients spent their time in sedentary activities for a mean of 620 minutes/day (. sd. 143) preoperatively and 641 minutes/day (. sd. 133) six months postoperatively. No significant improvements were observed for light, moderate, and vigorous intensity activities (p = 0.140, p = 0.531, and p = 0.407, respectively). Sleep efficiency was poor (< 85%) at all timepoints. There was no postoperative improvement in sleep efficiency when adjusted for medications (p > 0.05). Patient-reported outcome measures showed a significant improvement with time in all domains when compared with preoperative levels. There were no differences with Charnley class at six months postoperatively. However, Charnley class C patients were more sedentary at two weeks postoperatively when compared with Charnley class A patients (p < 0.05). There were no further differences between Charnley classifications. Conclusion. This study describes the 24-hour activity profile of THA patients for the first time. Prior to THA, patients in this cohort were inactive and slept poorly. This cohort shows no improvement in 24-hour activity profiles at six months postoperative. Cite this article: Bone Joint J 2019;101-B:415–425


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 5 - 5
1 Apr 2017
Alshuhri A Miles A Cunningham J
Full Access

Introduction. Aseptic loosening of the acetabular cup in total hip replacement (THR) remains a major problem. Current diagnostic imaging techniques are ineffective at detecting early loosening, especially for the acetabular component. The aim of this preliminary study was to assess the viability of using a vibration analysis technique to accurately detect acetabular component loosening. Methods. A simplified acetabular model was constructed using a Sawbones foam block into which an acetabular cup was fitted. Different levels of loosening were simulated by the interposition of thin layer of silicon between the acetabular component and the Sawbones block. This included a simulation of a secure (stable) fixation and various combinations of cup zone loosening. A constant amplitude sinusoidal excitation with a sweep range of 100–1500 Hz was used. Output vibration from the model was measured using an accelerometer and an ultrasound probe. Loosening was determined from output signal features such as the number and relative strength of the observed harmonic frequencies. Results. Both measurement methods were capable of measuring the output vibration. Preliminary findings show different patterns in the output signal spectra were visible when comparing the stable cup with the 1mm of simulated spherical loosening at driving frequencies 1050 Hz, 1100 Hz and 1150 Hz (p < 0.05) using the accelerometer, whereas for ultrasound at frequencies 950 Hz and 1350 Hz (p < 0.05). Conclusions. Experimental testing showed that vibration analysis could be used as a potential detection method for acetabular cup component loosening using either an accelerometer or ultrasound probe to detect the vibration. However, the capacity of ultrasound to overcome the attenuating effect of the surrounding soft tissues and its high signal to noise ratio suggest it has the best potential for clinical use


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 6 - 6
1 Nov 2018
Nuritdinow T Holzschuh J Keppler A Lederer C Boecker W Kammerlander C Daumer M Fuermetz J
Full Access

Capturing objective data of the postoperative changes in the mobility of patients is expected to generate a better understanding of the effect of postoperative treatment. Until recently, the collection of gait-related data was limited to controlled clinical environments. The emergence of accurate wearable accelerometers with sufficient runtime, however, enables the long-term measurement and extraction of mobility parameters, such as “real-world walking speed”. An interim analysis of 1967 hours of actibelt data (3D accelerometer, 100 Hz) from 5 patients (planned total 20) with a femur fracture and 5 patients (planned total 20) with a humerus fracture from a geriatric population at two different sites of the university hospital of the Ludwigs-Maximilian-University in Munich was performed. Mobility data was captured during several days of stationary treatment starting directly after surgery and during a short follow-up visit six weeks after the surgery. Preliminary results show an increase of the mean walking speed between the two visits independent of the type of fracture. Patients with a humerus fracture tended to walk faster than patients with a femur fracture during both visits. The data also reveals an unexpected low level of mobility during the stationary stay. Mobile accelerometry can be used to evaluate different postoperative mobilisation strategies and even provide near-time feedback in geriatric trauma patients


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 89 - 89
1 Jan 2017
Zaffagnini S Signorelli C Raggi F Grassi A Roberti Di Sarsina T Bonanzinga T Lopomo N Marcacci M
Full Access

The Pivot-shift phenomenon (PS) is known to be one of the essential signs of functional insufficiency of the anterior cruciate ligament (ACL). To evaluate the dynamic knee laxity is very important to accurately diagnose ACL injury, to assess surgical reconstructive techniques, and to evaluate treatment approaches. However, the pivot-shift test remains a subjective clinical examination difficult to quantify. The aim of the present study is to validate the use of an innovative non-invasive device based on the use of an inertial sensor to quantify PS test. The validation was based on comparison with data acquired by a surgical navigation system. The surgeon intraoperatively performed the PS tests on 15 patients just before fixing the graft required for the ACL reconstruction. A single accelerometer and a navigation system simultaneously acquired the joint kinematics. An additional optical tracker set to the accelerometer has allowed to quantify the movement of the sensor. The tibial anteroposterior acceleration obtained with the navigation system was compared with the acceleration acquired by the accelerometer. It is therefore estimated the presence of any artifacts due to the soft tissue as the test-retest repositioning error in the positioning of the sensor. It was also examined, the repeatability of the acceleration parameters necessary for the diagnosis of a possible ACL lesion and the waveform of the output signal obtained during the test. Finally it has been evaluated the correlation between the two acceleration measurements obtained by the two sensors. The RMS (root mean square) of the error of test-retest positioning has reported a good value of 5.5 ± 2.9 mm. While the amounts related to the presence of soft tissue artifacts was equal to 4.9 ± 2.6 mm. It was also given a good intra-tester repeatability (Cronbach's alpha = 0.86). The inter-patient similarity analysis showed a high correlation in the acceleration waveform of 0.88 ± 0.14. Finally the measurements obtained between the two systems showed a good correlation (rs = 0.72, p<0.05). This study showed good reliability of the proposed scheme and a good correlation with the results of the navigation system. The proposed device is therefore to be considered a valid method for evaluating dynamic joint laxity


The Bone & Joint Journal
Vol. 98-B, Issue 11 | Pages 1450 - 1454
1 Nov 2016
Toogood PA Abdel MP Spear JA Cook SM Cook DJ Taunton MJ

Aims. Total hip arthroplasty (THA) has well known subjective benefits, but little is known objectively about the recovery of mobility in the early post-operative period. Patients and Methods. A total of 33 patients aged > 60 years who underwent elective primary THA had their activity monitored for 30 days post-operatively using an at-home (Fitbit) ankle accelerometer. Their mean age was 70.7 years (61 to 86); 15 (45.5%) were female. The rate of compliance and the mean level of activity were determined. Comparisons between subgroups based on age, body mass index (BMI), surgical approach, and the destination of the patients when discharged were also performed. Results. The mean compliance over the 30 days was 26.7 days (16 to 30; 89%) of use. The mean number of steps increased from 235 (5 to 1152) to 2563 (87 to 7280) (p < 0.001) between the first and the 30th post-operative day. Age < 70 years and an anterior surgical approach were significantly associated with higher levels of activity (1600 to 2400 (p = 0.016 to 0.031) and 1000 to 1800 (p = 0.017 to 0.037) more steps per day, respectively) between the second and the fourth week post-operatively. There was also a trend towards higher levels of activity in those who were discharged to their home rather than to a nursing facility (a mean of 1500 more steps per day, p = 0.02). BMI greater or less than 30 kg/m. 2. was not predictive of activity (p = 0.45 to 0.98). Conclusion. At-home remote mobility monitoring using existing commercially available technology is feasible in patients who have undergone THA. It showed a clear trend towards increased activity with the passage of time. Additionally, the remote device was able to detect differences in levels of activity clearly between patients in relation to variables of interest including age, BMI, surgical approach, and the destination of the patient at the time of discharge from hospital. Such monitoring may allow for the early identification and targeted intervention in patients who recover slowly. Cite this article: Bone Joint J 2016;98-B:1450–4


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 17 - 17
1 Apr 2018
Daumer M Fürmetz J Keppler A Höfling H Müller A Hariry S Schieker M Grassi M Greese B Nuritdinow T Aigner G Lederer C Böcker W
Full Access

Mobility plays an important role, in particular for patients with osteoporosis and after trauma surgery, both as an outcome and as treatment. Mobility is closely linked to the patient”s quality of life and exercise is a powerful additional treatment option. In order to be able to generate an evidence base to evaluate various surgical and non-surgical treatment options, objective measurements of patient mobility and exercise over a certain time period are needed. Wearables are a promising candidate, with obvious advantages compared to questionnaires and/or PROs. However, when extracting parameters with wearables, one often faces the problem of algorithms not performing well enough for special cases like slow gait speeds or impaired gait, as they typically appear in this patient group. We plan to further extend the applicability of the actibelt system (3D accelerometer, 100Hz), in particular to improve the measurement precision of real-world walking speed in slow and impaired walking. We are using a special measurement wheel including a rotating 3D accelerometer that allows to capture high quality real-world walking speed and distance measurements, and a mobile high resolution camera system. In a first block 20 patients with osteoporosis were included in the study at the Ludwigs-Maximilians-University”s Department of General, Trauma and Reconstructive Surgery in Munich, Germany and equipped with an actibelt. Patients were asked to walk as “normal” as possible, while wearing their usual apparel, in the building and outside the building. They climbed stairs and had to deal with all unexpected “stop and go” events that appear in real-world walking. Various gait parameters will be extracted from the recorded data and compared to the gold standard. We will then tune the existing algorithms as well as new algorithms (e.g. step detection based on continuous wavelet transformation) to explore potential improvements of both step detection and speed estimation algorithms. Further refinement and validation using real world data is warranted


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 107 - 107
1 May 2016
Kirking B El-Gohary M Kwon Y
Full Access

Measurements of shoulder kinematics during activities of daily living (ADL) can be used to evaluate patient function before and after treatment and help define device testing conditions. However, due to the difficulties of making 3D motion measurements outside of laboratory conditions, there are few reports of measured shoulder 3D kinematics during ADL. The purpose of this study was to demonstrate the feasibility of using wearable inertial measurement units (IMUs) to track shoulder joint angles. A nonrandom sample of 5 subjects with normal shoulders was selected based on occupation. The occupations were: dental hygienist, primary school teacher, mechanical project engineer, administrative assistant, and retail associate. Subjects wore two OPAL IMUs (APDM, Portland OR) as shown in Figure 1 on the sternum and on the upper arm for approximately 4 hours while at their workplace performing their normal work place activities and then up to 4 hours while off-work. Orientation angles from IMUs have traditionally been estimated by integrating gyroscope data and calculating inclination angles relative to gravity with accelerometers. A significant problem is that inaccuracies inherent in the measurements can degrade accuracy. In this study, we used an Unscented Kalman Filter (UKF) with IMU output to track shoulder angles. The UKF mitigates the effect of random drift by incorporating domain knowledge about the shoulder normal range of motion, and the gyroscope and accelerometer characteristics into the state-space models. Initially, in the horizontal plane, without gravity measurements from the accelerometer to aid the gyroscope data, there were unacceptable errors in transverse rotation. To mitigate this error, additional constraints were applied to model gyroscope drift and a zero velocity update strategy was included. These additions decreased tracker errors in heading by 63%. The resulting accuracy with the modified tracker in all motion planes was about 2° (Figure 2). Subjects commented that the IMUs were well tolerated and did not interfere with their ability to perform tasks in a normal manner. The overall averaged 95th percentile angles (Figure 3) were: flexion 128.8°, adduction 128.4°, and external rotation 69.5°. These peaks angles are similar to other investigator's reports using laboratory simulations of ADL tasks measured with optical and electromagnetic technologies, though this study's observations did show 17% greater extension and 40% greater adduction. Additionally, in these observations, occurrences of maximal internal rotation were rare compared to maximal external rotation and when maximum external rotation did occur, it was in combination with an average flexion angle of 103°. Finally, by performing a Fourier transform of the arm angles and using the 50th percentile frequency the number of arm cycles in a 10 year period was calculated at over 600,000 cycles. Application of the UKF with the additional drift correction made substantial improvements in shoulder tracking performance and this feasibility data suggests that IMUs with the UKF are suitable for extended use outside of laboratory settings. The motion data collected provides a novel description of arm motion during ADLs including estimating the cycle count of the upper arm at more than 600,000 cycles over 10 years


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_9 | Pages 18 - 18
1 Jun 2021
Cushner F Schiller P Gross J Mueller J Hunter W
Full Access

PROBLEM. Since the COVID-19 pandemic of 2020, there has been a marked rise in the use of telemedicine to evaluate patients following total knee arthroplasty (TKA). Telemedicine is helpful to maintain patient contact, but it cannot provide objective functional TKA data. External monitoring devices can be used, but in the past have had mixed results due to patient compliance and data continuity, particularly for monitoring over numerous years. This novel stem is a translational product with an embedded sensor that can remotely monitor patient activity following TKA. SOLUTION. The Canturio™ TE∗ System (Canary Medical) functions structurally as a tibial extension for the Persona® cemented tibial plate (Zimmer Biomet). The stem is instrumented with internal motion sensors (3-D accelerometer and gyroscope) and telemetry that collects and transmits kinematic data. Raw data is converted by analytics into clinically relevant gait metrics using a proprietary algorithm. The Canturio™ TE∗ will monitor the patient's gait daily for the first year and then with lower frequency thereafter to conserve battery power enabling the potential for 20 years of longitudinal data collection and analysis. A base station in the OR activates the device and links the stem and data to the patient. A base station in the patient's home collects and uploads data to the Cloud Based Canary Data Management Platform (Canary Medical). The Canary Cloud is structured as an FDA regulated and HIPPA-compliant database with cybersecurity protocols integrated into the architecture. A third base station is an accessory used in the health care professional's office to perform an on-demand gait analysis of a patient. A dashboard allows the health care professional and patient to monitor objective data of the patient's activity and progress post treatment. MARKET. The early target market for this device includes total joint surgeons who are early adopters of technology and currently utilize technology in their practice. The kinematic data provided by the Canturio™ TE∗ System will enable clinicians to augment patient care by reviewing their objective gait metrics. In the future, this data has the potential to be integrated with other Zimmer Biomet technologies, such as the Rosa™ Knee robotic platform, mymobility™, and sensored devices like iAssist™, to provide the surgeon with a complete pre-surgical functional assessment, intraoperative data, and post-operative functional data. PRODUCT. Persona IQ will be the combination of the proven Persona personalized total knee system with the Canary Medical Canturio™ TE∗. TIMING AND FUNDING. The Canturio™ TE is currently under De Novo FDA review for market clearance; it is not yet available for commercial distribution. The plan is to launch the product in 2021 pending regulatory De Novo grant. This effort is a partnership between Zimmer Biomet and Canary Medical. ∗ The Canturio™ - TE is currently under De Novo FDA review for market clearance; it is not yet available for commercial distribution


Bone & Joint Research
Vol. 5, Issue 2 | Pages 61 - 65
1 Feb 2016
Scott EEF Hamilton DF Wallace RJ Muir AY Simpson AHRW

Objectives. Temperature is known to influence muscle physiology, with the velocity of shortening, relaxation and propagation all increasing with temperature. Scant data are available, however, regarding thermal influences on energy required to induce muscle damage. Methods. Gastrocnemius and soleus muscles were harvested from 36 male rat limbs and exposed to increasing impact energy in a mechanical test rig. Muscle temperature was varied in 5°C increments, from 17°C to 42°C (to encompass the in vivo range). The energy causing non-recoverable deformation was recorded for each temperature. A measure of tissue elasticity was determined via accelerometer data, smoothed by low-pass fifth order Butterworth filter (10 kHz). Data were analysed using one-way analysis of variance (ANOVA) and significance was accepted at p = 0.05. Results. The energy required to induce muscle failure was significantly lower at muscle temperatures of 17°C to 32°C compared with muscle at core temperature, i.e., 37°C (p < 0.01). During low-energy impacts there were no differences in muscle elasticity between cold and warm muscles (p = 0.18). Differences in elasticity were, however, seen at higher impact energies (p < 0.02). Conclusion. Our findings are of particular clinical relevance, as when muscle temperature drops below 32°C, less energy is required to cause muscle tears. Muscle temperatures of 32°C are reported in ambient conditions, suggesting that it would be beneficial, particularly in colder environments, to ensure that peripheral muscle temperature is raised close to core levels prior to high-velocity exercise. Thus, this work stresses the importance of not only ensuring that the muscle groups are well stretched, but also that all muscle groups are warmed to core temperature in pre-exercise routines. Cite this article: Professor A. H. R. W. Simpson. Increased risk of muscle tears below physiological temperature ranges. Bone Joint Res 2016;5:61–65. doi: 10.1302/2046-3758.52.2000484


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 160 - 160
1 Mar 2009
Jolles B Aminian K Bourgeois A Coley B Claude P Bassin J Leyvraz P Farron A
Full Access

Introduction. Quantification of daily upper-limb activity is a key determinant in evaluation of shoulder surgery. For a number of shoulder diseases, problem in performing daily activities have been expressed in terms of upper-limb usage and non-usage. Many instruments measure upper-limb movement but do not focus on the differentiations between the use of left or right shoulder. Several methods have been used to measure it using only accelerometers, pressure sensors or video-based analysis. However, there is no standard or widely used objective measure for upper-limb movement. We report here on an objective method to measure the movement of upper-limb and we examined the use of 3D accelerometers and 3D gyroscopes for that purpose. Methods. We studied 8 subjects with unilateral pathological shoulder (8 rotator cuff disease: 53 years old ± 8) and compared them to 18 control subjects (10 right handed, 8 left handed: 32 years old ± 8, younger than the patient group to be almost sure they don_t have any unrecognized shoulder pathology). The Simple Shoulder Test (SST) and Disabilities of the Arm and Shoulder Score (DASH) questionnaires were completed by each subject. Two modules with 3 miniature capacitive gyroscopes and 3 miniature accelerometers were fixed by a patch on the dorsal side of the distal humerus, and one module with 3 gyroscopes and 3 accelerometers were fixed on the thorax. The subject wore the system during one day (8 hours), at home or wherever he/she went. We used a technique based on the 3D acceleration and the 3D angular velocities from the modules attached on the humerus. Results. As expected, we observed that for the stand and sit postures the right side is more used than the left side for a healthy right-handed person(idem on the left side for a healthy left-handed person). Subjects used their dominant upper-limb 18% more than the non-dominant upper-limb. The measurements on patients in daily life have shown that the patient has used more his non affected and non dominant side during daily activity if the dominant side = affected shoulder. If the dominant side ≠ affected shoulder, the difference can be showed only during walking period. Discussion-Conclusion. The technique developed and used allowed the quantification of the difference between dominant and non dominant side, affected and unaffected upper-limb activity. These results were encouraging for future evaluation of patients with shoulder injuries, before and after surgery. The feasibility and patient acceptability of the method using body fixed sensors for ambulatory evaluation of upper limbs kinematics was shown


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 89 - 89
1 Apr 2018
Stoffels A Lipperts M van Hemert W Rijkers K Grimm B
Full Access

Introduction. Limited physical activity (PA) is one indication for orthopaedic intervention and restoration of PA a treatment goal. However, the objective assessment of PA is not routinely performed and in particular the effect of spinal pathology on PA is hardly known. It is the purpose of this study using wearable accelerometers to measure if, by how much and in what manner spinal stenosis affects PA compared to age-matched healthy controls. Patients & Methods. Nine patients (m/f= 5/4, avg. age: 67.4 ±7.7 years, avg. BMI: 29.2 ±3.5) diagnosed with spinal stenosis but without decompressive surgery or other musculoskeletal complaints were measured. These patients were compared to 28 age-matched healthy controls (m/f= 17/11, avg. age: 67.4 ±7.6 years, avg. BMI: 25.3±2.9). PA was measured using a wearable accelerometer (GCDC X8M-3) worn during waking hours on the lateral side of the right leg for 4 consecutive days. Data was analyzed using previously validated activity classification algorithms in MATLAB to identify the type, duration and event counts of postures or PA like standing, sitting, walking or cycling. In addition, VAS pain and OSWESTRY scores were taken. Groups were compared using the t-test or Mann-Whitney U-test where applicable. Correlations between PA and clinical scores were tested using Pearson”s r. Results. Spinal stenosis patients showed much lower PA than healthy controls regarding all parameters like e.g. daily step count (2946 vs 8039, −63%, p<0.01) or the relative daily time-on-feet (%) (8.6% vs 28.3%, −70%, p<0.01) which is matched with increased sitting durations (80.3% vs 58.8%, p<0.01). Also qualitative parameters such as walking cadence was reduced in stenosis patients (83.7 vs 97.8 steps/min). With stenosis no patient ever walked >1000 steps without interruption. Also the number of walking bouts between 250–1000 steps was 4.5 times lower than in healthy controls (p<0.01). When the relative distribution of walking bout length was calculated, it became visible that stenosis patients showed more short walking bouts of 10–50 steps (p<0.05). There were no strong and significant correlations between the clinical scores and PA parameters. Discussion & Conclusions. Spinal stenosis greatly reduced physical activity to levels below WHO guidelines (e.g. <5000 steps= sedentary lifestyle) where the risk for general health (overall mortality), cardiovascular or endocrinological health is significantly increased. Activity levels are lower than reported for end-stage hip or knee osteoarthritis. Therefore, spinal stenosis patients should not only receive pain medication, but be made aware of their limited PA and its detrimental health effects, participate in activation programs, or be considered for surgical intervention. The absence of long walking bouts and the relatively more frequent short walking bouts seem indicative of intermittent claudication as typical in spinal stenosis


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 212 - 212
1 Sep 2012
Walker P Kahn H Zuckerman J Slover J Jaffe F Karia R Kim J
Full Access

INTRODUCTION. Total Knee Arthroplasty (TKA) is a durable procedure which allows most patients to achieve a satisfactory functional level, but there can be instability under stressful conditions. Instability is one cause of early revision, often due to misalignment or inadequate ligament balancing. Persistent instability may cause elevated polyethylene wear. Lower levels of instability may cause patient discomfort with certain stressful activities. Hence quantifying instability may have an important role in the functional evaluation of TKA. Several previous studies showed that accelerometers have advantages in kinematic studies including low cost, ease of application, and application to any activity. The aim of this study was to demonstrate the use of an accelerometer attached to the anterior of the tibia, as an evaluation of knee stability of TKA patients. It was postulated that accelerations between TKAs and normal controls will be different, which could indicate abnormal TKA kinematics involving instability, especially for high intensity activities. METHODS & MATERIALS. We tested 38 TKA knees in 27 patients, in the age range of 50–80 years, with a minimum follow up of 6 months; and 25 knees in 16 shoulder patients, who had no known knee pathology as age-matched controls. A tri-axial accelerometer was firmly attached to the anterior proximal tibia to measure 3-axis accelerations with a sample rate of 100 Hz. Four activities were tested;. Starting with the test leg, walk 3 steps then come to a sudden stop. Take one step forward with the non-tested leg and make a tight 90. ∗∗∗∗∗. turn towards the non- tested knee direction. Sit down for 3–4 seconds then stand back up. Step up on a 7″ inches high box with the test leg, followed by the non-test leg. Then step down from the box with the test leg, followed by the non-test leg. During the activities, the patients responded to a questionnaire on instability and pain for each activity. For each test at the time of foot impact, there was a high/low peak acceleration, the peak-to-valley being taken as the indicator. The mean total magnitude of the acceleration was compared between the TKA and control groups in the anterior-posterior direction using the Student's t-test. Statistical significance was at p-value < 0.05. RESULTS. Significant differences were seen between TKR and normal controls for stepping down, and for turning. Significance was close for a sudden stop. From the instability questionnaire, 15 knees had pain and 13 knees felt unstable, most of the pain and instability (13 and 11 respectively) while performing stepping up and down activity. This was followed by the sudden stop activity which had 8 painful and 6 unstable knees. DISCUSSION. The significant differences between TKR and normal control knees indicated that TKR did not restore normal kinetics, which could be due to TKR design, persistent muscle weakness or other factors. ACKNOWLEDGEMENTS. Funded by New York University Medical School – NYU-Polytechnic Seed Grant Program


The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 95 - 97
1 Jan 2016
Robertson NB Battenberg AK Kertzner M Schmalzried TP

There is evidence that high levels of physical activity following arthroplasty of the hip or knee can lead to early revision. However, the term ‘highly active’ is not well defined. . A validated ankle accelerometer was used to quantify activity in 13 patients, who had undergone a total of 20 arthroplasties of the lower limbs and who had active lifestyles. The assessments were taken at a mean of 8.7 years post-operatively (1.8 to 15.8). The mean gait cycles per day was 8273 (5964 to 12 557), which extrapolates to 3.0 million cycles per year (cpy) (2.2 to 4.6). The mean percentage of time spent in high activity mode was 4.3%, or about one hour per day. The mean percentage of cycles in high activity was 40%. . Based on these data, we propose the following definitions of high activity: > 3 million cpy; one hour per day in high activity mode; 40% of cycles in high activity mode. . Extrapolating the sample of activity over the time since operation, the mean cycles per arthroplasty was 25.2 million, with a maximum of 44.1 million. No joint has been revised, or shows evidence of impending failure. Cite this article: Bone Joint J 2016;98-B(1 Suppl A):95–7


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 59 - 59
1 Mar 2017
Noble P Foley E Simpson J Gold J Choi J Ismaily S Mathis K Incavo S
Full Access

Introduction. Numerous factors have been hypothesized as contributing to mechanically-assisted corrosion at the head-neck junction of total hip prostheses. While variables attributable to the implant and the patient are amenable to investigation, parameters describing assembly of the component parts can be difficult to determine. Nonetheless, increasing evidence suggests that the manner of intraoperative assembly of modular components plays a critical role in the fretting and corrosion of modular implants. This study was undertaken to measure the magnitude and direction of the impaction forces applied by surgeons in assembling modular head-neck junctions under operative conditions where both the access and visibility of the prosthesis may potentially compromise component fixation. Methods. A surrogate consisting of the lower limb with overlying soft tissue was developed to simulate THR performed via a 10cm incision using the posterior approach. The surrogate was modified to match the resistance of the body to retraction of the incision, mobilization of the femur and hammering of the implanted femoral component. An instrumented femoral stem (SL PLUS) was surgically implanted into the bone after attachment of 3 miniature accelerometers (Dytran Inc) in an orthogonal array to the proximal surface of the prosthesis. A 32mm cobalt chrome femoral head was mounted on the trunnion (12/14 taper, machined) of the femoral stem. 15 Board-certified and trainee surgeons replicated their surgical technique in exposing the femur and impacting the modular head on the tapered trunnion. Impaction was performed using an instrumented hammer (5000 Lbf Dytran impact hammer) that provided measurements of the magnitude and temporal variation of the impact force. The components of force acting along the axis aof the neck and in the AP and ML directions were continuously samples using the accelerometers. Results. For all surgeons, the average value of the peak impaction force was 3765±1094N (range: 2358 to 6225N). Head impact was delivered in an average direction of 24.4±7.5 degrees more vertical than the trunnion axis, though this value varies from 14 to 43 degrees between individual surgeons. On average, the off-axis force perpendicular to the trunnion axis was 1586±736N, however, this value ranged from 634 to 2895N with peak loading of both the head and the implant in varus. Almost all of the applied impact was directed within 10 degrees of the mid-plane of the stem (average deviation: 2.5±5.9 degrees of with only a small force directed anteriorly or posteriorly (average force: 140±396N, anterior). The variability in the magnitude and direction of the impaction force was not associated with the level of training or the surgical experience of the participants (p>0.05). Conclusions. This study shows that large off-axis forces are developed during manual impaction of modular heads onto stem trunnions via the posterior approach. The variation in magnitude and direction of these forces varies between individual surgeons and is not systematically related to the training or experience of each surgeon in joint replacement. This variability in intraoperative assembly of head-neck junctions may contribute to the severity and incidence of mechanically assisted corrosion in total hip replacement


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 6 | Pages 755 - 759
1 Jun 2011
Brennan SA Brabazon D O’Byrne JM

We developed a method of applying vibration to the impaction bone grafting process and assessed its effect on the mechanical properties of the impacted graft. Washed morsellised bovine femoral heads were impacted into shear test rings. A range of frequencies of vibration was tested, as measured using an accelerometer housed in a vibration chamber. Each shear test was repeated at four different normal loads to generate stress-strain curves. The Mohr-Coulomb failure envelope from which shear strength and interlocking values are derived was plotted for each test. The experiments were repeated with the addition of blood in order to replicate a saturated environment. Graft impacted with the addition of vibration at all frequencies showed improved shear strength when compared with impaction without vibration, with 60 Hz giving the largest effect. Under saturated conditions the addition of vibration was detrimental to the shear strength of the aggregate. The civil-engineering principles of particulate settlement and interlocking also apply to impaction bone grafting. Although previous studies have shown that vibration may be beneficial in impaction bone grafting on the femoral side, our study suggests that the same is not true in acetabular revision


The Bone & Joint Journal
Vol. 104-B, Issue 10 | Pages 1104 - 1109
1 Oct 2022
Hansjee S Giebaly DE Shaarani SR Haddad FS

We aim to explore the potential technologies for monitoring and assessment of patients undergoing arthroplasty by examining selected literature focusing on the technology currently available and reflecting on possible future development and application. The reviewed literature indicates a large variety of different hardware and software, widely available and used in a limited manner, to assess patients’ performance. There are extensive opportunities to enhance and integrate the systems which are already in existence to develop patient-specific pathways for rehabilitation.

Cite this article: Bone Joint J 2022;104-B(10):1104–1109.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 26 - 26
1 Feb 2020
Bloomfield R McIsaac K Teeter M
Full Access

Objective. Emergence of low-cost wearable systems has permitted extended data collection for unsupervised subject monitoring. Recognizing individual activities performed during these sessions gives context to recorded data and is an important first step towards automated motion analysis. Convolutional neural networks (CNNs) have been used with great success to detect patterns of pixels in images for object detection and recognition in many different applications. This work proposes a novel image encoding scheme to create images from time-series activity data and uses CNNs to accurately classify 13 daily activities performed by instrumented subjects. Methods. Twenty healthy subjects were instrumented with a previously developed wearable sensor system consisting of four inertial sensors mounted above and below each knee. Each subject performed eight static and five dynamic activities: standing, sitting in a chair/cross-legged, kneeling on left/right/both knees, squatting, laying, walking/running, biking and ascending/descending stairs. Data from each sensor were synchronized, windowed, and encoded as images using a novel encoding scheme. Two CNNs were designed and trained to classify the encoded images of both static and dynamic activities separately. Network performance was evaluated using twenty iterations of a leave-one-out validation process where a single subject was left out for test data to estimate performance on future unseen subjects. Results. Using 19 subjects for training and a single subject left out for testing per iteration, the average accuracy observed when classifying the eight static activities was 98.0% ±2.9%. Accuracy dropped to 89.3% ±10.6% when classifying all dynamic activities using a separate model with the same evaluation process. Ascending/descending stairs, walking/running, and sitting on a chair/squatting were most commonly misclassified. Conclusions. Previous related work on activity recognition using accelerometer and/or gyroscope raw signals fails to provide sufficient data to distinguish static activities. The proposed method operating on lower limb orientations has classified eight static activities with exceptional accuracy when tested on unseen subject data. High accuracy was also observed when classifying dynamic activities despite the similarity of the activities performed and the expected variance of individuals’ gait. Accuracy reported in existing literature classifying comparable activities from other wearable sensor systems ranges between 27.84% to 84.52% when tested using a similar leave-one-subject-out validation strategy[1]. It is expected that incorporating these trained models into the previously developed wearable system will permit activity classification on unscripted instrumented activity data for more contextual motion analysis


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 70 - 70
1 Nov 2018
Grimm B
Full Access

The relevance of physical activity (PA) for general health and the value of assessing PA in the free-living environment especially for assessing orthopaedic conditions and outcome are discussed. Available methods for assessing PA such as self-reports, trackers, phone apps and clinical grade monitors are introduced. An overview of devices such as accelerometers for research quality assessments is given and aspects for choosing them such as wear location, usability or study population are reviewed. Basic principles to derive mobility parameters from the PA related sensor signals are presented. The symposium explains mobility parameters, their types, definitions, validity, analysis and those with particular relevance to assess orthopaedic conditions. The application of activity monitors is orthopaedic patient studies is demonstrated in various examples such as knee and hop osteoarthritis and total joint arthroplasty, in frail elderly subjects at fall risk or patients with shoulder pathologies


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 96 - 96
1 May 2019
Su E
Full Access

Acetabular implant position is important for the stability, function, and long-term wear properties of a total hip arthroplasty (THA). Prior studies of acetabular implant positioning have demonstrated a high percentage of outliers, even in experienced hip surgeons, when conventional instruments are used. Computer navigation is an attractive tool for use in (THA, as it has been shown to improve the precision of acetabular component placement and reduce the incidence of outliers. However, computer navigation with imageless, large-console systems is costly and often interrupts the surgeon's workflow, and thus, has not been widely adopted. Another method to improve acetabular component positioning during THA is the use of fluoroscopy with the direct anterior approach. Studies have demonstrated that the supine position of the patient during surgery facilitates the use of fluoroscopic guidance, thus improving acetabular component position. A handheld, accelerometer based navigation unit for use in total hip replacement has recently become available to assist the surgeon in positioning the acetabular component during anterior approach THA, potentially reducing the need for intraoperative fluoroscopic studies. We sought to compare the radiographic results of direct anterior THA performed with conventional instrumentation vs. handheld navigation to determine the accuracy of the navigation unit, and to see whether or not there was a reduction in the fluoroscopic time used during surgery. Furthermore, we timed the use of the navigation unit to see whether or not it required a substantial addition to surgical time. Our results demonstrate that a handheld navigation unit used during anterior approach THA had no difference with regard to acetabular cup positioning when compared to fluoroscopically assisted THA, but led to a reduction in the use of intraoperative fluoroscopy time


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_9 | Pages 26 - 26
1 Feb 2013
Brunton L Bolink S van Laarhoven S Lipperts M Grimm B Heyligers I Blom A
Full Access

Accelerometer based gait analysis (AGA) is a potential alternative to the more commonly used skin marker based optical motion analysis system(OMAS). The use of gyroscopes in conjunction with accelerometers (i.e. inertial sensors), enables the assessment of position and angular movements of body segments and provides ambulatory kinematic characterisation of gait. We investigated commonly used gait parameters and also a novel parameter, Pelvic obliquity (PO) and whether they can be used as a parameter of physical function and correlate with classic clinical outcome scores. Gait was studied in healthy subjects (n=20), in patients with end stage hip OA (n=20) and in patients with end stage knee OA (n=20). Subjects walked 20 metres in an indoor environment along a straight flat corridor at their own preferred speed. A 3D inertial sensor was positioned centrally between the posterior superior iliac spines (PSIS) overlying S1. Comparing gait parameters of end stage hip OA patients with an age and gender matched healthy control group, significantly lower walking speed, longer step duration and shorter step length was observed. After correcting for walking speed between groups, significantly less average range of motion of PO (RoM. po. ) was observed for patients with end stage hip OA compared to healthy subjects and patients with end stage knee OA. IGA allows objective assessment of physical function for everyday clinical practice and allows assessment of functional parameters beyond time only. IGA measures another dimension of physical function and could be used supplementary to monitor recovery of OA patients after TJR


The Bone & Joint Journal
Vol. 106-B, Issue 8 | Pages 764 - 774
1 Aug 2024
Rivera RJ Karasavvidis T Pagan C Haffner R Ast MP Vigdorchik JM Debbi EM

Aims

Conventional patient-reported surveys, used for patients undergoing total hip arthroplasty (THA), are limited by subjectivity and recall bias. Objective functional evaluation, such as gait analysis, to delineate a patient’s functional capacity and customize surgical interventions, may address these shortcomings. This systematic review endeavours to investigate the application of objective functional assessments in appraising individuals undergoing THA.

Methods

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were applied. Eligible studies of THA patients that conducted at least one type of objective functional assessment both pre- and postoperatively were identified through Embase, Medline/PubMed, and Cochrane Central database-searching from inception to 15 September 2023. The assessments included were subgrouped for analysis: gait analysis, motion analysis, wearables, and strength tests.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 40 - 40
1 May 2019
Gustke K
Full Access

Fifteen-year survivorships studies demonstrate that total knee replacements have excellent survivorship, with reports of 85 to 97%. However, excellent survivorship does not equate to excellent patient reported outcomes. Total knee imbalance with either too tight or loose soft tissues account for up to 54% of revisions in one series. This may account for many of the 20% unsatisfactory total knee arthroplasty outcomes. Soft tissue balancing technique is more like an art. The surgeon relies on subjective feel for appropriate ligamentous tension. Surgical experience and case volume play a major role in each surgeon's relative skill in balancing the knee properly. New technology of “smart trials” with embedded microelectronics and accelerometers, used in the knee with the medial retinaculum closed, can provide dynamic, intraoperative feedback regarding knee quantitative compartment pressures and component tracking. After all bone cuts are made using the surgeon's preferred techniques, trial components with the sensor tibial trial are inserted and the knee is taken through a passive range of motion. After visualizing the resultant compartment pressures and tracking data on a graphical interface, imbalance situations such as a too tight MCL or ITB, an incompetent or too tight PCL, or malrotated femoral or tibial component can be identified. A decision can be made as to whether to recut the bone to realign components, do a soft tissue release, or a combination of both. Soft tissue releases can be titrated while observing equalizing compartment pressures. Sensor feedback improves soft tissue balancing. More balanced compartments occur using a sensor trial than with standard soft tissue balancing technique blinded to sensor information. A multicenter three year study has shown that having the medial and lateral compartments in flexion and extension balanced within 15 pounds provides better outcomes. Patients with quantitatively balanced TKA with <15lbf mediolateral load differential have better forgotten knee scores at six weeks and six months. Use of smart trials is a new approach to total knee replacement surgery allowing fine tune balancing and takes soft tissue balancing from art to science


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 93 - 94
1 May 2011
Naal F Impellizzeri F
Full Access

Physical inactivity is a modifiable lifestyle-related risk factor considered one of the leading causes for the major noncommunicable chronic diseases and relates to approximately 250,000 deaths per year in the United States. While the benefits of physical activity (PA) are many and well-known, qualitative research defining the type and amount of PA in total joint arthroplasty (TJA) patients that improves health without disproportionally increasing wear and revision rates does unfortunately not exist in the literature. As the basis for future research, this systematic review therefore aimed to identify the different instruments used up to now to quantify PA in TJA patients and to determine how active these patients really are. Within the 26 studies included (n=2460 patients), motion sensors and recall questionnaires were most commonly used. The reported Results were mainly descriptive and research aims and goals varied widely between the studies. We were able to meta-analytically summarize the Results of those studies quantifying PA using pedometers and accelerometers. Patients took a weighted mean of 6,721 steps/day (95% CI: 5,744 to 7,698). Steps per day determined by accelerometers were 2.2 times more than steps assessed by pedometers. Meta-regression demonstrated that walking activity decreased by 90 steps/day (95% CI: −156 to −23) every year of patient age. These summarized Results clearly indicate that TJA patients are less active than recommended to achieve health-enhancing activity levels (currently > 10,000 steps/day), but they are more active than normally assumed in wear-simulations. Hence, such simulator Results have to be interpreted cautiously, taking into account that one million cycles correspond to less than one year in vivo. Future investigations have to evolve more standardization in the assessment and reporting of PA in TJA patients


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 12 - 12
1 Nov 2018
Grassi M Grimm B Nuritdinow T Lederer C Daumer M Hellsten Y
Full Access

Lower limb fractures are commonly treated with cast immobilization, and as a main consequence of strict immobilization this typically leads to loss in muscle mass, decrease of bone density and decline in functional abilities. Body-worn sensors are increasingly used to assess outcome in clinical trials by providing objective mobility parameters in a real-world environment. The aim of this study is to investigate the usability aspects and potential changes in mobility parameters in partial-immobilization patients in real-world conditions. Six healthy young males (age 22.2 ± 1.2 years; weight 76.5 ± 6.7 kg, height 185.8 ± 6.1 cm. Mean ± standard deviation) wore a leg cylinder cast with walker boot to immobilize their dominant leg for two consecutive weeks. Subjects were asked to continuously wear a tri-axial accelerometer on the waist (actibelt) during waking hours for 6 weeks including 2 weeks before, during and after cast immobilisation. The total amount of days of continuous recording was 339 days with a total wearing time of 120 days. Software packages which allow to detect steps and to estimate real-world walking speed were used to analyse the accelerometry data. It was suspected that knee immobilization would affect strongly the wave form of the signal with an impact on the accuracy of the speed algorithm, whereas the step detection should be more robust. This effect was confirmed in a preliminary study performed to quantify the accuracy under immobilization conditions. On the other hand, step numbers are known to be sensitive to fluctuations in wearing time which was not uniform throughout the entire study. We concluded that in this setting step frequency is the most reliable parameter. Step frequency showed a systematic decrease in the values during the immobilization period which recovered to pre-immobilisation values after cast removal. This confirms the usability of accelerometry and sensitivity of its mobility parameters for clinical outcome assessment


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 454 - 454
1 Sep 2009
Senden R Meijer K Savelberg H Heyligers I Grimm B
Full Access

In joint arthroplasty the currently used patient assessment scores suffer from subjectivity, a low ceiling effect and pain dominance. These effects mask functional differences which are important for today’s demanding patients. Functional assessment tools are needed which can objectively monitor patient outcome. This study investigates whether an acceleration based gait test is able to assess TKR patients. A cohort of 24 patients (11m, 13f) operated for osteoarthritis receiving unilateral TKR (Stryker Scorpio) were monitored for 3 months post-operative. Classic scores including subscores (KSS, Womac, VAS, PDI) and a gait test were measured pre-operative, at 2 weeks, 6 weeks and 3 months post-operative. Gait was analyzed using a triaxial accelerometer fixed to the sacrum while walking 6 times a 20m distance at preferred speed. Movement parameters like step frequency, step time, step number, vertical displacement, asymmetry and irregularity were calculated based on a peak detection algorithm. All classic scores were significantly intercorrelated (e.g. KSS and Womac, R=−0.73) indicating a degree of redundancy. Significant correlations were shown between several gait parameters and the KSS, PDI and VAS. Most correlations between gait parameters and a classical score were found for the KSS function subscore indicating it as the most objective functional assessement amongst the classic scores. In contrast Womac did not correlate with any gait parameter. This lack WOMAC capturing objective function was reported before using functional tests. The classic scales and the gait test cover different dimensions of surgical outcome supporting their combined use to follow up patients The accelerometer based gait test is clinically valid for the follow-up of TKR patients


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 8 - 8
1 Apr 2019
Adekanmbi I Ehteshami Z Hunt C Dressler M
Full Access

Introduction. In Total Hip Arthroplasty (THA), proper bone preparation technique is fundamental to preventing intraoperative fracture. Anecdotally, surgeons suggest they can avoid fracture by listening for changes in the pitch of a mallet strike during broaching. Consequently, it is not surprising that researchers have explored vibroacoustic methods to prevent [1] and identify bone fractures [2, 3]. For instance, a shift in frequency of the acoustic signals during impaction has been correlated with initial stability [4, 5]. In-spite of these research-based successes, we are unaware of an intraoperative application for THA. We submit that idiosyncratic variability during impaction [6] may overwhelm analytical techniques developed in a controlled laboratory environment. The purpose of this test, therefore, was to evaluate the effect of several strike parameters on the vibro-acoustic response during impaction. Specifically, we hypothesized that the angle, location, and force of impaction would produce ‘false-positives’ in frequency regions that have been used to identify fracture [7]. Methods. A Sawbones femur (SKU1121, Medium) was prepared and broached using standard surgical technique for the Summit hip system (DePuy Synthes) progressing from size 0 to 4. The size 4 broach was firmly seated and impacted ten times (n=10) for each of the prescribed conditions (Table 1) while securely holding the femur by hand. Vibroacoustic data from an accelerometer attached distally on the femur and a directional microphone located within 1 metre (Figure 1) were acquired at a sampling rate of 40kHz and postprocessed using LabView. Spectrograms were generated for qualitative comparisons, while fast fourier transform (FFT) with normalised amplitudes for each strike facilitated quantitative analysis of the area under the FFT curve (AU-FFT). Strike conditions were monitored to ensure the groups were consistent and distinct (Table 1). Results. There were statistically significant differences in strike conditions for angle (30°vs 60°), location (centre vs medial and lateral) and force (medium vs low and high) (Figure 2). Data describing the strike conditions revealed consistent and distinct groups (data not shown). Discussion and Conclusion. We have demonstrated that variability in striking does influence the vibroacoustic signal during impaction; however, contrary to our hypothesis, this variability does not overwhelm the ability to distinguish between fractured and intact impaction signals. Consequently, the AU-FFT comparator could be a robust and useful metric. Future work could evaluate this technique under more diverse conditions with multiple samples of varying anatomies, densities, and degrees of fracture. The above methods and paradigms could further be investigated to discern when a broach is properly seated and thereby avoid the risk of fracture altogether


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 433 - 433
1 Nov 2011
Currier J Van Citters D Currier B Perry A Collier J
Full Access

Squeaking of ceramic-on-ceramic (CoC) hips is a clinical phenomenon that is concerning with regard to the long term performance of these joint devices. Investigations into the cause of the squeaking have focused on patient factors and demographics, surgical placement, and other non-ceramic components in the devices. The current study tests latest-generation CoC devices to measure the vibration modes and frequencies of the components individually as well as assembled in the complete surgical construct. Audio data from clinical cases of squeaking hips were analysed to determine the frequencies present. Retrieved CoC hips (n = 7) and never-implanted CoC bearing couples (n = 3) were tested in the laboratory for squeaking under loaded articulation. Bovine serum was introduced into the CoC articulation and dried to promote stick-slip motion at the articulation. Squeaking sounds from the in vitro tests were recorded for audio analysis. Low mass, high frequency-response ceramic shear piezoelectric accelerometers (PCB Piezotronics) were adhered to the hip components along multiple axes to measure vibrations during testing. Clinical audio shows that squeaking occurs at fundamental frequencies in the range of 1 to 3 kHz, with harmonics above the fundamental frequency. Retrieved CoC bearing couples squeaked at fundamental frequencies from 1.5 kHz to 3.8 kHz. Fourier Transform analysis of the audio closely matched the concurrent output from the accelerometers mounted directly on the ceramic components. This held true even in the absence of metal components in the system. With metal components included in the test construct (acetabular shell, acetabular cup, femoral stem), those components also vibrated at the same frequencies as the ceramic bearing couples, indicating that the CoC articulation is the source of the vibrations, with metal components conducting and emanating the sound. The never-implanted bearing couples were made to squeak and vibrated at fundamental frequencies ranging from 1 kHz to 8 kHz. Squeaking from CoC hips can be reproduced in the lab using components from clinical retrievals. Instrumentation of the explanted hips confirms that the vibration frequencies of the ceramic components themselves match the audible squeaking. The squeaking of ceramic components mounted with soft polymers and with no metal contact at any point indicates that the ceramic components themselves are the source of the clinical squeaking. The measured vibration of ceramic components in the audible range is an observation not predicted by modeling studies reported in the literature to date


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 39 - 39
1 Sep 2012
Leszko F Zingde S Argenson J Dennis D Wasielewski R Mahfouz M Komistek R De Bock T
Full Access

Anterior knee pain is one of the most frequently reported musculoskeletal complaints in all age groups. However, patient's complaints are often nonspecific, leading to difficulty in properly diagnosing the condition. One of the causes of pain is the degeneration of the articular cartilage. As the cartilage deteriorates, its ability to distribute the joint reaction forces decreases and the stresses may exceed the pain threshold. Unfortunately, the assessment of the cartilage condition is often limited to a detailed interview with the patient, careful physical examination and x-ray imaging. The X-ray screening may reveal bone degeneration, but does not carry sufficient information of the soft tissues' conditions. More advanced imaging tools such as MRI or CT are available, but these are expensive, time consuming and are only suitable for detection of advanced arthritis. Arthroscopic surgery is often the only reliable option, however due to its semi-invasive nature, it cannot be considered as a practical diagnostic tool. However, as the articular cartilage degenerates, the surfaces become rougher, they produce higher vibrations than smooth surfaces due to higher friction during the interaction. Therefore, it was proposed to detect vibrations non-invasively using accelerometers, and evaluate the signals for their potential diagnostic applications. Vibration data was collected for 75 subjects; 23 healthy and 52 subjects suffering from knee arthritis. The study was approved by the IRB and an Informed Consent was obtained prior to data collection. Five accelerometers were attached to skin around the knee joint (at the patella, medial and lateral femoral condyles, tibial tuberosity and medial tibial plateau). Each subject performed 5 activities; (1) flexion-extension, (2) deep knee bend, (3) chair rising, (4) stair climbing and (5) stair descent. The vibration and motion components of the signals were separated by a high pass filter. Next, 33 parameters of the signals were calculated and evaluated for their discrimination effectiveness (Figure 1). Finally the pattern recognition method based on Baysian classification theorem was used for classify each signal to either healthy or arthritic group, assuming equal prior probabilities. The variance and mean of the vibration signals were significantly higher in the arthritic group (p=2.8e-7 and p=3.7e-14, respectively), which confirms the general hypothesis that the vibration magnitudes increase as the cartilage degenerates. Other signal features providing good discrimination included the 99. th. quantile, the integral of the vibration signal envelope, and the product of the signal envelope and the activity duration. The pattern classification yielded excellent results with the success rate of up to 92.2% using only 2 features, up to 94.8% using 3 (Figure 2), and 96.1% using 4 features. The current study proved that the vibrations can be studied non-invasively using a low-cost technology. The results confirmed the hypothesis that the degeneration of the cartilage increases the vibration of the articulating bones. The classification rate obtained in the study is very encouraging, providing over 96% accuracy. The presented technology has certainly a potential of being used as an additional screening methodology enhancing the assessment of the articular cartilage condition


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_I | Pages 14 - 15
1 Jan 2004
Meijer O van den Dikkenberg N van der Slikke R van Lummel R van Dieën J Pijls B Benink R Wuisman P
Full Access

We present the rationale and design of the DynaPort KneeTest. The test aims at measuring knee patients’ functional abilities in an unobtrusive, user-friendly way. Test persons wear several belts around their trunk and legs. The belts contain accelerometers, the signals of which are stored in a recorder, embedded in one of the belts. The knee test consists of a set of 29 tasks related to activities of daily life (“test items”). Accelerometer signals are analysed in terms of 30 “movement features” (accelerations, angles, durations, frequencies, and some dimensionless numbers). In data analysis, the beginning and end of each test item is marked by hand; otherwise, analysis is automatic. We compared 140 knee patients with 32 healthy controls and found 541 of the 29 x 30 =870 test item movement feature combinations differed significantly between the two groups. From these 541 combinations the DynaPort knee score is calculated by the weighted averages of movement features per item, then weighted averages of items per cluster (locomotion, rising and descending, transfers, lifting and moving objects), and finally the average of the clusters. In an initial study the test-retest reliability of the knee test proved high, and the test turned out to be sufficiently responsive (0.7 patients’ standard deviations improvement after 24 months). However, it remains difficult to interpret the scores in more meaningful terms than merely “better” or “worse”. Extensive reliability studies in the future will further assess the validity of the test and provide more insight into the meaning of the scores. The DynaPort knee test may thus become an important instrument for evaluating patients’ functional abilities in knee-related clinical practice and research


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 123 - 123
1 Jun 2018
Gustke K
Full Access

Fifteen-year survivorship studies demonstrate that total knee replacements have excellent survivorship, with reports of 85 to 97%. However, excellent survivorship does not equate to excellent patient reported outcomes. Noble et al. reported that 14% of their patients were dissatisfied with their outcome with more than half expressing problems with routine activities of daily living. There is also a difference in the patient's subjective assessment of outcome and the surgeon's objective assessment. Dickstein et al. reported that a third of total knee patients were dissatisfied, even though the surgeons felt that their results were excellent. Most of the patients who report lower outcome scores do so because their expectations are not being fulfilled by the total knee replacement surgery. Perhaps this dissatisfaction is a result of subtle soft tissue imbalance that we have difficulty in assessing intra-operatively and post-operatively. Soft tissue balancing techniques still rely on subjective feel for appropriate ligamentous tension by the surgeon. Surgical experience and case volume play a major role in each surgeon's relative skill in balancing the knee properly. New technology of “smart trials” with embedded microelectronics and accelerometers, used in the knee with the medial retinaculum closed, can provide dynamic, intra-operative feedback regarding knee quantitative compartment pressures and component tracking. After all bone cuts are made using the surgeon's preferred techniques, trial components with the sensor tibial trial are inserted and the knee is taken through a passive range of motion. After visualizing the resultant compartment pressures and tracking data on a graphical interface, the surgeon can decide if compartment loading differences are greater than 15 pounds whether to perform a soft tissue balance or minor bone recuts. If soft tissue balancing is chosen, pressure data can indicate where to perform the release and allow the surgeon to assess the pressure changes as titrated soft tissue releases are performed. A multi-center study using smart trials has demonstrated dramatically better outcomes out to three years


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 63 - 63
1 Apr 2018
Daugaard R Tjur M Sliepen M Rosenbaum D Grimm B Mechlenburg I
Full Access

Introduction. Knee osteoarthritis (KOA) causes impairment through pain, stiffness and malalignment and knee joint replacement (KJR) may be necessary to alleviate such symptoms. There is disagreement whether patients with KJR increases their level of physical activity after surgery. The aim of this study is to investigate whether patients with KJR have a higher level of physical activity than patients with KOA, as measured by accelerometer-based method. Furthermore, to investigate whether patients achieve the same level of activity as healthy subjects five years post TJR. Material and method. 54 patients with KOA (29 women, mean age 62±8.6, mean BMI 27±5), 53 patients who had KJR five years earlier (26 women, mean age 66±7.2, mean BMI 30±5) and 171 healthy subjects (76 women, mean age 64±9.7, mean BMI 26±5) were included in this cross sectional study. The level of physical activity was measured over a mean of 5.5 days with a tri-axial accelerometer mounted on the thigh. Number of daily short walking bouts of. Results. Patients with KJR had 10.1 fewer short walking bouts (p=0.04), 745 fewer steps (p=0.19) and 6.2 fewer transfers (p=0.09) per day than patients with KOA. In addition, patients with KJR performed 21.7 fewer short walking bouts (p=0.001), 281 fewer steps (p=0.60) and 3.2 fewer transfers (p=0.32) per day than healthy subjects. Conclusion. Patients with KJR do not seem to be more physically active than patients with KOA. Neither do the seem to be as active as healthy subjects, However, the results may suffer from selection bias and thus the results ought to be confirmed in a bigger cohort study


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_II | Pages 319 - 319
1 May 2010
Grimm B Grimm B Van hemert W Meijer K Savelberg H Heyligers I
Full Access

In joint arthroplasty and in knee replacement in particular, the currently used patient assessment scores like KSS, are characterized by subjective ceiling effects. To monitor patients accurately in time, objective function assessment is required which is impossible with the classic scores. A single time point comparison study showed that an acceleration based gait test is reliable to analyze gait and to distinguish between knee pathologies. How-ever the use of an accelerometer to monitor functional changes over time is never reported before and will be investigated in this study. A representative group of 29 TKP patients (11 men, mean age 72yrs, weight 85kg, height 1.68m) operated for osteoarthritis receiving unilateral TKP (Stryker Scorpio) were monitored for 3 months. Classic scores (ROM, KSS, WOMAC, VAS, PDI) and the gait test was performed pre, 2 and 6 weeks and 3 months postoperative. Gait was analyzed using a triaxial accelerometer fixed to the sacrum while walking 6 times 20meters at preferred speed. Movement parameters like step frequency, step time, step length, speed and up/down displacement were calculated based on a peak detection algorithm. The gait test was compared with the classic scores using Pearson correlation. The paired t-test was used to investigate the changes after surgery (p< 0.05). Significant correlations were shown between all classic scores and all movement parameters (except up/down displacement and step length). The function KSS and PDI showed significant correlations with most gait parameters, while all Womac scores did not. Two weeks after surgery, the classic scores reached the preoperative scores. For instance function KSS was 57.21 preoperative and reached a score of 59.75 at 2 weeks postoperative. No significant changes were shown between preoperative and 2 weeks postoperative for the VAS, KSS and PDI. In contrast all gait parameters were significantly impaired at 2 weeks postoperative (step time of 0.63s) compared to preoperative (step time of 0.72s) and reached the preoperative functional abilities only at 6 week follow up or still later (step time of 0.64s). Between the 2nd and 6th week postoperative, significant changes were shown in all classic scores, ROM and in speed, up/down displacement. After 6 weeks postoperative KSS, PDI, ROM and the frequency improved significantly. The correlations between all movement parameters and function KSS and PDI indicates that these scores are more function based due to inclusion of objective function measures like ROM, while the Womac contains only questions about ADLs. According to the classic scales, patients show at 2 weeks similar skills as preoperative, while the gait test shows that patients are performing less at 2 weeks and reach the pre operative ability at 6 weeks. This suggest that the addition of the gait test give more information about the functional changes a patient experiences after surgery


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 46 - 46
1 Jan 2018
Taunton M Sierra R Kaufman K Trousdale R Pagnano M
Full Access

115 patients undergoing primary unilateral THA were randomized to either DAA or MPA. Groups did not differ in mean age, sex, or mean body mass index. Functional results included time to discontinue gait aids, discontinue all narcotics, and independence with various activities of daily living. Activity in study subjects was measured with 5 wearable activity monitoring sensors with tri-axial MEMS accelerometers and validated custom algorithms and conducted over three days at pre-op, 2 weeks, 8 weeks, and one year. SF-12, WOMAC, and HHS scores to one year were also tabulated. Early functional recovery slightly favoured DAA compared to MPA; time to discontinue walker (10 vs. 14.5 days), time to discontinue all gait aids (17.3 vs 23.6 days), ascend stairs with gait aid (5.4 vs. 10.3 days), and to walk 6 blocks (20.5 vs. 26.0 days). There were no other differences in early functional milestones. Activity monitoring at two weeks postoperatively slightly favoured DAA; mean steps per day were 3897 versus MPA 2,235, percent of day active, DAA 10.5% versus MPA 6.9%. There was no difference in activity monitoring pre-operatively, at two months, or at one year. There was no difference at one year with the SF-12. There was no difference in the SF-12 mental component or the HOOS at any time point. There was no loosening or subsidence of any of the components in any hip. Both the direct anterior and posterior approach provided excellent early postoperative recovery with a low complication rate. The direct anterior patients had slightly faster recovery than the mini-posterior approach patients, with slightly shorter times to achieve milestones of function and as measured by advanced, quantitative activity monitoring at 2 weeks postoperatively


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_11 | Pages 12 - 12
1 Aug 2018
Solomon L Bahl J Arnold J Curness K Fraysse F Howie D Thewlis D
Full Access

Subjective outcomes used in THA show outstanding improvements in patient-reported outcomes. However, recent evidence suggests that there may be a disconnect between patient-reported and objectively measured function. The aim of this study was to investigate if physical activity and sleep patterns change from pre- to six months post primary THA. 54 patients scheduled for THA were recruited. Patients were given a wrist-worn accelerometer (GeneActiv, UK) to wear continuously for one week pre-operatively and six weeks, three months and six months post-operatively. The device was also fitted to the patient immediately following surgery to capture data for the first two post-operative weeks. The following parameters were calculated: (1) sleep efficiency; (2) the amount of time (and length of each bout and fragmentation of the activity) spent in sedentary activity; and (3) time spent in light, moderate and vigorous physical activity. Sedentary activities showed no change in the number, duration or fragmentation (p= 0.382, 0.288, 0.382, respectively). Patients were sedentary for 5–6 bouts/day with each bout lasting 50–76 minutes/day. A significant main effect was identified for time spent in light intensity activities (p=0.049). Prior to surgery, patients spent 201 minutes/day in light intensity activity. This decreased significantly to 133 minutes/day (p=0.025) in the first two postoperative weeks before returning close to pre-operative levels (192 minutes/day) at six weeks (p=0.025). No further changes were observed in light intensity activities. A significant main effect was identified for time spent in moderate intensity activities (p=0.003). Prior to surgery, patients spent 45 minutes/day in moderate intensity activities. This dropped to 18 minutes/day in the first two postoperative weeks (p=0.190). By three months this had increased to 66 minutes/day (p=0.049). No further changes were seen. There were no significant differences in time spent in vigorous intensity activities (p=0.244). Patients spent <1minute/day in vigorous intensity activities. Sleep efficiency did not change significantly from pre- (82%) to six months post-operative (75%) (p=0.067) − 85% is typically considered good sleep efficiency. Patients discharged to a regional hospital had significantly poorer sleep efficiency than those discharged home (mean difference=14%, p=<0.001) or to a rehabilitation centre (mean difference=15%, p=0.001). This patient cohort didn't demonstrate an overall improvement in objectively measured physical activity patterns from pre- to six months post-operative. Sleep efficiency, did not improve and remained sub-optimal


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 460 - 460
1 Nov 2011
Zingde SM Leszko F Komistek RD Mahfouz MR Wasielewski RC Argenson JA
Full Access

Previously, Komistek et al have demonstrated anomalous behaviours in total joints such as separation (sliding) in THAs and condylar lift-off in TKAs. These cases result in reduced contact area, increased contact pressure, polyethylene wear and could induce prosthetic loosening and joint instability. However, here is no known research done on correlating kinematic conditions with acoustic data for the tibio-femoral joint interface. This study deals with the development of a new method to diagnose such conditions using sound and frequency data. The objective of this study was to determine and compare the in vivo, 3D kinematics and sound for younger subjects with a normal knee, to those of older subjects, with an unimplanted and implanted knee joint. Ten older subjects having a Hi-Flex PS MB TKA and a contralateral non implanted knee and five younger subjects (with a normal knee) were analysed under in vivo, weight-bearing conditions using video fluoroscopy and a sound sensor while performing four different activities. deep knee bend to maximum flexion. gait. stair climb and. chair rise and sit. Three piezoelectric triaxial accelerometers were attached to the femoral epicondyle, tibial tuberocity and the patella respectively. The sensor detects frequencies that are propagated through the tibio-femoral interaction. The signal from the accelerometers was then transferred to a signal conditioner for signal amplification. A data acquisition system was then connected to receive the amplified signal from the signal conditioner and transfer it to a laptop for storage. A sampling rate of 10500Hz was used and frequencies upto 5000Hz were recorded. The signal was then converted to audible sound. Also, 3D tibio-femoral kinematics of the knee was determined, for the four activities with the help of a previously published 2D-to-3D registration technique. The fluoroscopy video and the sensor measurements were synchronized, analysed and compared from full extension to maximum knee flexion for DKB, one full cycle of gait, one complete step on stair climb and from sit-to-stand positions in chair rise. On average the subjects achieved more flexion with their TKA than with their contralateral knee and consequently experienced significantly higher ROM for their implanted knee. However, both of these groups achieved lower ROM than the normal knees. Significant differences were seen in the AP position of the tibiofemoral contact point. The contact point of the medial condyle for the TKA knee was significantly more posterior at 0° and 30° and remained more posterior than the same condyle of the contralateral throughout flexion. Posterior femoral rollback was seen in all groups, with the normal knee achieving significantly higher posterior femoral rollback when compared to the contralateral and TKA knees. Audible signals were observed for all three groups of knees. The frequency analysis revealed that specific frequencies for all groups were within the same range, but the most dominant frequency for each varied. This may be related to the variable interaction surfaces leading to different dominant frequencies which were excited at magnitudes related to the type and condition of material being impacted (polyethylene/meniscus). This was the first study to correlate in vivo kinematics to in vivo sounds in the knee. The sounds that were detected correlated well to in vivo motions, especially abnormal kinematic patterns. The ultimate aim of this study is to create a stand alone tool (based only on sound data) that could be used as a diagnostic tool to determine total joint conditions and reduce the dependence on radiation techniques


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 443 - 443
1 Nov 2011
Leszko F Zingde S Argenson J Mahfouz M Komistek R
Full Access

Previosuly, Komistek et al. have shown that the kinematics of the patellofemoral joint is altered after a TKA surgery. Specifically the implanted patella experiences significantly less rotation than the natural patella. Also, in early flexion, the patellofemoral contact positions differed significantly between implanted and non-implanted patellae. It was also found that some of TKA subjects experience patellofemoral separation. These kinematical differences may lead to adverse mechanical conditions and increase fatigue or cause loosening of the implant components. This study’s objective was to determine the three-dimensional patellofemoral kinematics and correlate it with the in vivo sound (vibrations) detected using accelerometers for subjects having a TKA and a non-implanted knee under in vivo, weight bearing conditions. The correlation of the knee mechanical conditions with the vibration data may indicate new parameters that may be used to diagnose the condition of the articular cartilage or implant components. Fifteen subjects (average age 71.8 ±7.4years) having one implanted knee (mobile bearing Hi-Flex PS) and the healthy contralateral knee, performed. deep knee bend to maximum flexion,. chair rise and. stair climb activities under fluoroscopic surveillance. Three miniature, piezoelectric, three-axial accelerometers were attached to the patella and femoral epicondyle. The study was approved by the Institutional Review Board and informed consent was obtained from all subjects. The sensors detected the vibration magnitudes and frequencies of the articulating patellofemoral joint surfaces. The signals were amplified and low-pass filtered at 5 kHz by a signal conditioner. The 3D tibiofemoral and patellofemoral kinematics were derived for both knees using a previously published 3D-to-2D registration technique. The 3D bone models were recovered from CT scans, while implant models were obtained from the manufacturer. The patellofemoral rotations were described using the Grood and Suntay convention. The kinematics and sound data were synchronized and recorded under fluoroscopic surveillance, for 10 patients. Then a subset of seven subjects having a TKA was re-analyzed for their contralateral (non-implanted) knee. The vibration signal was then converted to audible sound and correlated with the 3D kinematics. On average, the subjects achieved more flexion with their TKA (103.4°±15.9°) than with their contralateral knee (96.3°±18.3°). The patellofemoral kinematics varied between the TKA and nonimplanted patella groups; the resurfaced patella experienced less flexion, less medial rotation and less tilt than the contralateral patella. The patellar flexion results were consistent with previously reported literature for both TKA and non-implanted patellae. Also, the resurfaced patellae contacted the femur more proximally than healthy patellae. Audible signals were found for both groups of subjects. The frequency analysis demonstrated that specific frequencies were in similar range for both groups, but the magnitudes and variations were different for the TKA and contralateral knees. This study correlated 3D patellofemoral kinematics with sound under in vivo conditions for three different activities. Variable audible signals were detected for TKA and non-implanted knees. Vibration magnitude and frequency identification, under in vivo conditions, for TKA may lead to a better understanding of wear and failure modes with respect to the patellofemoral mechanics, more specifically, the patellar insert. Currently this initial study is being expanded to degenerated knee joints and failed TKAs for possible applications of the vibration analysis to the early diagnosis of knee arthritis, detection of implant loosening or wear and monitoring of implant osteointegration progress


Bone & Joint Research
Vol. 12, Issue 6 | Pages 352 - 361
1 Jun 2023
Aquilina AL Claireaux H Aquilina CO Tutton E Fitzpatrick R Costa ML Griffin XL

Aims

A core outcome set for adult, open lower limb fracture has been established consisting of ‘Walking, gait and mobility’, ‘Being able to return to life roles’, ‘Pain or discomfort’, and ‘Quality of life’. This study aims to identify which outcome measurement instruments (OMIs) should be recommended to measure each core outcome.

Methods

A systematic review and quality assessment were conducted to identify existing instruments with evidence of good measurement properties in the open lower limb fracture population for each core outcome. Additionally, shortlisting criteria were developed to identify suitable instruments not validated in the target population. Candidate instruments were presented, discussed, and voted on at a consensus meeting of key stakeholders.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 34 - 34
1 Mar 2009
van Hemert W Grimm B Senden R Heyligers I
Full Access

INTRODUCTION: In total knee arthroplasty (TKA) it still remains undecided whether the patella should be resurfaced or not. This study used two accelerometer based motion analysis systems to study if functional tests are able to detect a difference in patients with or without a resurfaced patella. METHOD: Retrospective study of a cohort of 53 unilateral TKA patients (Stryker Scorpio). With one surgeon always resurfacing and the other one routinely retaining the patella, patients were divided into a resurfaced group (RS, n=31) and a non-resurfaced group (NR, n=22). Patients were clinically assessed for 2 years using the Knee Society Score (KSS). At final follow-up patients were assessed once using two accelerometer based motion tests (Dynaport Knee Test and Minimod Gait Test; McRoberts, Netherlands). The knee score is composed of four sub scores (Locomotion, Rise & Descend, Transfers, Lift & Move). The gait test records walking parameters such as step frequency, length and speed plus various parameters of step asymmetry, irregularity and efficiency. Statistical analysis was performed using the van Elteren’s test (KSS data) and a stratified regression analysis (Dynaport and Minimod data). RESULTS: The mean pre-op KSS was not different between the groups (RS=42.7+/−16.5, NS=50.5+/−13.8, p=0.08). Differences remained non-significant post-op at three months (RS=42.7+/−16.5, NS=50.5+/−13.8, p=0.08), at final follow-up (RS=42.7+/−16.5, NS=50.5+/−13.8, p=0.08) and regarding total improvement (RS=8.7, NS=5.1, p=0.29). The Dynaport knee test showed a significant functional advantage for patella resurfacing (RS=44.1+/−12.1, NR=39.7+/−19.2, p=0.04). The sub score Rise & Descend showed the largest advantage for patella resurfacing (RS=44.7, NR=39.7, p=0.04). The other sub scores also favored resurfacing but were not significant. The Minimod Gait test favoured RS in most parameters but at non-significant levels. DISCUSSION: Using the KSS it was not possible to identify resurfacing or retaining the patella as the superior choice in TKA. However, using performance based tests it was possible to measure significant differences in favour of patella resurfacing but only when the motion tasks were most demanding and depending on patella-femoral function such as during Rise & Descend (stair climbing, slope walking, stepping onto blocks). This indicates a relevant functional benefit of patella resurfacing for the patient. Functional parameters derived from less demanding tasks such as normal gait (Mini-mod) could not verify this benefit. The advantage of patella resurfacing may be less due to pain relief but due to a functional benefit during demanding motion tasks for which standard clinical scores and low demanding tests do not account for sufficiently and objectively enough. We recommend complementing the classic evaluation tools with demanding functional tests


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 111 - 111
1 Aug 2017
Su E
Full Access

Acetabular implant position is important for the stability, function, and long-term wear properties of a total hip arthroplasty (THA). Prior studies of acetabular implant positioning have demonstrated a high percentage of outliers, even for experienced hip surgeons, when conventional instruments are used. Computer navigation is an attractive tool for use in THA, as it has been shown to improve the precision of acetabular component placement and reduce the incidence of outliers. However, computer navigation with imageless, large-console systems is costly and often interrupts the surgeon's workflow, and thus has not been widely adopted. Another method to improve acetabular component positioning during THA is the use of fluoroscopy with the direct anterior approach. Studies have demonstrated that the supine position of the patient during surgery facilitates the use of fluoroscopic guidance, thus improving acetabular component position. A handheld, accelerometer based navigation unit for use in total hip replacement has recently become available to assist the surgeon in positioning the acetabular component during anterior approach THA, potentially reducing the need for intra-operative fluoroscopic studies. We sought to compare the radiographic results of direct anterior THA performed with conventional instrumentation vs. handheld navigation to determine the accuracy of the navigation unit, and to see whether or not there was a reduction in the fluoroscopic time used during surgery. Furthermore, we timed the use of the navigation unit to see whether or not it required a substantial addition to surgical time. Our results demonstrate that a handheld navigation unit used during anterior approach THA had no difference with regard to acetabular cup positioning when compared to fluoroscopically assisted THA, but led to a reduction in the use of intra-operative fluoroscopy time


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 19 - 19
1 Apr 2018
Martens S Lipperts M Samijo S Walbeehm R Grimm B
Full Access

Background. Shoulder pain limits range of motion (ROM) and reduces performing activities of daily living (ADL). Objective assessment of shoulder function could be of interest for diagnosing shoulder pathology or functional assessment of the shoulder after therapy. The feasibility of 2 wearable inertial sensors for functional assessment to differentiate between healthy subjects and patients with unilateral shoulder pathology is investigated using parameters as asymmetry. Methods. 75 subjects were recruited into this study and were measured for at least 8 h a day with the human activity monitor (HAM) sensor. In addition, patients completed the Disability of the Arm, Should and Hand (DASH) score and the Simple Shoulder Test (SST) score. From 39 patients with a variety of shoulder pathologies 24 (Age: 53.3 ± 10.5;% male: 62.5%) complete datasets were successfully collected. From the 36 age-matched healthy controls 28 (Age: 54.9 ± 5.8;% male = 57.1%) full datasets could be retrieved. Activity parameters were obtained using a self-developed algorithm (Matlab). Outcome parameters were gyroscope and accelerometry-based relative and absolute asymmetry scores (affected/unaffected; dominant/non-dominant) of movement intensity. Results & Discussion. The absolute and relative asymmetry scores of the accelerometry-based intensity results for a threshold of > 0.1 g (AUC 0.821 and AUC 0.827) proved to be slightly more distinctive to the gyroscope-based intensity results for a threshold of > 10 deg/s (AUC 0.807 and 0.795) to distinguish between the healthy group and the shoulder group. Asymmetry (< 1%) was nearly absent in healthy controls (5/56 subjects) using the accelerometry-based intensity (> 0.1g) results but common in patients (29/48 subjects). A moderate, significant correlation was found between the asymmetry scores and the DASH score, thus complementary use is advised. The asymmetry scores had no correlation to the SST score. Conclusion. Ambulant assessment of shoulder activity using human activity monitors, containing a gyroscope and accelerometer, during ADL is feasible. The accelerometry-based and gyroscope-based absolute and relative asymmetry scores are promising parameters to diagnose or assess function of the shoulder. A moderate correlation was found between the DASH score and the activity monitor parameters, suggesting both could be used complementary to assess function


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 45 - 45
1 Apr 2018
Sliepen M Mauricio E Lipperts M Grimm B Rosenbaum D
Full Access

The significance of physical activity (PA) assessment is widely acknowledged as it can aid in the understanding of pathologies. PA of knee osteoarthritis (KOA) patients has been assessed with varying methods, as it is a disease that is known to impair physical function and activity during daily life. Differences between methods have been described for general outcomes (sport participation or sedentary time), yet failed to describe common activities such as stair locomotion or sit-to-stand (STS) transfers. This study therefore aimed to determine the comparability of various methods to assess daily-life activities in KOA patients. Sixty-one clinically diagnosed KOA patients wore a tri-axial accelerometer (AX3, Axivity, UK) for one week during waking hours. Furthermore, they performed three physical function tests: a 40-m fast-paced walk test (WT), a timed up-and-go test (TUGT) and a 15 stair-climb test (SCT). Patients were also asked to fill out the Knee Osteoarthritis Outcome Score (KOOS), a KOA-specific questionnaire. Patients were slightly overweight (average BMI: 27.3±4.8 kg/m2), 60 (±10) years old and predominantly female (53%). The amount of daily level walking bouts was only weakly correlated with the WT performance, representing patients” walking capacity, (ρ=−0.33, p=0.01). Similarly, level-walking bouts during daily life correlated weakly with self-perceived walking capacity addressed by the KOOS (ρ=−0.36, p=0.01). For stair locomotion, a slightly different trend was seen. A moderate correlation was found (ρ=0.65, p<0.001), between the amount of ascending bouts and the objective functional test performance (SCT). However, the subjective assessment of stair ascending limitations (via the KOOS) correlated only weakly with both the functional test performance and the measured level of activity (ρ=−0.30 and −0.35, resp.). Comparable results were found for descending motions. STS transfers during daily life correlated moderately at best with the time to complete the TUGT (ρ=−0.43, p<0.01) and only weakly with the self-perceived effort of STS transfers (ρ=−0.26, p=0.04). Only weak correlations existed between subjective measures and objective parameters (for both functional tests and daily living activities), indicating that they assess different domains (e.g. self-perceived function vs. actual physical function). Furthermore, when comparing the two objective measures, correlation coefficients increased compared to the subjective methods, yet did not reach strong agreement. These findings suggest that addressing common activities of daily life either subjectively or objectively will result in different patient-related outcomes of a study. Assessment methods should therefore be chosen with caution and compared carefully with other studies


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 37 - 37
1 Aug 2017
Gustke K
Full Access

Fifteen-year survivorship studies demonstrate that total knee replacements have excellent survivorship, with reports of 85% to 97%. However, excellent survivorship does not equate to excellent patient reported outcomes. Noble et al. reported that 14% of their patients were dissatisfied with their outcome with more than half expressing problems with routine activities of daily living. There is also a difference in the patient's subjective assessment of outcome and the surgeon's objective assessment. Dickstein et al. reported that a third of total knee patients were dissatisfied, even though the surgeons felt that their results were excellent. Most of the patients who report lower outcome scores due so because their expectations are not being fulfilled by the total knee replacement surgery. Perhaps this dissatisfaction is a result of subtle soft tissue imbalance that we have difficulty in assessing intra-operatively and post-operatively. Soft tissue balancing techniques still rely on subjective feel for appropriate ligamentous tension by the surgeon. Surgical experience and case volume play a major role in each surgeon's relative skill in balancing the knee properly. New technology of “smart trials” with embedded microelectronics and accelerometers, used in the knee with the medial retinaculum closed, can provide dynamic, intra-operative feedback regarding knee quantitative compartment pressures and component tracking. After all bone cuts are made using the surgeon's preferred techniques, trial components with the sensored tibial trial are inserted and the knee is taken through a passive range of motion. After visualizing the resultant compartment pressures and tracking data on a graphical interface, the surgeon can decide whether to perform a soft tissue balance or minor bone recuts. If soft tissue balancing is chosen, pressure data can indicate where to perform the release and allow the surgeon to assess the pressure changes as titrated soft tissue releases are performed. A multi-center study using smart trials has demonstrated dramatically better outcomes out to three years


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 51 - 51
1 Apr 2018
Leuridan S Goossens Q Roosen J Pastrav L Denis K Desmet W Vander Sloten J Mulier M
Full Access

Introduction. Aseptic acetabular component failure rates have been reported to be similar or even slightly higher than femoral component failure. Obtaining proper initial stability by press fitting the cementless acetabular cup into an undersized cavity is crucial to allow for secondary osseous integration. However, finding the insertion endpoint that corresponds to an optimal initial stability is challenging. This in vitro study presents an alternative method that allows tracking the insertion progress of acetabular implants in a non-destructive, real-time manner. Materials and Methods. A simplified acetabular bone model was used for a series of insertion experiments. The bone model consisted of polyurethane solid foam blocks (Sawbones #1522-04 and #1522-05) into which a hemispherical cavity and cylindrical wall, representing the acetabular rim, were machined using a computer numerically controlled (CNC) milling machine (Haas Automation Inc., Oxnard, CA, USA). Fig. 1 depicts the bone model and setup used. A total of 10 insertions were carried out, 5 on a low density block, 5 on a high density block. The acetabular cups were press fitted into the bone models by succeeding hammer hits. The acceleration of the implant-insertor combination was measured using 2 shock accelerometers mounted on the insertor during the insertion process (PCB 350C03, PCB Depew, NY, USA). The force applied to the implant-insertor combination was also measured. 15 hammer hits were applied per insertion experiment. Two features were extracted from the acceleration time signal; total signal energy (E) and signal length (LS). Two features and one correlation measure were extracted from the acceleration frequency spectra; the relative signal power in the low frequency band (PL, from 500–2500Hz) and the signal power in the high frequency band (P Hf, from 4000–4800 Hz). The changes in the low frequency spectra (P Lf, from 500–2500 Hz) between two steps were tracked by calculating the Frequency Response Assurance Criterion (FRAC). Force features similar to the ones proposed by Mathieu et al., 2013 were obtained from the force time data. The convergence behavior of the features was tracked as insertion progressed. Results. Differences were noted visually between the acceleration data recorded at the beginning of insertion and towards the end, both in the time domain (fig. 2A) as well as in the frequency domain (fig. 2B). These differences were also captured by the proposed features. Fig. 3 shows a typical representation of how the time (A), frequency (B) and force (C) features evolved during insertion. Based on a simple convergence criterion, the insertion endpoint could be determined. Conclusions. The convergence behavior, and the insertion endpoint thus identified, of the force-based and acceleration based features correlated well. The different features capture the changes in damping and stiffness of the implant-bone system that are occurring as the insertion progresses and combining them improves the robustness of the endpoint detection method. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 79 - 79
1 Aug 2017
Rodriguez J
Full Access

Increasing data is emerging, consistently demonstrating a more rapid recovery for patients undergoing direct anterior approach (DAA) surgery. In one study, objective findings of early recovery including timed up and go tests, Functional Independence Measures are significantly faster in the first 2 weeks, and normalise by 6 weeks. A more recent randomised study shows a quicker achievement of the functional milestones of discontinuing walking aids, discontinuing opioids, stair ascent, and walking 6 blocks, as well as accelerometer measures of activity in the first 2 weeks after surgery. In both of these studies, seasoned surgeons well beyond their learning curves performed the surgeries. A prospective MRI study of volume before and after surgery has shown full recovery or mild hypertrophy of most muscles at an average of 24 weeks from surgery, but a sustained loss of muscle volume for the obturator internus muscle in the DAA, and sustained loss of muscle volume for obturator internus, obturator externus, piriformis, and quadratus femoris in the posterior approach patients. The muscles that are released in the surgeries recover incompletely. Prospective assessment of muscle strength demonstrated loss of flexion strength in the DAA group and loss of external rotation strength in the posterior group at 6 weeks. By 3 months, the DAA group had returned to normal in their strength, while the posterior group had persistent external rotation weakness. Prospective assessment of gait, pre-operatively and at 6 months showed similar improvements in frontal and sagittal plane range of movement in gait, with a similar improvement in transverse plane movement (internal and external rotation) in the DAA group, but no change in the posterior cohort. The precision of socket placement, after undergoing a learning curve, was greater with the use of fluoroscopy in the DAA. Cutting and subsequently repairing a muscle can have a clinically insignificant, but nonetheless objectively measurable effect on the function of that muscle. Observed downsides of DAA include a higher prevalence of wound complications in obese patients, and possibly a higher risk of periprosthetic fractures in elderly, thin women. Recent larger registry data would also suggest that there is no difference in dislocation rate between the 2 referenced approaches, and possibly a higher femoral revision rate for the DAA. These may be honest and real depictions of a large learning curve as we further understand and disseminate the subtleties of proper execution of DAA surgery


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 80 - 80
1 Apr 2017
Gustke K
Full Access

Fifteen-year survivorship studies demonstrate that total knee replacement have excellent survivorship, with reports of 85 to 97%. However, excellent survivorship does not equate to excellent patient reported outcomes. Noble et al. reported that 14% of their patients were dissatisfied with their outcome with more than half expressing problems with routine activities of daily living. There is also a difference in the patient's subjective assessment of outcome and the surgeon's objective assessment. Dickstein et al. reported that a third of total knee patients were dissatisfied, even though the surgeons felt that their results were excellent. Most of the patients who report lower outcome scores due so because their expectations are not being fulfilled by the total knee replacement surgery. Perhaps this dissatisfaction is a result of subtle soft tissue imbalance that we have difficulty in assessing intraoperatively and postoperatively. Soft tissue balancing techniques still rely on subjective feel for appropriate ligamentous tension by the surgeon. Surgical experience and case volume play a major role in each surgeon's relative skill in balancing the knee properly. New technology of “smart trials” with embedded microelectronics and accelerometers, used in the knee with the medial retinaculum closed, can provide dynamic, intra-operative feedback regarding knee quantitative compartment pressures and component tracking. After all bone cuts are made using the surgeon's preferred techniques, trial components with the sensored tibial trial are inserted and the knee is taken through a passive range of motion. After visualizing the resultant compartment pressures and tracking data on a graphical interface, the surgeon can decide whether to perform a soft tissue balance or a minor bone recuts. If soft tissue balancing is chosen, pressure data can indicate where to perform the release and allow the surgeon to assess the pressure changes as titrated soft tissue releases are performed. A multi-center study using smart trials has demonstrated dramatically better outcomes out to three years


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 63 - 63
1 May 2017
Ahmadinezhad S Lipperts M Senden R Heyligers I Grimm B
Full Access

Background. In total knee arthroplasty (TKA), patient reported outcome on pain, function or satisfaction fails to differentiate treatment options. Activity, a consequence of pain-free, well functioning TKA and a satisfied patient, may be a discriminative surrogate metric, especially when objectively measured. Methods. Habitual activity was measured in TKA patients (n=32, F/M=20/12, age: 72 ±8yrs) at long-term follow-up (9 ±1yrs) and compared to healthy, age matched controls (n=32, F/M=20/12, age: 71 ±9yrs) using a popular questionnaire (SQUASH) and accelerometry. A small 3D accelerometer (X16-mini, GCD Dataconcepts) was worn for 4 successive days during waking hours at the non-affected lateral upper leg. Data was analysed using validated algorithms (Matlab) counting and timing walking bouts, steps, sitting periods and transfers. Stair climbing events or similar activities such as walking steep slopes were classified using the higher mean hip flexion angle as a feature. Results. SQUASH scores were not sign. different between TKA (mean ±SD: 4551 ±3426) and controls (3659 ±2720, p>0.1). With accelerometry, differences between patients and controls (Median [IQR]) increased from −13% for Time Standing (3.7h [2.6–5.1] vs 4.3h [2.9–5.0], p=0.69), to −26% for Daily Steps (4939 [3796–7910] vs 6731 [5539–8270], p=0.019] and −31% for Sit-Stand Transfers (31.2 [22.1–37.0] vs 45.3 [34.9–58.4], p>0.001). For stair-up events, the difference increased to −74% (6.2 [2.8–22.4] vs 23.9 [10.8–39.1], p>0.001). Conclusions. Self-report activity could not discriminate between patients and controls. With accelerometry, sign. differences increased with rising levels of effort and difficulty. In TKA, walking alone, either by accelerometry or as the major component of self-report may not serve as powerful outcome measure in orthopaedics were energy expenditure from walking is less relevant than functionally demanding but rarer tasks such as transfer or stair climbing


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 62 - 62
1 May 2017
Lipperts M Senden R Heyligers I Grimm B
Full Access

Background. The goal of total hip arthroplasty (THA) is to reduce pain, restore function but also activity levels for general health benefits or social participation. Thus evaluating THA patient activity can be important for diagnosis, indication, outcome assessment or biofeedback. Methods. Physical activity (PA) of n=100 primary THA patients (age at surgery 63 ±8yrs; 49M/51F; 170 ±8cm, 79.8 ±14.0kg) was measured at 8 ±3yrs follow-up. A small 3D accelerometer was worn for 4 successive days during waking hours at the non-affected lateral upper leg. Data was analysed using validated algorithms (Matlab) producing quantitative (e.g. #steps, #transfers, #walking bouts) and qualitative (e.g. cadence, temporal distribution of events) activity parameters. An age matched healthy control group (n=40, 69 ±8yrs, 22M/18F) served as reference. Results. Daily steps were only 13% lower (n.s) for patients (avg. ±SD: 5989 ±3127) than controls (6890 ±2803). However, the Nr. of walking bouts (187 ±85 vs 223 ±78, −16%) and sit-stand transfers (35 ±14 vs 48 ±15, −27%) were sign. less in patients (p<0.05, Mann-Whitney). Patients showed equal amounts of walking bouts in medium duration (30-60s, 1–5min) but sign. less (−25%) short (<10s, 10–30s) and less (−43%) long events (>5min). This corresponds with sign. less (−32%) short sitting periods (>10min) in patients. Also cadence was sign. lower in patients (93.8 ±11.7 vs 98.9 ±7.3 steps/min). Conclusions. PA varies widely in patients with a substantial proportion (35%) being more active than average controls. Thus, THA must not per se reduce or limit PA. Only 17% of controls and 11% of patients reached the WHO target (10,000 steps/day) suggesting that the THA related drop in activity may inflate the risks for cardiovascular, metabolic or mental disease associated with low activity. Patients avoided short and long activities, both associated with effort. Targeted interventions may address this behaviour


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_13 | Pages 43 - 43
1 Nov 2015
Su E
Full Access

Computer navigation is an attractive tool for use in total knee arthroplasty (TKA), as it is well known that alignment is important for the proper function of a total knee replacement. Malalignment of the prosthetic joint can lead to abnormal kinematics, unbalanced soft-tissues, and early loosening. Although there are no long term studies proving the clinical benefits of computer navigation in TKA, studies have shown that varus alignment of the tibial component is a risk factor for early loosening. A handheld, accelerometer based navigation unit for use in total knee replacement has recently become available to assist the surgeon in making the proximal tibial and distal femoral cuts. Studies have shown the accuracy to be comparable to large, console-based navigation units. Additionally, accuracy of cuts is superior to the use of traditional alignment guides, improving the percentage of cuts within 2 degrees of the desired alignment. Because the registration is based on the mechanical axis of the knee, anatomic variables such as femoral neck-shaft angle, femoral length, and presence of a tibial bow do not affect the results. The handheld aspect of this navigation unit allows its use without additional incisions or array attachment. Furthermore, the learning curve and usage time is minimal, supporting its use in primary TKA


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 4 - 4
1 Apr 2017
Rodriguez J
Full Access

Increasing data is emerging, consistently demonstrating a more rapid recovery for patients undergoing direct anterior approach (DAA) surgery. In one study, objective findings of early recovery including timed up and go tests, Functional Independence Measures are significantly faster in the first 2 weeks, and normalise by 6 weeks. A more recent randomised study shows a quicker achievement of the functional milestones of discontinuing walking aids, discontinuing opioids, stair ascent, and walking 6 blocks, as well as accelerometer measures of activity in the first 2 weeks after surgery. In both of these studies, seasoned surgeons well beyond their learning curves performed the surgeries. A prospective MRI study of volume before and after surgery has shown full recovery or mild hypertrophy of most muscles at an average of 24 weeks from surgery, but a sustained loss of muscle volume for the obturator internus muscle in the DAA, and sustained loss of muscle volume for obturator internus, obturator externus, piriformis, and quadratus femoris in the posterior approach patients. The muscles that are released in the surgeries recover incompletely. Prospective assessment of muscle strength demonstrated loss of flexion strength in the DAA group and loss of external rotation strength in the Posterior group at 6 weeks. By 3 months, the DAA group had returned to normal in their strength, while the Posterior group had persistent external rotation weakness. Prospective assessment of gait, pre-operatively and at 6 months showed similar improvements in frontal and sagittal plane range of movement in gait, with a similar improvement in transverse plane movement (internal and external rotation) in the DAA group, but no change in the Posterior cohort. The precision of socket placement, after undergoing a learning curve, was greater with the use of fluoroscopy in the DAA. Cutting and subsequently repairing a muscle can have a clinically insignificant, but nonetheless objectively measurable effect on the function of that muscle. Observed downsides of DAA include a higher prevalence of wound complications in obese patients, and possibly a higher risk of periprosthetic fractures in elderly, thin women. Recent larger registry data would also suggest that there is no difference in dislocation rate between the 2 referenced approaches, and possibly a higher femoral revision rate for the DAA. These may be honest and real depictions of a large learning curve as we further understand and disseminate the subtleties of proper execution of DAA surgery


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 115 - 115
1 Dec 2016
Gustke K
Full Access

Fifteen-year survivorship studies demonstrate that total knee replacements have excellent survivorship, with reports of 85 to 97%. However, excellent survivorship does not equate to excellent patient reported outcomes. Noble et al reported that 14% of their patients were dissatisfied with their outcome with more than half expressing problems with routine activities of daily living. There is also a difference in the patient's subjective assessment of outcome and the surgeon's objective assessment. Dickstein et al reported that a third of total knee patients were dissatisfied, even though the surgeons felt that their results were excellent. Most of the patients who report lower outcome scores due so because their expectations are not being fulfilled by the total knee replacement surgery. Perhaps this dissatisfaction is a result of subtle soft tissue imbalance that we have difficulty in assessing intraoperatively and postoperatively. Soft tissue balancing techniques still rely on subjective feel for appropriate ligamentous tension by the surgeon. Surgical experience and case volume play a major role in each surgeon's relative skill in balancing the knee properly. New technology of “smart trials” with embedded microelectronics and accelerometers, used in the knee with the medial retinaculum closed, can provide dynamic, intraoperative feedback regarding knee and component alignment along with quantitative compartment pressures and component tracking. After all bone cuts are made using the surgeon's preferred techniques, trial components with the sensored tibial trial are inserted and the knee is taken through a passive range of motion. After visualizing the resultant compartment pressures and tracking data on a graphical interface, the surgeon can decide whether to perform a soft tissue balance or minor bone recuts. If soft tissue balancing is performed, the surgeon can assess the pressure changes as titrated soft tissue releases are performed. A multicenter study using smart trials has demonstrated dramatically better outcomes at six months and one year


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 43 - 43
1 Nov 2016
Gustke K
Full Access

Fifteen-year survivorship studies demonstrate that total knee replacements have excellent survivorship, with reports of 85% to 97%. However, excellent survivorship does not equate to excellent patient reported outcomes. Noble et al reported that 14% of their patients were dissatisfied with their outcome with more than half expressing problems with routine activities of daily living. There is also a difference in the patient's subjective assessment of outcome and the surgeon's objective assessment. Dickstein et al reported that a third of total knee patients were dissatisfied, even though the surgeons felt that their results were excellent. Most of the patients who report lower outcome scores due so because their expectations are not being fulfilled by the total knee replacement surgery. Perhaps this dissatisfaction is a result of subtle soft tissue imbalance that we have difficulty in assessing intra-operatively and post-operatively. Soft tissue balancing techniques still rely on subjective feel for appropriate ligamentous tension by the surgeon. Surgical experience and case volume play a major role in each surgeon's relative skill in balancing the knee properly. New technology of “smart trials” with embedded microelectronics and accelerometers, used in the knee with the medial retinaculum closed, can provide dynamic, intra-operative feedback regarding knee quantitative compartment pressures and component tracking. After all bone cuts are made using the surgeon's preferred techniques, trial components with the sensored tibial trial are inserted and the knee is taken through a passive range of motion. After visualizing the resultant compartment pressures and tracking data on a graphical interface, the surgeon can decide whether to perform a soft tissue balance or minor bone recuts. If soft tissue balancing is chosen, pressure data can indicate where to perform the release and allow the surgeon to assess the pressure changes as titrated soft tissue releases are performed. A multi-center study using smart trials has demonstrated dramatically better outcomes at six months and one year


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 112 - 112
1 Mar 2017
Ricciardi B Mount L McLawhorn A Nocon A Su E
Full Access

Background. Coronal malalignment has been proposed as a risk factor for mechanical failure after total knee arthroplasty (TKA). In response to these concerns, technologies that provide intraoperative feedback to the surgeon about component positioning have been developed with the goal of reducing rates of coronal plane malalignment and improving TKA longevity. Imageless hand-held portable accelerometer technology has been developed to address some the limitations associated with other computer assisted navigation devices including line-of-sight problems, preoperative imaging requirements, extra pin sites, up-font capital expenditures, and learning curve. The purpose of this study was to compare the accuracy and precision of a hand-held portable navigation system versus conventional instrumentation for tibial and femoral resections in TKA. Methods. This study was a single-surgeon, retrospective cohort study. Consecutive patients undergoing TKA were divided into three groups: 1) tibial and femoral resections performed with conventional intra- and extramedullary resection guides (CON group; N=84), 2) a hand-held portable navigation system (KneeAlign, OrthoAlign Inc, Aliso Viejo, CA) for tibial resection only (TIBIA group; N=78), and 3) navigation for both tibial and distal femoral resections (BOTH group; N=80). Postoperative coronal alignment of the distal femoral and proximal tibial resection were measured based on the anatomic axis from standing AP radiographs and compared between the three groups for both precision and accuracy. Malalignment was considered to be greater than 3° varus/valgus from expected resection angle. Results. Preoperative age, sex, and knee axis alignment were similar between the three groups. Mean postoperative alignment of the distal femoral resection, proximal tibial resection, and knee axis did not differ between groups (Figure 1). Increased frequencies of malalignment (±3° varus/valgus) of the femoral resection (24% CON versus 5% TIBIA and 8% BOTH; p<0.001) and knee axis (31% CON versus 8% TIBIA and 6% BOTH; p<0.001) were observed with conventional resection guides compared to both navigation groups. Conclusion. Use of a hand-held portable navigation system improved precision of the distal femoral resection and overall anatomical knee alignment after TKA


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 123 - 123
1 Feb 2015
Su E
Full Access

Computer navigation is an attractive tool for use in total knee arthroplasty (TKA), as it is well known that alignment is important for the proper function of a total knee replacement. Malalignment of the prosthetic joint can lead to abnormal kinematics, unbalanced soft-tissues, and early loosening. Although there are no long term studies proving the clinical benefits of computer navigation in TKA, studies have shown that varus alignment of the tibial component is a risk factor for early loosening. A handheld, accelerometer based navigation unit for use in total knee replacement has recently become available to assist the surgeon in making the proximal tibial and distal femoral cuts. Studies have shown the accuracy to be comparable to large, console-based navigation units. Additionally, accuracy of cuts is superior to the use of traditional alignment guides, improving the percentage of cuts within 2 degrees of the desired alignment. Because the registration is based on the mechanical axis of the knee, anatomic variables such as femoral neck-shaft angle, femoral length, and presence of a tibial bow do not affect the results. The handheld aspect of this navigation unit allows its use without additional incisions or array attachment. Furthermore, the learning curve and usage time is minimal, supporting its use in primary TKA


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 57 - 57
1 Jan 2017
Goossens Q Pastrav L Leuridan S Mulier M Desmet W Denis K Vander Sloten J
Full Access

A large number of total hip arthroplasties (THA) are performed each year, of which 60 % use cementless femoral fixation. This means that the implant is press-fitted in the bone by hammer blows. The initial fixation is one of the most important factors for a long lasting fixation [Gheduzzi 2007]. It is not easy to obtain the point of optimal initial fixation, because excessively press-fitting the implant by the hammer blows can cause peak stresses resulting in femoral fracture. In order to reduce these peak stresses during reaming, IMT Integral Medizintechnik (Luzern, Switzerland) designed the Woodpecker, a pneumatic reaming device using a vibrating tool. This study explores the feasibility of using this Woodpecker for implant insertion and detection of optimal fixation by analyzing the vibrational response of the implant and Woodpecker. The press-fit of the implant is quantified by measuring the strain in the cortical bone surrounding the implant. An in vitro study is presented. Two replica femur models (Sawbones Europe AB, Malmo Sweden) were used in this study. One of the femur models was instrumented with three rectangular strain gauge rosettes (Micro-Measurements, Raleigh, USA). The rosettes were placed medially, posteriorly and anteriorly on the proximal femur. Five paired implant insertions were performed on both bone models, alternating between standard hammer blow insertions and using the Woodpecker. The vibrational response was measured during the insertion process, at the implant and Woodpecker side using two shock accelerometers (PCB Piezotronics, Depew, NY, USA). The endpoint of insertion was defined as the point when the static strain stopped increasing. Significant trends were observed in the bandpower feature that was calculated from the vibrational spectrum at the implant side during the Woodpecker insertion. The bandpower is defined as the percentage power of the spectrum in the band 0–1000 Hz. Peak stress values calculated from the strain measurement during the insertion showed to be significantly (p < 0.05) lower at two locations using the Woodpecker compared to the hammer blows at the same level of static strain. However, the final static strain at the endpoint of insertion was approximately a factor two lower using the Woodpecker compared to the hammer. A decreasing trend was observed in the bandpower feature, followed by a stagnation. This point of stagnation was correlated with the stagnation of the periprosthetic stress in the bone measured by the strain gages. The behavior of this bandpower feature shows the possibility of using vibrational measurements during insertion to assess the endpoint of insertion. However it needs to be taken into account that it was not possible to reach the same level of static strain using the Woodpecker as with the hammer insertion. This could mean that either extra hammer blows or a more powerful pneumatic device could be needed for proper implant insertion


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 51 - 51
1 Mar 2017
Timperley A Doyle F Whitehouse S
Full Access

Introduction. Improvements in function after THA can be evaluated using validated health outcome surveys but studies have shown that PROMs are unreliable in following the progress of individuals. Formal gait lab analysis is expensive, time consuming and fixed in terms of location. Inertial Measurement Units (IMUs) containing accelerometers and gyroscopes can determine aspects of gait kinematics in a portable package and can be used in the outpatient setting (Figure 1). In this study multiple metrics describing gait were evaluated pre- and post THA and comparisons made with the normal population. Methods. The gait of 55 patients with monarthrodial hip arthrosis was measured pre-operatively and at one year post-surgery. Patients with medical co-morbidity or other condition affecting their gait were excluded. Six IMUs aligned in the sagittal plane were attached at the level of the anterior superior iliac spines, mid-thigh and mid-shank. Data was analysed using proprietary software (Figure 2). Each patient underwent a conventional THA using a posterolateral approach. An identical test was performed one year after surgery. 92 healthy individuals with a normal observed gait were used as controls. Results. In the pre-operative test the range of movement in the sagittal plane of both the ipsilateral hip (mean range 20.4) and the contra-lateral non-diseased hip (35.3 degrees) was reduced compared to the control group (40.5 degrees), (P<0.001). The pre-operative range of motion of both knees was also reduced compared with normal (P<0.001). Pelvic movement on the ipsilateral side was increased. After one year the range of movement of the ipsilateral hip significantly improved (Mean range 28.9 deg SD 6.6) but did not attain normal values (P<0.001). Movement measured in the contralateral hip reduced further from its pre-operative value with a mean difference of −5.25 degrees (95% CI −8.06 to −2.43). Measurements of the symmetry of movement were increased. Knee movement on both sides increased but not to normal values (p<0.001). In contradistinction, there was bilateral increased coronal movement at the thigh and calf a year after surgery. Discussion and Conclusion. Gait after routine THA does not return to normal on the ipsilateral or contralateral side. Pathology in one hip causes bilateral gait abnormality that can be quantified by movement at the pelvis, hip, thigh and knee. The ability of a patient to walk normally after surgery will depend on many factors including details of the hip operation such as accurate recreation of the biomechanics of the joint and physical therapy regimens. Advances in technology now allow assessment of gait in large number of patients in the clinic setting and will better allow us to establish the important factors to improve patients gait and thereby potentially improve further satisfaction and PROMS scores. For any figures or tables, please contact authors directly (see Info & Metrics tab above).


Bone & Joint Open
Vol. 2, Issue 12 | Pages 1089 - 1095
21 Dec 2021
Luo W Ali MS Limb R Cornforth C Perry DC

Aims

The Patient-Reported Outcomes Measurement Information System (PROMIS) has demonstrated faster administration, lower burden of data capture and reduced floor and ceiling effects compared to traditional Patient Reported Outcomes Measurements (PROMs). We investigated the suitability of PROMIS Mobility score in assessing physical function in the sequelae of childhood hip disease.

Methods

In all, 266 adolscents (aged ≥ 12 years) and adults were identified with a prior diagnosis of childhood hip disease (either Perthes’ disease (n = 232 (87.2%)) or Slipped Capital Femoral Epiphysis (n = 34 (12.8%)) with a mean age of 27.73 years (SD 12.24). Participants completed the PROMIS Mobility Computer Adaptive Test, the Non-Arthritic Hip Score (NAHS), EuroQol five-dimension five-level questionnaire, and the Numeric Pain Rating Scale. We investigated the correlation between the PROMIS Mobility and other tools to assess use in this population and any clustering of outcome scores.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 141 - 141
1 Feb 2017
Goossens Q Leuridan S Pastrav L Mulier M Desmet W Denis K Vander Sloten J
Full Access

Introduction. Each year, a large number of total hip arthroplasties (THA) are performed, of which 60 % use cementless fixation. The initial fixation is one of the most important factors for a long lasting fixation [Gheduzzi 2007]. The point of optimal initial fixation, the endpoint of insertion, is not easy to achieve, as the margin between optimal fixation and a femoral fracture is small. Femoral fractures are caused by peak stresses induced during broaching or by the hammer blows when the implant is excessively press-fitted in the femur. In order to reduce the peak stresses during broaching, IMT Integral Medizintechnik (Luzern, Switzerland) designed the Woodpecker, a pneumatic broach that generates impulses at a frequency of 70 Hz. This study explores the feasibility of using the Woodpecker for implant insertion by measuring both the strain in the cortical bone and the vibrational response. An in vitro study is presented. Material and Methods. A Profemur Gladiator modular stem (MicroPort Orthopedics Inc. Arlington, TN, USA) and two artificial femora (composite bone 4th generation #3403, Sawbones Europe AB, Malmö, Sweden) were used. One artificial femur was instrumented with three rectangular strain gauge rosettes (Micro-Measurements, Raleigh, NC, USA). The rosettes were placed medially, posteriorly and anteriorly proximally on the cortical bone. Five paired implant insertions were repeated on both artificial bones, alternating between standard hammering and Woodpecker insertions. During the insertion processes the vibrational response was measured at the implant and Woodpecker side (fig. 1) using two shock accelerometers (PCB Piezotronics, Depew, NY, USA). Frequency spectra were derived from the vibrational responses. The endpoint of insertion was defined as the point when the static strain stopped increasing during the insertion. Results. Peak stress values calculated out of the strain measurement during the insertion showed to be significantly (p < 0.05) lower at two locations using the Woodpecker compared to the hammer blows at the same level of static strain. However, the final static strain at the endpoint of insertion was approximately a factor two lower using the Woodpecker compared to the hammer. During the last hammer insertion a fracture occurred, which was clearly visible in the frequency spectra. Figure 2 shows the sudden change between the spectra of the hit prior and after the fracture. Discussion/Conclusion. Peak stresses showed to be lower using the Woodpecker compared to hammer insertion, which is a promising result concerning fracture prevention. However it needs to be taken into account that it was not possible to reach the same level of static strain using the Woodpecker as with the hammer insertion. It is expected that the Woodpecker in its actual design is not able to reach a similar level of press-fit as hammer blows. Using vibrational data showed to be promising for fracture detection, as fractures are not always visible due to the soft tissue. For figures, please contact authors directly


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 123 - 123
1 Jan 2016
Layne CS Amador R Pourmoghaddam A Kreuzer S
Full Access

BACKGROUND. Hip arthroplasty is an ultimate treatment for individuals with severe hip osteoarthritis. There are several available approaches when performing this type of surgery, however there is a growing interest in using the least invasive procedures. These less invasive procedures aid in healthy bone preservation which may be particularly important for younger populations undergoing hip arthoplasy (Rajakulendran & Field, 2012). Accurate and reliable measurement techniques are needed to better study and monitor the outcome of different implantation techniques during the postop recovery. OBJECTIVES. To develop a better understanding of spatiotemporal aspects of gait pre- and post- hip arthroplasty through the anterior approach. METHODS. Six subjects treated with an anterior approach hip-arthroplasty were instructed to walk over a 30 foot walkway while wearing a lumbar gait sensor that is equipped with an accelerometer and gyroscope used to track changes in body position and hip angles. Subjects were tested before surgery, 3 and 6 weeks post-surgery, and 3 and 6 months post-surgery. The subjects were compared to healthy, age-matched controls. RESULTS. The use of this device enabled the measurement of consistent gait temporal characteristics throughout the different time points. It was found that spatiotemporal parameters improved as time progressed post-surgery. Furthermore, it is noted that the most substantial improvements were observed after the six week mark with a possible plateauing observed after the three month mark. The following figures illustrate the changes over time experienced by a subject. Their data is also compared to that of a healthy control. Figure 1 summarizes the 6-month follow up results of a female subject with anterior approach THA. CONCLUSIONS. The greatest improvements in performance were observed as early as 6 weeks post-surgery in some of the subjects. The data also suggests that improvements may plateau after 3 months post-surgery. These biomechanical findings may help with post-surgical physical activity and therapeutic recommendations as well as providing clinicians with a better prognosis time frame for the anterior approach hip arthroplasty


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 8 - 8
1 May 2016
Grimm B Lipperts M Senden R
Full Access

Introduction. The goal of total hip arthroplasty (THA) is to reduce pain, restore function but also activity levels for general health benefits or social participation. Thus evaluating THA patient activity can be important for diagnosis, indication, outcome assessment or biofeedback. Methods. Physical activity (PA) of n=100 primary THA patients (age at surgery 63 ±8yrs; 49M/51F; 170 ±8cm, 79.8 ±14.0kg) was measured at 8 ±3yrs follow-up. A small 3D accelerometer was worn for 4 successive days during waking hours at the non-affected lateral upper leg. Data was analyzed using validated algorithms (Matlab) producing quantitative (e.g. #steps, #transfers, #walking bouts) and qualitative (e.g. cadence, temporal distribution of events) activity parameters. An age matched healthy control group (n=40, 69 ±8yrs, 22M/18F) served as reference. Results. Daily steps were only 13% lower (n.s) for patients (avg. ±SD: 5989 ±3127) than controls (6890 ±2803). However, the Nr. of walking bouts (187 ±85 vs 223 ±78, −16%) and sit-stand transfers (35 ±14 vs 48 ±15, −27%) were sign. less in patients (p<0.05, Mann-Whitney). Patients showed equal amounts of walking bouts in medium duration (30–60s, 1–5min) but sign. less (−25%) short (<10s, 10–30s) and less (−43%) long events (>5min). This corresponds with sign. less (−32%) short sitting periods (>10min) in patients. Also cadence was sign. lower in patients (93.8 ±11.7 vs 98.9 ±7.3 steps/min). Conclusions. PA varies widely in patients with a substantial proportion (35%) being more active than average controls. Thus, THA must not per se reduce or limit PA. Only 17% of controls and 11% of patients reached the WHO target (10,000 steps/day) suggesting that the THA related drop in activity may inflate the risks for cardiovascular, metabolic or mental disease associated with low activity. Patients avoided short and long activities, both associated with effort (transfers, fatigue) and walked more slowly. Targeted interventions may address this behaviour. Objective clinical outcome assessment must focus on these parameters and not, as commercial fitness trackers may imply, total step counts alone


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 126 - 126
1 Feb 2015
Gustke K
Full Access

Fifteen-year survivorship studies demonstrate that total knee replacement have excellent survivorship, with reports of 85 to 97%. However, excellent survivorship does not equate to excellent patient reported outcomes. Noble et al reported that 14% of their patients were dissatisfied with their outcome with more than half expressing problems with routine activities of daily living. There is also a difference in the patient's subjective assessment of outcome and the surgeon's objective assessment. Dickstein et al reported that a third of total knee patients were dissatisfied, even though the surgeons felt that their results were excellent. Most of the patients who report lower outcome scores due so because their expectations are not being fulfilled by the total knee replacement surgery. Perhaps this dissatisfaction is a result of subtle soft tissue imbalance that we have difficulty in assessing intraoperatively and postoperatively. Soft tissue balancing techniques still rely on subjective feel for appropriate ligamentous tension by the surgeon. Surgical experience and case volume play a major role in each surgeon's relative skill in balancing the knee properly. New technology of “smart trials” with embedded microelectronics and accelerometers, used in the knee with the medial retinaculum closed, can provide dynamic, intraoperative feedback regarding knee and component alignment along with quantitative compartment pressures and component tracking. After visualising the resultant data on a graphical interface, the surgeon can decide whether to perform a soft tissue balance or redo the bone cuts. If soft tissue balancing is performed, the surgeon can assess the pressures effect of sequential soft tissue releases performed to balance the knee. A multi-center study using smart trials has demonstrated dramatically better outcomes at six months and one year


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 10 - 10
1 Jan 2017
Buil I Ahmadinezhad S Göertz Y Lipperts M Heyligers I Grimm B
Full Access

Besides eliminating pain, restoring activity is a major goal in orthopaedic interventions including joint replacement or trauma surgery following falls in frail elderly, both treatments of highest socio-economic impact. In joint replacement and even more so in frail elderly at risk of falling, turns are assessed in clinical tests such as the TUG (Timed Get-up-and-Go), Tinetti, or SPPB so that classifying turning movements in the free field with wearable activity monitors promises clinically valuable objective diagnostic or outcome parameters. It is the aim of this study to validate a computationally simple turn detection algorithm for a leg-worn activity monitor comprising 3D gyroscopes. A previously developed and validated activity classification algorithm for thigh-worn accelerometers was extended by adding a turn detection algorithm to its decision tree structure and using the 3D gyroscope of a new 9-axis IMU (56×40×15mm, 25g, f=50Hz,). Based on published principles (El-Gohary et al. Sensors 2014), the turn detection algorithm filters the x-axis (thigh) for noise and walking (Butterworth low-pass, 2. nd. order with a cut-off at 4Hz and 4. th. order with a cut-off at 0.3Hz) before using a rotational speed threshold of 15deg/s to identify a turn and taking the bi-lateral zero-crossings as start and stop markers to integrate the turning angle. For validation, a test subject wore an activity monitor on both thighs and performed a total of 57 turns of various types (walking, on-the-spot, fast/slow), ranges (45 to 360deg) and directions (left/right) in free order while being video-taped. An independent observer annotated the video so that the algorithmic counts could be compared to n=114 turns. Video-observation was compared to the algorithmic classification in a confusion matrix and the detection accuracy (true positives) was calculated. In addition, 4-day continuous activity measures from 4 test subjects (2 healthy, 2 frail elderly) were compared. Overall, only 5/114 turns were undetected producing a 96% detection accuracy. No false positives were classified. However, when detection accuracy was calculated for turning angle intervals (45°: 30–67.5°; 90°: 67.5–135°; 180°: 135–270°; 360°: 270–450°), accuracy for all interval classifications combined dropped to 83.3% with equal values for left and right turns. For the 180° and 360°, accuracy was 100% while for the shorter 45° and 90° turns accuracy was 75% and 71% only, mainly because subsequent turns were not separated. Healthy subjects performed between 470 (office worker) and 823 (house wife) turns/day while frail elderly scored 128 (high fall risk) to 487 turns/day (low fall risk). Turns/day and steps/day were not correlated. In healthy subjects ca. 50% of turns were in the 45° category compared to only ca. 35% in frail elderly. Turn detection for a thigh-worn IMU activity monitor using a computationally simple algorithm is feasible with high general detection accuracy. The classification and separation of subsequent short turns can be further improved. In multi-day measurement, turns/day and the distribution of short and long turns seem to be a largely independent activity parameter compared to step counts and may improve objective assessment of fall risk or arthroplasty outcome


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_8 | Pages 116 - 116
1 May 2014
Gustke K
Full Access

In a study by Dickstein, one-third of total knee patients were not satisfied even though they were all thought to have had successful results by their orthopaedic surgeons. Noble and Conditt's study showed 14% of patients dissatisfied with their outcome with more than half expressing problems with routine activities of daily living. This occurs despite improvements in instrumentation to obtain proper alignment and implants with excellent kinematics and wear characteristics. Perhaps this dissatisfaction is a result of subtle soft tissue imbalance. Soft tissue imbalance can result in almost a third of early TKR revisions. Soft tissue balancing techniques still rely on subjective feel for appropriate ligamentous tension by the surgeon. Surgical experience and case volume play a major role in each surgeon's relative skill in balancing the knee properly. New technology of “smart trials” with embedded microelectronics, used in the knee with the medial retinaculum closed, can provide dynamic, intraoperative feedback regarding quantitative compartment pressures and component tracking. While visualising a graphical interface, the surgeon can assess the effect of sequential soft tissue releases performed to balance the knee. These smart trials also have imbedded accelerometers used to confirm that one is balancing a properly aligned knee and to provide the option of doing small bony corrections rather than soft tissue releases to obtain balance. A multi-center study using smart trials is demonstrating dramatically better outcomes at six months


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 66 - 66
1 Jan 2017
Reeder I Lipperts M Heyligers I Grimm B
Full Access

Eliminating pain and restoring physical activity are the main goals of total hip arthroplasty (THA). Despite the high relevance of activity as a rehabilitation goal of and criterion for discharge, in-hospital activity between operation and discharge has hardly been investigated in orthopaedic patients. Therefore, the aim of this study was to a) measure for reference the level of in-hospital physical activity in patient undergoing a current rapid discharge protocol, b) compare these values to a conventional discharge protocol and c) test correlations with pre-operative activities and self-reported outcomes for possible predictors for rapid recovery and discharge. Patients (n=19, M:F: 5:14, age 65 ±5.7 years) with osteoarthritis treated with an elective primary THA underwent a rapid recovery protocol with discharge on day 3 after surgery (day 0). Physical activity was measured using a 3D accelerometer (64×25×13mm, 18g) worn on laterally on the unaffected upper leg. The signal was analysed using self-developed, validated algorithms (Matlab) calculating: Time on Feet (ToF), steps, sit-stand-transfers (SST), mean cadence (steps/min), walking bouts, longest walk (steps). For the in-hospital period (am: ca. 8–13h; pm: ca. 13–20h) activity was calculated for day 1 (D1) and 2 (D2). Pre-operative activity at home was reported as the daily averages of a 4-day period. Patient self-report included the HOOS, SQUASH (activity) and Forgotten Joint Score (FJS) questionnaires. In-hospital activity of this protocol was compared to previously collected data of an older (2011), standard conventional discharge protocol (day 4/5, n=40, age 71 ±7 years, M:F 16:24). All activity parameters increased continuously between in-hospital days and subsequent am and pm periods. E.g. Time-on-feet increased most steeply and tripled from 21.6 ±14.4min at D1am to 62.6 ±33.4min at D2pm. Mean Steps increased almost as steep from 252 to 655 respectively. SST doubled from 4.9 to 10.5. All these values were sign. higher (+63 to 649%) than the conventional protocol data. Cadence as a qualitative measure only increased slowly (+22%) (34.8 to 42.3steps/min) equalling conventional protocol values. The longest walking bout did not increase during the in-hospital period. Gender, age and BMI had no influence on in-hospital activity. High pre-op activity (ToF, steps) was a predictor for high in-hospital activity for steps and SST's at D2pm (R=0.508 to R=0.723). Pre-op self-report was no predictor for any activity parameter. In-hospital recovery of activity is steep following a cascade of easy (ToF) to demanding (SST) tasks to quality (cadence). High standard deviations show that recovering activity is highly individual possibly demanding personalised support or goals (feedback). Quantitative parameters were all higher in the rapid versus the conventional discharge protocol indicating that fast activation is possible and safe. Equal cadence for both protocols shows that functional capacity cannot be easily accelerated. Pre-op activity is only a weak predictor of in-hospital recovery, indicating that surgical trauma affects patients similarly, but subjects may be identified for personalized physiotherapy or faster discharge. Reference values and correlations from this study can be used to optimize or shorten in-hospital rehabilitation via personalization, pre-hab, fast-track surgery or biofeedback


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_12 | Pages 39 - 39
1 Jul 2014
Gustke K
Full Access

Fifteen-year survivorship studies demonstrate that total knee replacement has excellent survivorship, with reports of 85 to 97%. However, excellent survivorship does not equate to excellent patient reported outcomes. Noble et al. reported that 14% of their patients were dissatisfied with their outcome with more than half expressing problems with routine activities of daily living. There is also a difference in the patient's subjective assessment of outcome and the surgeon's objective assessment. Dickstein et al. reported that a third of total knee patients were dissatisfied, even though the surgeons felt that their results were excellent. Most of the patients who report lower outcome scores do so because their expectations are not being fulfilled by the total knee replacement surgery. Perhaps this dissatisfaction is a result of subtle soft tissue imbalance that we have difficulty in assessing intra- and post-operatively. Soft tissue balancing techniques still rely on subjective feel for appropriate ligamentous tension by the surgeon. Surgical experience and case volume play a major role in each surgeon's relative skill in balancing the knee properly. New technology of “smart trials” with embedded microelectronics, used in the knee with the medial retinaculum closed, can provide dynamic, intra-operative feedback regarding quantitative compartment pressures and component tracking. While visualising a graphical interface, the surgeon can assess the effect of sequential soft tissue releases performed to balance the knee. These smart trials also have embedded accelerometers used to confirm that one is balancing a properly aligned knee and to provide the option of doing small bony corrections rather than soft tissue releases to obtain balance. A multi-center study using smart trials is demonstrating dramatically better outcomes


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 196 - 196
1 Dec 2013
Pearce S Walter W Gillies M
Full Access

The design of the femoral prosthesis in cementless total hip arthroplasty is known to affect the initial strains in the cortex during implantation and in the early postoperative time period. High strains have a direct influence on periprosthetic fracture. This study compares the existing ABGII stem, which is proximally coated with a grit blasted titanium surface with hydroxyapatite coating with a prototype that has a rougher titanium plasma spray proximal coating. The Australian National Joint registry results 2011 reported the ABG2 femoral component cumulative percent revision (CPR) of 6.5 (93.5% survival), which compares favourably with equivalent stems with 10 year CPR data such as the Taperloc 6.6 and Corail 7.3. Six pairs of fresh-frozen cadaveric femurs were mounted in blocks according to ISO guidelines in single leg stance setup. Five strain gauges were attached around the neck of the femur and then prepared according to routine operative techniques to accept the femoral prosthesis. Cortical strains were measured during insertion of the prosthesis with an instrumented mallet attached to an accelerometer. Subsequently, force-displacement readings were taken during cyclical loading on a servo-hydraulic machine and finally the stems were tested to failure. Our results showed significantly less strain during cyclical loading of the stem with increased surface roughness (p < 0.05). They also showed no significant differences loads/strains during impaction (p = 0.159), no significant difference in micromotion (p = 0.148) and no significant difference in load-to-failure (p = 0.37)


Bone & Joint 360
Vol. 10, Issue 1 | Pages 24 - 28
1 Feb 2021


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 6 - 6
1 May 2016
Greene A Twiss T Wright T Flurin P Zuckerman J Stroud N
Full Access

Introduction. The General Social Survey estimates that 19 million Americans shoot firearms, with 10% of this population being over the age of 65. More reverse total shoulder arthroplasty (rTSA) are seeking to return to physical activity after surgery, but the effects of shooting a firearm on the fixation of a rTSA implant are unknown. This study will seek to examine the recoil effect of a firearm on a rTSA baseplate fixation, by recording the forces absorbed by a shooter and applying these forces to a rTSA implant assembly in laboratory conditions. Methods. A total of 5 shooters over a range of heights and bodyweights fired a single action 12 gauge shotgun with 3 ounce slugs 5 times each. An accelerometer was rigidly fixated to the barrel of the firearm to record impulse values upon firing. 8 reverse shoulder baseplate/glenosphere assemblies (Equinoxe, Exactech, Inc) were fixated to 15 lb/ft3 density rigid polyurethane bone substitute blocks for drop tower testing. Displacement was measured before and after testing using digital displacement indicators by applying a physiologically relevant 357N shear load parallel to the face of the glenosphere, and a nominal 50N compressive axial load perpendicular to the glenosphere as shown in Figure 1. Measurements were taken for the S/I axis, and the sample was rotated 90 degrees for the A/P axis. The glenosphere/baseplate assemblies were loaded in a drop tower apparatus at 0° of abduction and 90° flexion to replicate the orientation of the joint seen while shooting. The drop tower utilized a 1.079kg weight set at 8” with a rubber impulse specific materil between the weight and impactor to reproduce the highest average impulse seen in shooting. A total of 50 drops were performed, to simulate two rounds of trap shooting at 25 shots each. A Student's one-tailed, paired t-test was used to identify whether or not significant loosening occurred, where p<0.05 denoted a significant difference. Results. The average shooting values for each shooter are presented in Table 1. Displacement measurements in the A/P and S/I axes before and after drop tower testing are presented in Table 2. All 8 samples remained well fixed after drop tower testing, and neither A/P nor S/I directions showed significant difference in displacement (p≤.279, p≤.158) with an average displacement of 4 and 10 microns, respectively. Discussion and Conclusions. This testing replicates a worst case scenario, as the combination of both round size and number of shots taken is not likely to be paired together while shooting recreationally. Additionally, the foam block used mimics an immediate postoperative scenario, where in reality a patient is unlikely to shoot again until recovering from the procedure. Shooting form also seemed to play a role, as shots that were considered “poor form” recorded up to 30% higher recoil values than those with “good form”. For these reasons, early results indicate chance of implant loosening due to the forces from shooting firearms is low, especially if the patient is a former experienced shooter who wishes to return to the sport. To view tables/figures, please contact authors directly


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 9 - 9
1 May 2016
Grimm B Moonen M Lipperts M Heyligers I
Full Access

Introduction. Unicompartmental knee arthroplasty is in particular promoted for knee OA patients with high demands on function and activity. This study used wearable inertial sensors to objectively assess function during specific motion tasks and to monitor activities of daily living to verify if UKA permits better function or more activity in particular with demanding tasks. Methods. In this retrospective, cross-sectional study, UKA patients (Oxford, n=26, 13m/13f, age at FU: 66.5 ±7.6yrs) were compared to TKA patients (Vanguard, n=26, 13m/13f, age: 66.0 ±6.9yrs) matched for gender, age and BMI (29.5 ±4.6) at 5 years follow-up. Subjective evaluation of pain, function, physical activity and awareness of the joint arthroplasty was performed by means of four PROMs: VAS pain, KOOS-PS, SQUASH (activity) and Forgotten Joint Score (FJS),. Objective measurement of function was performed using a 3D inertia sensor attached to the sacrum while performing gait test, sit-stand and block-step tests. To derive functional parameters such as walking cadence or sway during transfers or step-up previously validated algorithms were used (Bolink et al., 2012). Daily physical activity was objectively monitored with a 3D accelerometer attached to the lateral side of the unaffected upper leg during four consecutive days. Activity parameters (counts and times of postures, steps, stairs, transfers, etc.) were also derived using validated algorithms. Data was analysed using independent T-test, Mann-Whitney U test and Pearson's correlation. Results. PROM's did not show any significant difference between UKA and TKA especially for the routinely used VAS-Pain and KOOS-PS (p>0.57) while higher (better) mean scores were recorded for UKA using more specialist measures such as self-reported activity (SQUASH; UKA vs TKA: 5659 ±3753 vs 4245 ±2489, p=0.12) and joint awareness (FJS; UKA vs TKA: 50.7 ±24.3 vs 41.4 ±29.2, p=0.08). Sensor based measures of function showed significantly higher walking cadence for UKA (107.9 ±10.5 steps/min) than TKA (102.2 ±10.9 steps/min, p=0.049). Other functional parameters also indicated better UKA function, e.g. forward sway during sit-stand (UKA vs TKA: 38.0 ±13.2 deg vs 43.2 ±10.7 deg, p=0.06). The wearable activity monitors showed that UKA patients perform significantly more steps downwards on stairs or slopes (89.0 ±77.4) than TKA patients (46.9 ±51.3, p=0.03). Other, less demanding activity counts such as daily steps (6522 vs 6343, p=0.85) or sit-stand transfers (39.4 vs 42.3, p=0.37) were not different. Discussion and Conclusion. PROM's could not differentiate UKA from TKA although more specialist or demanding scores such SQUASH (activity) or FJS (joint awareness) seem to have more power. Objective assessment could show for UKA faster cadence and more steps down on stairs and slopes, indicating that UKA benefits functional quality and enables demanding activities. Objective measures of function and activity may be required in routine clinical follow-up to provide evidence and wearable sensors may facilitate this


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXI | Pages 23 - 23
1 May 2012
S. B K. R D. B J. O
Full Access

Studies on soil mechanics have established that when vibration is applied to an aggregate, it results in more efficient alignment of particles and reduces the energy required to impact the aggregate. Our aim was to develop a method of applying vibration to the bone impaction process and assess its effect on the mechanical properties of the impacted graft. Phase 1. Eighty bovine femoral heads were milled using the Noviomagus bone mill. The graft was then washed using a pulsed lavage normal saline system over a sieve tower. A vibration impaction device was developed which housed two 15V DC motors with eccentric weights attached inside a metal cylinder. A weight was dropped onto this from a set height 72 times so as to replicate the bone impaction process. A range of frequencies of vibration were tested, as measured using an accelerometer housed in the vibration chamber. Each shear test was then repeated at four different normal loads so as to generate a family of stress-strain curves. The Mohr-Coulomb failure envelope from which the shear strength and interlocking values are derived was plotted for each test. Phase 2. Experiments were repeated with the addition of blood so as to replicate a saturated environment as is encountered during operative conditions. Relatively dry graft impacted with the addition of vibration showed improved shear strength at all frequencies of vibration when compared to impaction without vibration. In our system the optimal frequency of vibration was 60 Hz. Under saturated conditions the addition of vibration is detrimental the shear strength of the aggregate. This is secondary to decreased interlocking between particles and may be explained by the process of liquefaction


The Bone & Joint Journal
Vol. 103-B, Issue 7 Supple B | Pages 91 - 97
1 Jul 2021
Crawford DA Lombardi AV Berend KR Huddleston JI Peters CL DeHaan A Zimmerman EK Duwelius PJ

Aims

The purpose of this study is to evaluate early outcomes with the use of a smartphone-based exercise and educational care management system after total hip arthroplasty (THA) and demonstrate decreased use of in-person physiotherapy (PT).

Methods

A multicentre, prospective randomized controlled trial was conducted to evaluate a smartphone-based care platform for primary THA. Patients randomized to the control group (198) received the institution’s standard of care. Those randomized to the treatment group (167) were provided with a smartwatch and smartphone application. PT use, THA complications, readmissions, emergency department/urgent care visits, and physician office visits were evaluated. Outcome scores include the Hip disability and Osteoarthritis Outcome Score (HOOS, JR), health-related quality-of-life EuroQol five-dimension five-level score (EQ-5D-5L), single leg stance (SLS) test, and the Timed Up and Go (TUG) test.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 475 - 475
1 Nov 2011
To G Mahfouz M
Full Access

Body motion tracking for kinematic study is typically done with optical sensors. The user wears markers and the cameras track them to compute the transformation of the motion frame by frame. This method requires a set up of multiple motion capturing cameras and it can only be done within the specific area. The goal of this project is to create a tracking unit that does not require expensive overhead and can be done in any location. The advancement in micro-machined microelectromechanical system (MEMS) sensors such as accelerometer, gyroscope and magnetometers can be used for human motion tracking. The unit is attached to a body segment or an external housing unit such as a knee brace. The orientation of the unit can be calculated based on the data from all 3 of the sensors. A complementary filter is used to fuse the data together to generate a single Euler angle matrix. Relative motion between the joint can be calculated from the output of 2 of the measuring units. The sensors are calibrated with an average static orientation error of +/−0.7 degree and standard deviation of 1.8 degrees. The dynamic orientation error of rotating around a single axis is 2.38, 0.15 and 0.517 degrees with standard deviation of 0.99, 0.98 and 0.7 degree for roll, pitch and yaw respectively. The initial design shows good result for human body motion tracking. The performance of the unit can be further improved with optimizing the filter and using the data from different type of the sensors to compensate each other


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 235 - 236
1 May 2009
Glazebrook M Amirault J Arsenault K Hennigar A Raizah A Trask K
Full Access

The purpose of this study is to assess the clinical outcome and gait analysis of a new technique for ankle arthrodesis using a Fibular Sparing Z Osteotomy (FSZO). The FSZO technique for ankle arthrodesis utilises a lateral approach where the fibula is osteotomised and reflected posteriorly on a soft tissue hinge to allow easy access to the ankle joint for an anatomic arthrodesis. Outcome assessment at six months follow up included health related quality of life (SF36) and joint specific (American Orthopedic Foot and Ankle Society Ankle-Hindfoot, Ankle Osteoarthritis Scale, Foot Function Index) clinical outcome scores. Gait Analysis was completed using the Walkabout Portable Gait Monitor® which includes a wireless gait belt housing a triaxial arrangement of accelerometers, resting behind the lumbar vertebrae, approximately at position of centre of mass to quatintfy surgery, lurch and functional limb length difference (LLD). There was a significant improvement in the health related quality of life and the joint specific clinical outcome scores at six months follow up. The six month gait study preliminary analysis showed improvement in some parameters of gait but worsening in others. The FSZO ankle arthrodesis technique provides improvement in clinical outcome scores and certain gait parameters at early follow up


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 489 - 490
1 Nov 2011
Hendrick P Hale L Bell M Milosavljevic S Hurley-Osing D McDonough S Baxter D
Full Access

Background: Activity advice and prescription are commonly used in the management of low back pain (LBP). However, no research has assessed whether objective measurements of physical activity predict outcome, recovery and course of LBP. Methods: One hundred and one patients with acute LBP were recruited into a longitudinal cohort study. Each participant completed the Roland Morris Disability Questionnaire (RMDQ), Visual Analogue Scale and a “simple” activity question, detailing whether they had resumed full “normal” activities (Y/N), at baseline (T0) and 3 months (T1); Baecke Physical Activity Questionnaire, Fear-Avoidance Beliefs Questionnaire and the 12-item General Health Questionnaire at T0. Physical activity was measured for 7 days at T0 and T1 with an RT3 accelerometer and the seven day physical activity recall questionnaire (7d-PAR). Results: The only significant predictor of RMDQ change was RMDQ score at T0 (p < .0001). Physical activity change did not predict RMDQ change in both univariate (p = 0.82) and multivariate analysis (p = 0.84). Paired t-tests found a significant change in RMDQ (p < .0001) and return to full “normal” activities (p < .0001) from T0 to T1, but no significant change in activity levels measured with the RT3 (p = 0.56) or the 7d-PAR (p = 0.43). RMDQ change (OR 1.72, p = 0.01) and RMDQ at T1 (OR 0.65, p = 0.04) predicted return to full “normal” activities at T1. Conclusions: These results question the role of physical activity in LBP recovery and the assumption that activity levels change as LBP symptoms resolve. Conflicts of Interest: None. Sources of Funding: This research was supported by a University of Otago Establishment Grant


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 489 - 489
1 Nov 2011
McDonough S Hunter R Tully M Walsh D Dhamija S McCann S Liddle S Glasgow P Paterson C Gormley G Hurley D Delitto A Park J Bradbury I Baxter G
Full Access

Background and Purpose: Current clinical guidelines recommend supervised exercise as a first-line treatment in the management of low back pain (LBP). To date studies have not used objective forms of measuring changes in free-living physical activity (FLPA). The aim of this study was to compare FLPA between two groups who received either supervised exercise and auricular acupuncture (EAA) or exercise alone (E). Methods: 51 patients with non-specific LBP [mean±SD=42.8±12.4 years] wore an accelerometer for 7 days at baseline, end of the intervention (week 8) and follow up (week 25). FLPA variables were extracted: % time (hours) spent in postures; daily step count and cadence. Data were analysed using SPSS (v15). Repeated measures ANCOVA were performed using a mixed linear model. Results: There was no difference in daily step count between the two groups at any time point (E, mean±SD, week 1, 8197±2187; week 8, 8563±2438, week 25, 8149±2800; EAA, mean±SD, week 1, 8103±1942; week 8, 8010±2845, week 25, 8139±1480, p=0.9) or cadence. No differences in postures were noted, apart from time sitting/lying which was shorter at week 25 in the E group (p=0.006). Conclusions & Implications: Supervised exercise classes, with or without acupuncture, do not produce changes in FLPA in the short term or longer term in people with LBP. This suggests more effective ways should be sought to encourage the patient to incorporate activity into their daily lives. These findings have informed the design of two walking intervention trials for LBP patients. Conflict of Interest: None. Sources of Funding: Research and Development Office, Northern Ireland, Strategic Priority Fund, Department of Employment and Learning, Northern Ireland


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 106 - 106
1 Dec 2013
Kluess D Ruther C Gabler C Mittelmeier W Bader R
Full Access

Clinically applied methods of assessing implant fixation and implant loosening are of sub-optimal precision, leading to the risk of unsecure indication of revision surgery and late recognition of bone defects. Loosening diagnosis involving measuring the eigenfrequencies of implants has its roots in the field of dentistry. The changing of the eigenfrequencies of the implant-bone-system due to the loosening state can be measured as vibrations or structure-borne sound. In research, vibrometry was studied using an external shaker to excite the femur-stem-system of total hip replacements and to measure the resulting frequencies by integrated accelerometers or by ultrasound. Since proper excitation of implant components seems a major challenge in vibrometry, we developed a non-invasive method of internal excitation creating an acoustic source directly inside the implant. In the concept proposed for clinical use, an oscillator is integrated in the implant, e.g. the femoral stem of a total hip replacement. The oscillator consists of a magnetic or magnetisable spherical body which is fixed on a flat steel spring and is excited electromagnetically by a coil placed outside the patient. The oscillator impinges inside the implant and excites this to vibrate in its eigenfrequency. The excitation within the bending modes of the implant leads to a sound emission to the surrounding bone and soft tissue. The sound waves are detected by an acoustic sensor which is applied on the patient's skin. Differences in the signal generated result from varying level of implant fixation. The sensor principle was tested in porcine foreleg specimens with a custom-made implant. Influence of the measurement location at the porcine skin and different levels of fixation were investigated (press-fit, slight loosening, advanced loosening) and compared to the pull-out strength of the implant. Evaluation of different parameters, especially the frequency spectrum resulted in differences of up to 12% for the comparison between press-fit and slight loosening, and 30% between press-fit and advanced loosening. A significant correlation between the measured frequency and the pull-out strength for different levels of fixation was found. Based on these findings, an animal study with sensor-equipped bone implants was initiated using a rabbit model. The implants comprised an octagonal cross-section and were implanted into a circular drill hole at the distal femur. Thereby, definite gaps were realized between bone and implant initially. After implantation, the bone growth around the implant started and the gaps were successively closed over postoperative period. Consequently, since the tests had been started with a loose implant followed by its bony integration, a reverse loosening situation was simulated. In weekly measurements of the eigenfrequencies using the excitation and sensor system, the acoustic signals were followed up. Finally, after periods of 4 and 12 weeks after implantation, the animals were sacrificed and pull-out tests of the implants were performed to measure the implant fixation. The measured implant fixation strengths at the endpoint of each animal trial were correlated with the acoustic signals recorded


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_II | Pages 339 - 340
1 May 2010
Van den Akker-Scheek I Stevens M Zijlstra W Groothoff J Bulstra S
Full Access

Introduction: Gait before and after total hip arthroplasty (THA) is often determined by walking at preferred speed. However gait function comprises more than just walking at preferred speed. The objective is to describe recovery of gait after THA based on the assessment of spatio-temporal gait parameters determined with an ambulatory system whereby an extended test protocol is used. Materials and Methods: Sixty-three patients participating in a short-stay program for primary unilateral THA were assessed preoperatively and at 6 weeks and 6 months postoperatively. The spatiotemporal gait parameters walking speed, step length, step duration and variability coefficient (VC) were determined with an ambulatory system using accelerometers. The test protocol contained walking at different speeds, walking while performing an additional cognitive task, and an endurance test. Results: Patients improved significantly over time; however, the extent and speed of recovery of gait parameters was different for each test part. The relation between walking speed and step length showed systematic improvement when analyzed over a range of speeds. At 6 months, the VC of the additional cognitive task part was comparable with the preferred walking VC. The endurance test results could be predicted from the results of preferred walking. Conclusion: The assessment of the recovery of gait function requires more than only the assessment of ‘normal’ walking. Particularly, an analysis of walking at different speeds and walking while performing an additional cognitive task demonstrate different aspects of gait recovery after THA


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 503 - 503
1 Nov 2011
Luthi F Favre J Aminian K Siegrist O Jolles B
Full Access

Purpose of the study: Reconstruction of the anterior cruciate ligament (ACL) controls laxity but does not enable restoration of strictly normal 3D kinematics. The purpose of this study was to compare the kinematics of the pathological knee with that of the healthy knee after ACL plasty. This study applied a new ambulatory system using miniature captors. Material and method: Five patients with an isolated injury of the ACL participated in this study. The patients were assessed after injury (T1), at five months (T2), and at 14 months (T3) after surgery. The assessment included laxity (KT-1000), the IKDC score and the Lysholm score. The 3D angles of the knees were measured when walking 30 m on flat ground using a system composed of to small inertia units (3D accelerometer and 3D gyroscope) and a portable recorder. Functional settings were optimised and validating to ensure easy precise measurement of the 3D angles. Symmetry of the two knees was quantified using a symmetry index (SI) (difference in amplitude normalised in relation to mean amplitude) and the correlation coefficient CC. Results: Clinical indicators improved during the follow-up (IKDC T1: 3C, 2C; T2: 5B; T3: 2A, 3B; subjective IKD: 53–95; Lysholm 67–96). Mean laxity improved from 8.6m to 2.5 mm. The gait analysis showed increased symmetry in terms of amplitude for flexion-extension (SI: −17% at T1, −1% at T2, 1% at T3), and an increase in symmetry in terms of the rotation signature (CC: 0.16 at T1, 0.99 at T2, 0.99 at T3). There was no trend to varus-valgus. Discussion: This study demonstrates the clinical application of the new ambulatory system for measuring 3D angles of the knee joint. Joint symmetry increased after ACL plasty but still showed some perturbation at 14 months. The results observed here are in agreement with the literature. Other patients and other types of gait are being analysed. Conclusion: This portable system allows gait analysis outside the laboratory, before and after ACL injury. It is very useful for follow-up after surgery


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 3 - 12
1 Jun 2021
Crawford DA Duwelius PJ Sneller MA Morris MJ Hurst JM Berend KR Lombardi AV

Aims

The purpose is to determine the non-inferiority of a smartphone-based exercise educational care management system after primary knee arthroplasty compared with a traditional in-person physiotherapy rehabilitation model.

Methods

A multicentre prospective randomized controlled trial was conducted evaluating the use of a smartphone-based care management system for primary total knee arthroplasty (TKA) and partial knee arthroplasty (PKA). Patients in the control group (n = 244) received the respective institution’s standard of care with formal physiotherapy. The treatment group (n = 208) were provided a smartwatch and smartphone application. Early outcomes assessed included 90-day knee range of movement, EuroQoL five-dimension five-level score, Knee Injury and Osteoarthritis Outcome Score for Joint Replacement (KOOS JR) score, 30-day single leg stance (SLS) time, Time up and Go (TUG) time, and need for manipulation under anaesthesia (MUA).


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 235 - 235
1 Mar 2010
O’Donoghue G van Mechelen W Tully M Moffett JK Daly L Boreham C McDonough S Hurley D
Full Access

Background & Purpose: Clinical guidelines support physical activity for people with chronic low back pain (CLBP); walking is an ideal form of physical activity as it is easy to do, requires no special skills and is achievable by virtually all ages with little risk of injury but there are no current evidence-based structured walking programmes (WP) for this population. The purpose of this study was to develop a WP for CLBP patients in preparation for a proposed randomized controlled trial. Methods: An 8-week structured WP was developed using Intervention Mapping (IM) principles:. literature review,. 4 focus groups (n=18 CLBP patients),. Physiotherapist Interviews (n=4), and then pilot-tested in a consenting sample of 10 CLBP patients [n=5 male, 5 female; mean (SD)= 50.5 (12.6) years], who completed the 10-metre Shuttle Walk Test, Oswestry Disability Index, NRS, Euro-Qol, Fear Avoidance, Back Beliefs, International Physical Activity and Self-Efficacy Questionnaires, at baseline and 8-week follow-up, and wore the activPAL™ accelerometer for 7 days pre and post intervention. Results: Both the CLBP patients and physiotherapists interviewed endorsed walking as a suitable form of physical activity, and identified possible barriers as fear avoidance, exacerbation of pain, behavioural change, motivation, time, personal safety and adverse weather. The pilot study found 90% compliance with the WP. Descriptive analysis of change scores showed improvements at 8-weeks in all self reported outcomes and objectively measured physical activity and functional capacity. Conclusion: Intervention Mapping was successfully used to develop a WP intervention for chronic LBP, the efficacy of which is being evaluated in a randomized controlled trial


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 45 - 46
1 Mar 2010
Brennan S Brabazon D O’Byrne J
Full Access

Introduction: At the time of revision hip surgery, large bony defects are often encountered. The traditional method of replacing this lost bone is by the impaction bone grafting technique. Vibration is commonly used in civil engineering to improve compaction of aggregate particles and to increase the compressive and shear strengths of the aggregate. Studies on soil mechanics have established that vibration applied to an aggregate results in more efficient alignment of particles and reduces the energy required to impact the aggregate. In this in-vitro study we have developed a novel method of applying vibration to the bone impaction process. Methods: 60 Bovine femoral heads were cut into quarters and then milled using the Noviomagnus manual bone mill. Fat and blood were then removed using a pulsed lavage normal saline system over a sieve tower. A vibration impaction device was developed which housed two 15V DC motors with eccentric weights attached inside a metal cylinder. A weight was dropped onto this from a set height 72 times so as to replicate the bone impaction process. The bone graft underlying this was thus impacted into a pellet, with or without the aid of vibration. A range of frequencies of vibration were tested, as measured using an accelerometer housed in the vibration chamber. Each shear test was then repeated at four different normal loads so as to generate a family of stress-strain graphs. The Mohr-Coulomb failure envelope from which the shear strength and interlocking vales are derived was plotted for each test. Results: Graft impacted with the addition of vibration at 60Hz was significantly more resistant to shearing force than graft impacted without vibration (p< 0.03). Testing at 20 and 40 Hz showed no statistical difference (p=0.62, p=0.42). Conclusion: Civil engineering principles hold true for the impaction bone grafting procedure. The best frequency of vibration to enhance the mechanical properties of the aggregate is in the region of 60Hz


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 193 - 193
1 Sep 2012
Lipperts M Grimm B Van Asten W Senden R Van Laarhoven S Heyligers I
Full Access

Introduction. In orthopaedics, clinical outcome assessment (COA) is still mostly performed by questionnaires which suffer from subjectivity, a ceiling effect and pain dominance. Real life activity monitoring (AM) holds the promise to become the new standard in COA with small light weight and easy to use accelerometers. More and more activities can be identified by algorithms based on accelerometry. The identification of stair climbing for instance is important to assess the participation of patients in normal life after an orthopaedic procedure. In this study we validated a custom made algorithm to distinguish normal gait, ascending and descending stairs on a step by step basis. Methods. A small, lightweight 3D-accelerometer taped to the lateral side of the affected (patients) or non-dominant (healthy subjects) upper leg served as the activity monitor. 13 Subjects (9 patients, 4 healthy) walked a few steps before descending a flight stairs (20 steps with a 180o turn in the middle), walked some steps more, turned around and ascended the same stairs. Templates (up, down and level) were obtained by averaging and stretching the vertical acceleration in the 4 healthy subjects. Classification parameters (low pass (0.4 Hz) horizontal (front-back) acceleration and the Euclidian distance between the vertical acceleration and each template) were obtained for each step. Accuracy is given by the percentage of correctly classified steps. Results. In total the subjects took 537 (41+/-8 mean+/-std) steps, 525 of which were correctly identified as step. 12 Steps were not detected, and 2 steps were incorrectly identified as step. Per subject the accuracy of the classification algorithm ranged from 57% to 97%. In only 2 subjects the accuracy was less than 75%, giving an overall accuracy of 85%. Discussion. In literature algorithms able to identify walking the stairs and normal walking have been reported with an accuracy in the range of 80–95%1,2. Our algorithm falls well within this range, and can be even further improved. The low accuracy in two subjects can be explained by the fact that the sensor was placed more to the front of the leg, which influences the low-pass horizontal acceleration. Using a combination of front-back and left-right acceleration could possibly solve this problem. In the future we are confident to identify also other activities and even distinguish different types of stair climbing (i.e. taking a step with each leg versus only taking steps with the unaffected leg and ‘dragging’ the second leg) and obtain more specific activity profiles to be used in clinical outcome assessment


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 234 - 234
1 Mar 2010
Hurley D Brady L O’Brien E McDonough S Baxter G Heneghan C
Full Access

Background & Purpose: Current clinical guidelines support physical activity programmes for people with low back pain (LBP), but a major factor limiting their efficacy is the patient’s level of adherence, difficult to assess using self-report, and the lack of objective data on activity levels in this population. This study investigated differences in the self-report and objective activity levels of LBP patients and age-matched controls. Methods: 20 patients with non-specific LBP [5 male, 15 female; mean (SD) age = 43.2 (12.1) years] and 20 healthy controls [10 male, 10 female; mean (SD) age = 39.6 (10.9) years] wore the activPAL™ uniaxial accelerometer on the anterior thigh during waking hours for 7 days, and completed the 7-Day Physical Activity Recall Questionnaire (7DRQ). Data were analysed using SPSS (v12). Results: There was no difference between groups in energy expenditure as measured by the 7DRQ (p> 0.05), but the activPAL™ data showed LBP subjects expended significantly less energy than controls (p=0.004) over the 7-day period, and failed to reach the recommended 10,000 steps per day [mean (SD) = 8067.9 steps (2581.7)] compared to controls [mean (SD)= 10,864 (3,570.3); t = 2.84, p=0.007)]. The LBP subjects also had a significantly lower mean cadence (p=0.004), a lower walking index (p=0.001), and took significantly more short walks (0–100 steps) and less long walks (> 100 steps) than controls (p< 0.05). Conclusions & Implications: People with LBP are less physically active than age-matched controls, and this is more evident with objective than subjective evaluation. These findings have informed the design of a targeted walking programme for LBP patients


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 247 - 247
1 Jul 2011
Kemp KAR Dunbar MJ Livingston LA Hennigar A
Full Access

Purpose: Despite their inclusion within clinical practice, standardized radiographs may not accurately project an individual’s level of function and mobility. The purpose of this study is to examine the potential relationship between established radiographic features and lurch; a functional measure of asymmetric gait, in a group of patients who will receive total hip arthroplasty (THA). Method: Thirty-two patients (16 females, 16 males) identified as hip replacement candidates were recruited, with a mean age of 57.0 years. Lurch was obtained using the Walkabout Portable Gait Monitor (WPGM); a wireless, triaxial accelerometry device. The independent variables were comprised of the Kellgren-Lawrence Scale, and a collection of standard radiographic features, as adopted by the American Academy of Orthopaedic Surgeons (AAOS), the National Institutes of Health (NIH), and the World Health Organization (WHO). Radiographs were blinded, and the surgeon completing the rating scale was unaware of patient’s lurch values. Age-adjusted regression analyses were used to examine the potential association between each radiographic feature and lurch. Results: Increased amounts of lurch (i.e. functional impairment) were independently associated with higher Kellgren-Lawrence Scale scores (p=.047), increased Joint Space Narrowing in the mid-portion of the joint (zone 2; p=.004), the presence of acetabular wear (p=.045), an increased severity of subchondral femoral head cysts (p=.004), and higher surgeon-rated Visual Analog Scale scores for overall severity of joint degeneration (p=.008). Lurch was not significantly associated with the remaining 10 features which were examined. Further analyses revealed that lurch was not significantly associated with certain demographic factors, including sex, Body Mass Index, and co-morbid health conditions. Conclusion: Although the Kellgren-Lawrence scale was associated with an objective measure of gait, our results indicate that other radiographic features may provide a more accurate prediction of gait performance among this patient population. As lurch appears to be a robust objective measure of physical impairment, which is unaffected by BMI and co-morbidities, we believe that portable triaxial accelerometers can likely be used to conveniently collect objective gait data. This functional data may be used to supplement clinical efforts to screen and prioritize appropriate hip arthroplasty patients


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 508 - 508
1 Oct 2010
Verlaan L Grimm B Heyligers I Senden R
Full Access

Modern orthopaedics increasingly demands objective functional outcome assessment beyond classic scores and tests suffering from subjectivity, pain dominance and ceiling effects. Inertia based motion analysis (IMA) is a simple method and validated for gait in knee arthroplasty patients. This study investigates whether IMA assessed stair climbing can distinguish between healthy and pathological subjects and is able to diagnose a meniscal tear (MT). Following standard physical examination (McMurray, rotation pain), 37 patients (18–72yrs) received arthroscopy suspecting a meniscal tear resulting from trauma, degeneration or both. Arthroscopy identified the presence or absence of MT and the osteoarthritis level (Outerbridge). Prior to arthroscopy, the ascending and descending five stairs twice at preferred speed and without the use of handrails was measured using a triaxial accelerometer (62×41×18mm; m=53g; f=100Hz) taped to the sacrum. Based on peak detection algorithms, temporal motion parameters were derived such as step time up and down (Tup, Tdown), the difference between step time up and down (Tup-down), step irregularity (step time difference of subsequent steps) and step asymmetry (step time difference between affected and non-affected leg). Patients were compared to a control group of 100 healthy subjects (17–81yrs) without any known orthopaedic pathology. Using the results of arthroscopy, test sensitivity and specificity for differentiating healthy and pathologic subjects and for diagnosing MT were calculated based on threshold values. Sensitivity and specificity for detecting pathological motion was 0.68 (CI 0.50–0.81) and 0.92 for the most sensitive parameter (Tdown). Sensitivity and specificity to detect MT was 0.74 and 0.25 percent overall compared to 0.53 and 0.50 for the McMurray. Sensitivity increased to 1.00 when MT was combined with a chondropathy scale III or IV (McMurray 0.33). IMA assessed stair climbing can distinguish healthy and pathological subjects and detect the presence of MT with better sensitivity than classic scores especially when combined with severe chondropathy. IMA is a simple and fast clinical outcome measure suitable for routine follow-up and may support the diagnosis of meniscal tears prior to arthroscopy