header advert
Results 1 - 100 of 257
Results per page:
Bone & Joint Research
Vol. 6, Issue 3 | Pages 123 - 131
1 Mar 2017
Sasaki T Akagi R Akatsu Y Fukawa T Hoshi H Yamamoto Y Enomoto T Sato Y Nakagawa R Takahashi K Yamaguchi S Sasho T

Objectives. The aim of this study was to investigate the effect of granulocyte-colony stimulating factor (G-CSF) on mesenchymal stem cell (MSC) proliferation in vitro and to determine whether pre-microfracture systemic administration of G-CSF (a bone marrow stimulant) could improve the quality of repaired tissue of a full-thickness cartilage defect in a rabbit model. Methods. MSCs from rabbits were cultured in a control medium and medium with G-CSF (low-dose: 4 μg, high-dose: 40 μg). At one, three, and five days after culturing, cells were counted. Differential potential of cultured cells were examined by stimulating them with a osteogenic, adipogenic and chondrogenic medium. A total of 30 rabbits were divided into three groups. The low-dose group (n = 10) received 10 μg/kg of G-CSF daily, the high-dose group (n = 10) received 50 μg/kg daily by subcutaneous injection for three days prior to creating cartilage defects. The control group (n = 10) was administered saline for three days. At 48 hours after the first injection, a 5.2 mm diameter cylindrical osteochondral defect was created in the femoral trochlea. At four and 12 weeks post-operatively, repaired tissue was evaluated macroscopically and microscopically. Results. The cell count in the low-dose G-CSF medium was significantly higher than that in the control medium. The differentiation potential of MSCs was preserved after culturing them with G-CSF. Macroscopically, defects were filled and surfaces were smoother in the G-CSF groups than in the control group at four weeks. At 12 weeks, the quality of repaired cartilage improved further, and defects were almost completely filled in all groups. Microscopically, at four weeks, defects were partially filled with hyaline-like cartilage in the G-CSF groups. At 12 weeks, defects were repaired with hyaline-like cartilage in all groups. Conclusions. G-CSF promoted proliferation of MSCs in vitro. The systemic administration of G-CSF promoted the repair of damaged cartilage possibly through increasing the number of MSCs in a rabbit model. Cite this article: T. Sasaki, R. Akagi, Y. Akatsu, T. Fukawa, H. Hoshi, Y. Yamamoto, T. Enomoto, Y. Sato, R. Nakagawa, K. Takahashi, S. Yamaguchi, T. Sasho. The effect of systemic administration of G-CSF on a full-thickness cartilage defect in a rabbit model MSC proliferation as presumed mechanism: G-CSF for cartilage repair. Bone Joint Res 2017;6:123–131. DOI: 10.1302/2046-3758.63.BJR-2016-0083


Objectives. Previously, we reported the improved transfection efficiency of a plasmid DNA-chitosan (pDNA-CS) complex using a phosphorylatable nuclear localization signal-linked nucleic kinase substrate short peptide (pNNS) conjugated to chitosan (pNNS-CS). This study investigated the effects of pNNS-CS-mediated miR-140 and interleukin-1 receptor antagonist protein (IL-1Ra) gene transfection both in rabbit chondrocytes and a cartilage defect model. Methods. The pBudCE4.1-miR-140, pBudCE4.1-IL-1Ra, and negative control pBudCE4.1 plasmids were constructed and combined with pNNS-CS to form pDNA/pNNS-CS complexes. These complexes were transfected into chondrocytes or injected into the knee joint cavity. Results. High IL-1Ra and miR-140 expression levels were detected both in vitro and in vivo. In vitro, compared with the pBudCE4.1 group, the transgenic group presented with significantly increased chondrocyte proliferation and glycosaminoglycan (GAG) synthesis, as well as increased collagen type II alpha 1 chain (COL2A1), aggrecan (ACAN), and TIMP metallopeptidase inhibitor 1 (TIMP-1) levels. Nitric oxide (NO) synthesis was reduced, as were a disintegrin and metalloproteinase with thrombospondin type 1 motif 5 (ADAMTS-5) and matrix metalloproteinase (MMP)-13 levels. In vivo, the exogenous genes reduced the synovial fluid GAG and NO concentrations and the ADAMTS-5 and MMP-13 levels in cartilage. In contrast, COL2A1, ACAN, and TIMP-1 levels were increased, and the cartilage Mankin score was decreased in the transgenic group compared with the pBudCE4.1 group. Double gene combination produced greater efficacies than each single gene, both in vitro and in vivo. Conclusion. This study suggests that pNNS-CS is a good candidate for treating cartilage defects via gene therapy, and that IL-1Ra in combination with miR-140 produces promising biological effects on cartilage defects. Cite this article: R. Zhao, S. Wang, L. Jia, Q. Li, J. Qiao, X. Peng. Interleukin-1 receptor antagonist protein (IL-1Ra) and miR-140 overexpression via pNNS-conjugated chitosan-mediated gene transfer enhances the repair of full-thickness cartilage defects in a rabbit model. Bone Joint Res 2019;8:165–178. DOI: 10.1302/2046-3758.83.BJR-2018-0222.R1


Objectives. The lack of effective treatment for cartilage defects has prompted investigations using tissue engineering techniques for their regeneration and repair. The success of tissue-engineered repair of cartilage may depend on the rapid and efficient adhesion of transplanted cells to a scaffold. Our aim in this study was to repair full-thickness defects in articular cartilage in the weight-bearing area of a porcine model, and to investigate whether the CD44 monoclonal antibody biotin-avidin (CBA) binding technique could provide satisfactory tissue-engineered cartilage. Methods. Cartilage defects were created in the load-bearing region of the lateral femoral condyle of mini-type pigs. The defects were repaired with traditional tissue-engineered cartilage, tissue-engineered cartilage constructed with the biotin-avidin (BA) technique, tissue-engineered cartilage constructed with the CBA technique and with autologous cartilage. The biomechanical properties, Western blot assay, histological findings and immunohistochemical staining were explored. Results. The CBA group showed similar results to the autologous group in biomechanical properties, Moran’s criteria, histological tests and Wakitani histological scoring. Conclusions. These results suggest that tissue-engineered cartilage constructed using the CBA technique could be used effectively to repair cartilage defects in the weight-bearing area of joints. Cite this article: H. Lin, J. Zhou, L. Cao, H. R. Wang, J. Dong, Z. R. Chen. Tissue-engineered cartilage constructed by a biotin-conjugated anti-CD44 avidin binding technique for the repairing of cartilage defects in the weight-bearing area of knee joints in pigs. Bone Joint Res 2017;6:–295. DOI: 10.1302/2046-3758.65.BJR-2016-0277


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 8 | Pages 1160 - 1163
1 Aug 2010
Patrascu JM Freymann U Kaps C Poenaru DV

Microfracture is frequently used as the first line of treatment for the repair of traumatic cartilage defects. We present the clinical and histological results 18 months to two-years after treatment in a 26-year-old male with a post-traumatic chondral defect of the medial femoral condyle managed by microfracture covered with chondrotissue, a cell-free cartilage implant made of a resorbable polyglycolic acid felt and hyaluronic acid


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 105 - 105
1 Mar 2006
Fritz J Albrecht D Schewe B Krackhardt T Gaissmaier C Weise K
Full Access

Introduction: Within the last few years numerous operative procedures have been described aiming a biological repair of damaged articular cartilage. Current techniques are: Microfracture, Osteochondral Autografting (Mosaicplasty) and Autologous Chondrocyte Transplantation (ACT). Several new studies have shown, that the defect size plays a major role in the clinical outcome of the different procedures. Thus, it makes sense to measure the size of a cartilage defect before indicating a certain method for biological repair. Material and Methods: We have developed a software (beta-version) for measuring the size of a cartilage defect during a routine arthroscopy in a real-time mode. The programme is based on an Infrared-Navigation tool (Orthopilot, B.Braun-Aesculap, Germany). In order to proof the reliability and the usefulness of this device, we carried out following study: in each of 6 cadaver-knees we performed 2 full-thickness cartilage defects (MFC and LFC) of different size. In a first run 3 surgeons had to scope the joint and estimate the defect size with means of a scaled probe-hook. In a second run we performed a measurement of the defect with the Orthopilot™; finally an open measurement after arthrotomy was done to act as reference. Results: Measurement of the cartilage defect size was clearly superior to an estimation by probehook. Especially the inter-observer difference between the surgeons was widely spread, whereas the max. mismeasurement with the Orthopilot was 2mm. Discussion: Our study has shown, that navigational-assisted determination of chondral defects is superior to a simple estimation of a defect size by a probehook. Considering that the defect size is a crucial point in choosing the appropriate procedure for the treatment of cartilage defects, navigation devices like the CDM-software is maybe a helpful tool in making the right decision for a suitable method of biological cartilage repair


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 4 | Pages 499 - 503
1 Apr 2009
Kircher J Patzer T Magosch P Lichtenberg S Habermeyer P

We describe the outcome at a mean follow-up of 8.75 years (7.6 to 9.8) of seven patients who had undergone osteochondral autologous transplantation for full-thickness cartilage defects of the shoulder between 1998 and 2000. These patients have been described previously at a mean of 32.6 months when eight were included. One patient has been lost to follow-up. The outcome was assessed by the Constant shoulder score and the Lysholm knee score to assess any donor-site morbidity. Standard radiographs and MR scores were obtained and compared with the pre-operative findings and the results from the previous review. No patient required any further surgery on the shoulder. The mean Constant score improved significantly until the final follow-up (p = 0.018). The Lysholm score remained excellent throughout. There was a significant progression of osteoarthritic changes from the initial surgery to the first and final follow-up but this did not appear to be related to the size of the defect, the number of cylinders required or the Constant score (p = 0.016). MRI showed that all except one patient had a congruent joint surface at the defect with full bony integration of all osteochondral cylinders. The results have remained satisfactory over a longer period with very good objective and subjective findings


Bone & Joint Research
Vol. 10, Issue 3 | Pages 192 - 202
1 Mar 2021
Slimi F Zribi W Trigui M Amri R Gouiaa N Abid C Rebai MA Boudawara T Jebahi S Keskes H

Aims

The present study investigates the effectiveness of platelet-rich plasma (PRP) gel without adjunct to induce cartilage regeneration in large osteochondral defects in a rabbit model.

Methods

A bilateral osteochondral defect was created in the femoral trochlear groove of 14 New Zealand white rabbits. The right knees were filled with PRP gel and the contralateral knees remained untreated and served as control sides. Some animals were killed at week 3 and others at week 12 postoperatively. The joints were harvested and assessed by Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) MRI scoring system, and examined using the International Cartilage Repair Society (ICRS) macroscopic and ICRS histological scoring systems. Additionally, the collagen type II content was evaluated by the immunohistochemical staining.


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 2 | Pages 289 - 294
1 Mar 2001
Im G Kim D Shin J Hyun C Cho W

In 16 mature New Zealand white rabbits mesenchymal stem cells were aspirated from the bone marrow, cultured in monolayer and implanted on to a full-thickness osteochondral defect artificially made on the patellar groove of the same rabbit. A further 13 rabbits served as a control group. The rabbits were killed after 14 weeks. Healing of the defect was investigated histologically using haematoxylin and eosin and Safranin-O staining and with immunohistochemical staining for type-II collagen. We also used a reverse transcription-polymerase chain reaction (RT-PCR) to detect mRNA of type-I and type-II collagen. The semiquantitative histological scores were significantly higher in the experimental group than in the control group (p < 0.05). In the experimental group immunohistochemical staining on newly formed cartilage was more intense for type-II collagen in the matrix and RT-PCR from regenerated cartilage detected mRNA for type-II collagen in mature chondrocytes. These findings suggest that repair of cartilage defects can be enhanced by the implantation of cultured mesenchymal stem cells


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_I | Pages 17 - 17
1 Mar 2002
Jansson V Müller PE
Full Access

In an experimental study in rabbits, bone and cartilage regeneration could be achieved with a new class of resorbable bio-implants. These implants consist of an open porous structure made from polylacitdes and an open porous fleece made from polyglactin/polydioxanon. Both layers were not separated from each other, thus allowing mesenchymal cells to penetrate freely from bone into both the bone substitute and the cartilage substitute layer. It could be shown that ostochondral defects of 4mm diameter and 6mm depth in the condyle of the knee of rabbits healed by the process of mesenchymal cell differentiation into osteocytes and chondrocytes triggered by mechanical load induction only. Evaluation of the newly formed cartilage by light microscopy and immunohistology showed hyaline like features. However, in many clinical cases chondral defects occur without substantial accompanying bone loss. In these situations, reconstruction of the cartilage defects only seems to be sufficient. However, fixation of such fleeces onto the bone is difficult. On one hand, adherence of the fleece to the underlying bone is crucial, on the other hand an open connection from the bone to the fleece must be accomplished in order to allow mesenchymal cells to penetrate the fleece. Therefor, any kind of glue fixation is not appropriate. To overcome this problem, a new fixation method was developed which allows a safe connection of the fleece onto the bone while providing an open contact of the fleece to the bone marrow for unhampered migration of mesenchymal cells. The new “Cartilage patches” consist of a fleece (serving as the cartilage substitute layer) made from polyglactin/polydioxanon which had proven its applicability in the above mentioned experiments. Fixation of fleece was achieved by “darts” which were glued onto the fleece. The darts were made from polylacitdes, thus providing sufficient mechanical stability in the bone. During operation, small holes are cut into the bone by a special instrument. The holes are located in such a way that the darts of the cartilage patch fit into them, such resulting in a stable fixation of the fleece onto the underlying bone. Blood containing mesenchymal cells from the bone marrow is able to flow from the holes into the fleece. In a biomechanical analysis the adherence of the cartilage patches were tested with respect to shear resistance and pull-out stabillity. The results of the tests show that the new cartilage patches withstand the mechanical stress exerted onto articular surfaces and can serve as a new class of cartilage substitute layers. In an animal experiment the applicability of the cartilage patches in reconstruction of cartilage defects in the knee joint of sheep will be proven


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 2 | Pages 237 - 244
1 Mar 2002
Gautier E Kolker D Jakob RP

We reviewed retrospectively 11 patients who had been treated surgically by open autologous osteochondral grafting for symptomatic chondral or osteochondral defects of the dome of the talus between 1996 and 1999. The mean ages of the eight men and three women were 34.2 and 25.9 years, respectively, with a mean time to follow-up of 24 months. The results of functional outcome were prospectively obtained using the MODEMS AAOS foot and ankle follow-up questionnaire, the AOFAS ankle-hindfoot scale and the Hannover scores for the ankle.

The grafts were harvested from the ipsilateral knee. Good to excellent results were obtained for the ankle without adverse effects on the knee. We believe that autologous osteochondral grafting should be considered for the patient with a symptomatic osteochondral defect of the talus.


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 4 | Pages 571 - 578
1 May 2002
Ochi M Uchio Y Kawasaki K Wakitani S Iwasa J

We investigated the clinical, arthroscopic and biomechanical outcome of transplanting autologous chondrocytes, cultured in atelocollagen gel, for the treatment of full-thickness defects of cartilage in 28 knees (26 patients) over a minimum period of 25 months. Transplantation eliminated locking of the knee and reduced pain and swelling in all patients. The mean Lysholm score improved significantly. Arthroscopic assessment indicated that 26 knees (93%) had a good or excellent outcome. There were few adverse features, except for marked hypertrophy of the graft in three knees, partial detachment of the periosteum in three and partial ossification of the graft in one. Biomechanical tests revealed that the transplants had acquired a hardness similar to that of the surrounding cartilage. We conclude that transplanting chondrocytes in a newly-formed matrix of atelocollagen gel can promote restoration of the articular cartilage of the knee


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 1 | Pages 62 - 67
1 Jan 2012
Aurich M Hofmann GO Mückley T Mollenhauer J Rolauffs B

We attempted to characterise the biological quality and regenerative potential of chondrocytes in osteochondritis dissecans (OCD). Dissected fragments from ten patients with OCD of the knee (mean age 27.8 years (16 to 49)) were harvested at arthroscopy. A sample of cartilage from the intercondylar notch was taken from the same joint and from the notch of ten patients with a traumatic cartilage defect (mean age 31.6 years (19 to 52)). Chondrocytes were extracted and subsequently cultured. Collagen types 1, 2, and 10 mRNA were quantified by polymerase chain reaction. Compared with the notch chondrocytes, cells from the dissecate expressed similar levels of collagen types 1 and 2 mRNA. The level of collagen type 10 message was 50 times lower after cell culture, indicating a loss of hypertrophic cells or genes. The high viability, retained capacity to differentiate and metabolic activity of the extracted cells suggests preservation of the intrinsic repair capability of these dissecates. Molecular analysis indicated a phenotypic modulation of the expanded dissecate chondrocytes towards a normal phenotype. Our findings suggest that cartilage taken from the dissecate can be reasonably used as a cell source for chondrocyte implantation procedures.


Bone & Joint Research
Vol. 10, Issue 8 | Pages 474 - 487
2 Aug 2021
Duan M Wang Q Liu Y Xie J

Transforming growth factor-beta2 (TGF-β2) is recognized as a versatile cytokine that plays a vital role in regulation of joint development, homeostasis, and diseases, but its role as a biological mechanism is understood far less than that of its counterpart, TGF-β1. Cartilage as a load-resisting structure in vertebrates however displays a fragile performance when any tissue disturbance occurs, due to its lack of blood vessels, nerves, and lymphatics. Recent reports have indicated that TGF-β2 is involved in the physiological processes of chondrocytes such as proliferation, differentiation, migration, and apoptosis, and the pathological progress of cartilage such as osteoarthritis (OA) and rheumatoid arthritis (RA). TGF-β2 also shows its potent capacity in the repair of cartilage defects by recruiting autologous mesenchymal stem cells and promoting secretion of other growth factor clusters. In addition, some pioneering studies have already considered it as a potential target in the treatment of OA and RA. This article aims to summarize the current progress of TGF-β2 in cartilage development and diseases, which might provide new cues for remodelling of cartilage defect and intervention of cartilage diseases


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 15 - 15
1 Mar 2021
Dalal S Setia P Debnath A Guro R Kotwal R Chandratreya A
Full Access

Abstract. Background. Recurrent patellar dislocation in combination with cartilage injures are difficult injuries to treat with confounding pathways of treatment. The aim of this study is to compare the clinical and functional outcomes of patients operated for patellofemoral instability with and without cartilage defects. Methods. 82 patients (mean age-28.8 years) with recurrent patellar dislocations, who underwent soft-tissue or bony procedures, were divided into 2 matched groups (age, sex, follow-up and type of procedure) of 41 each based on the presence or absence of cartilage defects in patella. Chondroplasty, microfracture, osteochondral fixation or AMIC-type procedures were done depending on the nature of cartilage injury. Lysholm, Kujala, Tegner and Subjective Knee scores of both groups were compared and analysed. Complications and return to theatre were noted. Results. With a mean follow-up of 8 years (2 years-12.3 years), there was a significant improvement observed in all the mean post-operative Patient Reported Outcome Measures (p<0.05) of both the groups, as compared to the pre-operative scores. Comparing the 2 groups, post-operative Lysholm, Kujala and Subjective knee scores were significantly higher in patients operated without cartilage defects (p<0.05). 3 patients operated for PFJ instability with cartilage defects had to undergo patellofemoral replacement in the long term. Odds ratio for developing complications is 2.6 for patients operated with cartilage defects. Conclusion. Although there is a significant improvement in the long term outcome scores of patients operated for recurrent patellar dislocation with cartilage defects, the results are significantly inferior as compared to those without cartilage defects, along with a higher risk of developing complications and returning to theatre. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 45 - 45
1 Dec 2020
Dalal S Setia P Debnath A Guro R Kotwal R Chandratreya A
Full Access

Background. Recurrent patellar dislocation in combination with cartilage injures are difficult injuries to treat with confounding pathways of treatment. The aim of this study is to compare the clinical and functional outcomes of patients operated for patellofemoral instability with and without cartilage defects. Methods. 82 patients (mean age-28.8 years) with recurrent patellar dislocations, who underwent soft-tissue or bony procedures, were divided into 2 matched groups (age, sex, follow-up and type of procedure) of 41 each based on the presence or absence of cartilage defects in patella. Chondroplasty, microfracture, osteochondral fixation or Autologous Matrix-Induced Chondrogenesis(AMIC)-type procedures were done depending on the nature of cartilage injury. Lysholm, Kujala, Tegner and Subjective Knee scores of both groups were compared and analysed. Complications and return to theatre were noted. Results. With a mean follow-up of 8 years (2 years-12.3 years), there was a significant improvement observed in all the mean post-operative Patient Reported Outcome Measures (p<0.05) of both the groups, as compared to the pre-operative scores. Comparing the 2 groups, post-operative Lysholm, Kujala and Subjective knee scores were significantly higher in patients operated without cartilage defects (p<0.05). 3 patients operated for patellofemoral instability with cartilage defects had to undergo patellofemoral replacement in the long term. Odds ratio for developing complications is 2.6 for patients operated with cartilage defects. Conclusion. Although there is a significant improvement in the long term outcome scores of patients operated for recurrent patellar dislocation with cartilage defects, the results are significantly inferior as compared to those without cartilage defects, along with a higher risk of developing complications and returning to theatre


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 35 - 35
17 Nov 2023
Timme B Biant L McNicholas M Tawy G
Full Access

Abstract. Objectives. Little is known about the impact of cartilage defects on knee joint biomechanics. This investigation aimed to determine the gait characteristics of patients with symptomatic articular cartilage lesions of the knee. Methods. Gait analyses were performed at the Regional North-West Joint Preservation Centre. Anthropometric measurements were obtained, then 16 retroreflective markers representing the Plug-in-Gait biomechanical model were placed on pre-defined anatomical landmarks. Participants walked for two minutes at a self-selected speed on a treadmill on a level surface, then for 2 minutes downhill. A 15-camera motion-capture system recorded the data. Knee kinematics were exported into Matlab to calculate the average kinematics and spatiotemporal parameters per patient across 20 gait cycles. Depending on the normality of the data, paired t-tests or Wilcoxon ranked tests were performed to compare both knees (α = 0.05). Results. 20 patients participated; one of whom has bilateral cartilage defects. All 20 data sets were analysed for level walking; 18 were analysed for downhill walking. On a level surface, patients walked at an average speed of 3.1±0.8km/h with a cadence of 65.5±15.3 steps/minute. Patients also exhibited equal step lengths (0.470±0.072m vs 0.471±0.070m: p=0.806). Downhill, the average walking speed was 2.85±0.5km/h with a cadence of 78.8±23.1 steps/minute and step lengths were comparable (0.416±0.09m vs 0.420±0.079m: p=0.498). During level walking, maximum flexion achieved during swing did not differ between knees (54.3±8.6° vs 55.5±11.0°:p=0.549). Neither did maximal extension achieved at heel strike (3.1±5.7° vs 5.4±4.7°:p=0.135). On average, both knees remained in adduction throughout the gait cycle, with the degree of adduction greater in flexion in the operative knee. However, differences in maximal adduction were not significant (22.4±12.4° vs 18.7±11.0°:p=0.307). Maximal internal-external rotation patterns were comparable in stance (0.9±7.7° vs 3.5±9.8°: p=0.322) and swing (7.7±10.9° vs 9.8±8.3°:p=0.384). During downhill walking, maximum flexion also did not differ between operative and contralateral knees (55.38±10.6° vs 55.12±11.5°:p=0.862), nor did maximum extension at heel strike (1.32±6.5° vs 2.73±4.5°:p=0.292). No significant difference was found between maximum adduction of both knees (15.87±11.0° vs 16.78±12.0°:p=0.767). In stance, differences in maximum internal-external rotation between knees were not significant (5.39±10.7° vs 6.10±11.8°:p=0.836), nor were they significant in swing (7.69±13.3° vs 7.54±8.81°:p=0.963). Conclusions. Knee kinematics during level and downhill walking were symmetrical in patients with a cartilage defect of the knee, but an increased adduction during flexion in the operative knee may lead to pathological loading across the medial compartment of the knee during high flexion activities. Future work will investigate this further and compare the data to a healthy young population. We will also objectively assess the functional outcome of this joint preservation surgery to monitor its success. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


The Bone & Joint Journal
Vol. 96-B, Issue 11_Supple_A | Pages 11 - 16
1 Nov 2014
Khanna V Tushinski DM Drexler M Backstein DB Gross AE Safir OA Kuzyk PR

Cartilage defects of the hip cause significant pain and may lead to arthritic changes that necessitate hip replacement. We propose the use of fresh osteochondral allografts as an option for the treatment of such defects in young patients. Here we present the results of fresh osteochondral allografts for cartilage defects in 17 patients in a prospective study. The underlying diagnoses for the cartilage defects were osteochondritis dissecans in eight and avascular necrosis in six. Two had Legg-Calve-Perthes and one a femoral head fracture. Pre-operatively, an MRI was used to determine the size of the cartilage defect and the femoral head diameter. All patients underwent surgical hip dislocation with a trochanteric slide osteotomy for placement of the allograft. The mean age at surgery was 25.9 years (17 to 44) and mean follow-up was 41.6 months (3 to 74). The mean Harris hip score was significantly better after surgery (p < 0.01) and 13 patients had fair to good outcomes. One patient required a repeat allograft, one patient underwent hip replacement and two patients are awaiting hip replacement. Fresh osteochondral allograft is a reasonable treatment option for hip cartilage defects in young patients. Cite this article: Bone Joint J 2014;96-B(11 Supple A):11–16


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 45 - 45
1 Oct 2016
Niu J Henckel J Hart A Liu* C
Full Access

Osteoarthritis (OA) affects bone cartilage and underlying bone. Mechanically, the underlying bone provides support to the healthy growth of the overlying cartilage. However, with the progress of OA, bone losses and cysts occur in the bone and these would alter the biomechanical behaviour of the joint, and further leading to bone remodelling adversely affect the overlying cartilage. Human femoral head and femoral condyle were collected during hip or knee replacement operation due to the end stage of osteoarthritis (age 50–70), and the cartilage patches were graded and marked. A volunteer patient, with minor cartilage injury in his left knee while the right knee is intact, was used as control. Peripheral quantitative computed tomography (pQCT) was used to scan the bone and to determine the volumetric bone mineral density (vBMD) distribution. The examination of retrieved tissue explants from osteoarthritic patients revealed that patches of cartilage were worn away from the articular surface, and patches of intact cartilage were left. The cysts, ranging from 1 to 10mm were existed in all osteoarthritic bones, and were located close to cartilage defects in the weight-bearing regions, and closely associated with the grade of cartilage defect as measured by pQCT. The bone mineral density (vBMD) distribution demonstrated that the bones around cysts had much higher vBMD than the trabecular bone away from the cysts. Compared to the subchondral bone under thicker cartilage, subchondral bone within cartilage defect has higher vBMD. This may result from the mechanical stimulation as a result of bone-bone direct contact with less protection of cartilage in cartilage defect regions. This study showed an association between cartilage defect and subchondral bone mineral density distribution. Cysts were observed in all osteoarthritic samples and they are located close to cartilage defects in the weight-bearing regions. Cartilage defect altered the loading pattern of the joints, this leading to the bone remodelling and resultant bone structural changes as compared to the normal bone tissues. This work was financially supported by The ARUK Proof of Concept Award (grant no: 21160)


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 111 - 111
4 Apr 2023
Ding Y Wu C Li S Sun Y Lin S Wen Z Ouyang Z
Full Access

Osteoarthritis (OA), the most prevalent chronic joint disease, represents a relevant social and economic burden worldwide. Human umbilical cord mesenchymal stem cells (HUCMSCs) have been used for injection into the joint cavity to treat OA. The aim of this article is to clarify whether Huc-MSCs derived exosomes could inhibit the progression of OA and the mechanism in this process. A rabbit OA model was established by the transection of the anterior cruciate ligament. The effects of HUCMSCs or exosomes derived from HUCMSCs on repairing articular cartilage of knee osteoarthritis was examined by micro-CT. Immunohistochemical experiments were used to confirm the expression of relevant inflammatory molecules in OA. In vitro experiments, Transwell assay was used to assess the migration of macrophages induced by TNF-a. Results showed that a large number of macrophages migrated in arthcular cavity in OA model in vivo, while local injection of HUCMSCs and exosomes did repair the articular cartilage. Immunohistochemical results suggested that the expression of CCL2 and CD68 in the OA rabbit model increased significantly, but was significantly reduced by HUCMSCs or exosomes. Transwell assay showed that both HUCMSCs and exosomes can effectively inhibit the migration of macrophage. In conclusion, the exosomes derived by HUCMSCs might might rescue cartilage defects in rabbit through its anti-inflammatory effects through inhibiting CCL2


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 29 - 29
23 Jun 2023
Briem T Stadelmann VA Rüdiger HA Leunig M
Full Access

Femoroacetabular impingement is a prearthritic deformity frequently associated with early chondral damage. Several techniques exist for restoring larger cartilage defects. While AMIC proved to be an effective treatment in knee and ankle, there are only short-term data available in hip. This study aimed to investigate the mid-term clinical outcome of patients with chondral lesions treated by AMIC and evaluate the quality of repair tissue via MRI. This retrospective, single center study includes 18 patients undergoing surgical hip dislocation for FAI between 2013 and 2016. Inclusion criteria were: cam or pincer-type FAI, femoral or acetabular chondral lesions > 1 cm. 2. , (IRCS III-IV). Due to exclusion criteria and loss-to-follow-up 9 patients (10 hips) could be included. Patient reported outcome measures included Oxford Hip Score (OHS) & Core Outcome Measure Index (COMI)). MRIs were evaluated using the Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) score. None of the patients underwent revision surgery except screw removals from the greater trochanter. Followup data indicate a satisfactory to good hip function at 5 years: PROMS improved from pre- to postop at 5 years: OHS from 38.1 to 43.4, COMI from to 1.8 and UCLA from 4 to 8.1 respectively. MOCART score was 67.5 postoperatively. Subgrouping showed slightly better results for acetabular defects (Ø 69.4) compared femoral defects (Ø 60). Based on the reported mid-term results, we consider AMIC as a valuable treatment option for larger chondral defects of the hip


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 30 - 30
1 Dec 2020
Haartmans M Eveque-Mourroux M Eijkel G Emanuel K Tuijthof G van Rhijn L Heeren R Emans P Cillero-Pastor B
Full Access

The incidence of osteoarthritis (OA) is increasing in our younger population. OA development early in life is often related to cartilage damage, caused by (sport) injury or trauma. Detection of early knee OA is therefore crucial to target early treatment. However, early markers for OA prognosis or diagnosis are lacking. Hoffa's fat pad (HFP) is an emerging source for knee biomarkers, as it is easily accessible and shows important interaction with the homeostasis of the knee. In this study, we used Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) as a first approach. MALDI-MSI allows the study of tissue-specific molecular distributions. Therefore, we used MALDI-MSI to analyze the lipid profiles in the HFP of three patients with OA and three patients undergoing cartilage regenerative treatment. We demonstrate that the lipid profile of patients with OA is different from patients with cartilage defects. HFP of each patient were snap frozen directly after surgical resection and cryosectioned at 15 μm. Each slide was sublimed with Norharmane matrix and analyzed by MALDI-MSI in positive and negative ion modes at a lateral resolution of 50 μm on a RapifleX Tissue Typer. The difference between patient groups were analyzed using principle component analysis and linear discriminant analysis. Lipid identifications were obtained on an Orbitrap Elite™ Hybrid Ion Trap-Orbitrap Mass Spectrometer in data dependent acquisition mode and analyzed using Lipostar software. Linear discriminant analysis showed a specific lipid profile for each group (variance 33.94%). Score projections revealed a differential lipid spatial distribution of OA patients compared to cartilage defect patients. Among the lipids that differed significantly, for instance, the m/z 760.59 [M+H]. +. was associated to osteoarthritis and identified as glycerophospholipid (PC 34:1), a main component of biological membranes. Additionally, the samples were found to be intra-tissue heterogeneous, with molecular profiles found in adipose-, connective- and synovial tissue. These results suggest that lipid profiles in HFP could be useful for early OA detection. However, intra-tissue heterogeneity in HFP should be recognized when using HFP as a biomarker source


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 75 - 75
7 Aug 2023
Mackay N Bausch N McGoldrick N Krishnan H Shah F Smith N Thompson P Metcalfe A Spalding T
Full Access

Abstract. Background. Osteochondral allograft (OCA) transplantation is a clinically and cost-effective option for symptomatic cartilage defects. In 2017 we initiated a program for OCA transplantation for complex chondral and osteochondral defects as a UK tertiary referral centre. Aim. To characterise the complications, re-operation rate, graft survivorship and clinical outcomes of knee OCA transplantation. Methodology. Analysis of a prospectively maintained database of patients treated with primary OCA transplantation from 2017 to 2021 with a minimum of one-year follow-up. Patient reported outcome measures (PROMs), complications, re-operations and failures were evaluated. Results. 37 patients with 37 knee OCA procedures were included (mean age 31.6 years [16–49 years]). Mean BMI 26.6 kg/m2 (19.1–35.9 kg/m2). The mean chondral defect size was 3cm2 (1.2–7.3 cm2). Mean duration of follow-up was 3.1 years (1–5.3 years). 16 patients underwent meniscal allograft transplantation (MAT), 6 underwent osteotomy and 4 underwent ligament reconstruction as concurrent procedures. Significant improvements in mean PROMs were noted at 12 months. 16 patients had reoperations of which 5 had more than one surgery. Of these patients 6 were related to OCA (mainly debridement and revision OCA in one patient), and the remainder were related to additional procedures including removal of plate in 2 patients. The overall failure rate was 1 in 37 patients (3%). Conclusions. Early experience of OCA as a treatment option for complex chondral and osteochondral lesions in the knee shows satisfactory results. The reoperation rate is high but at mean follow-up of 3.1 years the survival rate was 97%


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 69 - 69
17 Apr 2023
Day G Jones A Mengoni M Wilcox R
Full Access

Autologous osteochondral grafting has demonstrated positive outcomes for treating articular cartilage defects by replacing the damaged region with a cylindrical graft consisting of bone with a layer of cartilage, taken from a non-loadbearing region of the knee. Despite positive clinical use, factors that cause graft subsidence or poor integration are relatively unknown. The aim of this study was to develop finite element (FE) models of osteochondral grafts within a tibiofemoral joint and to investigate parameters affecting osteochondral graft stability. Initial experimental tests on cadaveric femurs were performed to calibrate the bone properties and graft-bone frictional forces for use in corresponding FE models, generated from µCT scan data. The effects of cartilage defects and osteochondral graft repair were measured by examining contact pressure changes using in vitro tests on a single cadaveric human tibiofemoral joint. Six defects were created in the femoral condyles which were subsequently treated with osteochondral autografts or metal pins. Matching µCT scan-based FE models were created, and the contact patches were compared. Sensitivity to graft bone properties was investigated. The bone material properties and graft-bone frictional forces were successfully calibrated from the initial tests with good resulting levels of agreement (CCC=0.87). The tibiofemoral joint experiment provided a range of cases to model. These cases were well captured experimentally and represented accurately in the FE models. Graft properties relative to host bone had large effects on immediate graft stability despite limited changes to resultant cartilage contact pressure. Model confidence was built through extensive validation and sensitivity testing, and demonstrated that specimen-specific properties were required to accurately represent graft behaviour. The results indicate that graft bone properties affect the immediate stability, which is important for the selection of allografts and design of future synthetic grafts. Acknowledgements. Supported by the EPSRC-EP/P001076


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 123 - 123
2 Jan 2024
Gögele C Müller S Wiltzsch S Lenhart A Schäfer-Eckart K Schulze-Tanzil G
Full Access

The regenerative capacity of hyaline cartilage is greatly limited. To prevent the onset of osteoarthritis, cartilage defects have to be properly treated. Cartilage, tissue engineered by mean of bioactive glass (BG) scaffolds presents a promising approach. Until now, conventional BGs have been used mostly for bone regeneration, as they are able to form a hydroxyapatite (HA) layer and are therefore, less suited for cartilage reconstruction. The aim of this study is to compare two BGs based on a novel BG composition tailored specifically for cartilage (CAR12N) and patented by us with conventional BG (BG1393) with a similar topology. The highly porous scaffolds consisting of 100% BG (CAR12N, CAR12N with low Ca2+/Mg2+ and BG1393) were characterized and dynamically seeded with primary porcine articular chondrocytes (pACs) or primary human mesenchymal stem cells (hMSCs) for up to 21 days. Subsequently, cell viability, DNA and glycosaminoglycan contents, cartilage-specific gene and protein expression were evaluated. The manufacturing process led to a comparable high (over 80%) porosity in all scaffold variants. Ion release and pH profiles confirmed bioactivity for them. After both, 7 and 21 days, more than 60% of the total surfaces of all three glass scaffold variants was densely colonized by cells with a vitality rate of more than 80%. The GAG content was significantly higher in BG1393 colonized with pACs. In general, the GAG content was higher in pAC colonized scaffolds in comparison to those seeded with hMSCs. The gene expression of cartilage-specific collagen type II, aggrecan, SOX9 and FOXO1 could be detected in all scaffold variants, irrespectively whether seeded with pACs or hMSCs. Cartilage-specific ECM components could also be detected at the protein level. In conclusion, all three BGs allow the maintenance of the chondrogenic phenotype or chondrogenic differentiation of hMSCs and thus, they present a high potential for cartilage regeneration


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_7 | Pages 44 - 44
1 Jul 2022
Aujla R Scanlon J Raymond A Ebert J Lam L Gohill S D'Alessandro P
Full Access

Abstract. Introduction. The incidence of significant acute chondral injuries with patella dislocation is around 10–15%. It is accepted that chondral procedures should only be performed in the presence of joint stability. Methodology. Patients were identified from surgeon/hospital logs. Patient demographics, lesion size and location, surgical procedure, patient reported outcome measures, post-operative MR imaging and complications were recorded. PROMs and patient satisfaction was obtained. Results. 20 knees (18 patients) were included. Mean age was 18.6 years (range; 11–39) and the mean follow-up was 16.6 months (range; 2–70). The defect locations were the lateral femoral condyle (9/20; 45%), patella (9/20; 45%), medial femoral condyle (1/20; 5%) and the trochlea (1/20; 5%). The mean defect size was 2.6cm2. Twelve knees were treated with cartilage fixation, 5 with microfracture and 3 with OATS. At follow up, the overall mean Lysholm score was 77.4 (± 17.1) with no chondral regenerative procedure being statistically superior. There was no difference in Lysholm scores between those patients having acute medial patellofemoral ligament reconstruction versus medial soft tissue plication (p=0.59). Five (25%) knees required re-operation (one arthroscopic arthrolysis; one patella chondroplasty; two removal of loose bodies; one implant adjustment). Overall 90% responded as being satisfied with surgery. Conclusion. Our aggressive pathway to identify and treat acute cartilage defects with early operative intervention and patella stabilisation has shown high rates of satisfaction and Lysholm scores with no major revisions. The full range of chondral restoration options should be considered by surgeons managing these patients


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 96 - 96
2 Jan 2024
Bauer C Moser L Otahal A Kern D Dammerer D Zantop T Nehrer S
Full Access

Mincing cartilage with commercially available shavers is increasingly used for treating focal cartilage defects. This study aimed to compare the impact of mincing bovine articular cartilage using different shaver blades on chondrocyte viability. Bovine articular cartilage was harvested using a scalpel or three different shaver blades (2.5 mm, 3.5 mm, or 4.2 mm) from a commercially available shaver. The cartilage obtained with a scalpel was minced into fragments smaller than 1 mm. 3. All four conditions were cultivated in a culture medium for seven days. After Day 1 and Day 7, metabolic activity, RNA isolation, and gene expression of anabolic (COL2A1, ACAN) and catabolic genes (MMP1, MMP13), Live/Dead staining and visualization using confocal microscopy, and flow cytometric characterization of minced cartilage chondrocytes were measured. The study found that mincing cartilage with shavers significantly reduced metabolic activity after one and seven days compared to scalpel mincing (p<0.001). Gene expression of anabolic genes was reduced, while catabolic genes were increased after day 7 in all shaver conditions. The MMP13/COL2A1 ratio was also increased in all shaver conditions. Confocal microscopy revealed a thin line of dead cells at the lesion site with viable cells below for the scalpel mincing and a higher number of dead cells diffusely distributed in the shaver conditions. After seven days, there was a significant decrease in viable cells in the shaver conditions compared to scalpel mincing (p<0.05). Flow cytometric characterization revealed fewer intact cells and proportionally more dead cells in all shaver conditions compared to the scalpel mincing. Mincing bovine articular cartilage with commercially available shavers reduces the viability of chondrocytes compared to scalpel mincing. This indicates that mincing cartilage with a shaver should be considered a matrix rather than a cell therapy. Further experimental and clinical studies are required to standardize the mincing process with a shaver. Acknowledgements: This study received unrestricted funding from KARL STORZ SE & Co. KG


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 112 - 112
1 Nov 2018
Lemoine M O'Byrne J Kelly DJ O'Brien FJ
Full Access

Damage to articular cartilage is difficult to treat, as it has a low capacity to regenerate. Biomimetic natural polymer scaffolds can potentially be used to regenerate cartilage. Collagen hyaluronic acid (CHyA) scaffolds have been developed in our laboratory to promote cell infiltration and repair of articular cartilage. However, the low mechanical properties of such scaffolds potentially limit their use to the treatment of small cartilage defects. 3D-printed polymers can provide a reinforcing framework in these scaffolds, thus allowing their application in the treatment of larger defects. The aim of this study was to create mechanically functional biomaterial scaffolds by incorporating a CHyA matrix into 3D-printed polymer meshes resulting in an integrated porous material composite with improved mechanical properties for repair of large cartilage defects. 3D-printed meshes were developed to facilitate an architecture suitable for nutrient flow, cell infiltration, and even CHyA incorporation. And the meshes were freeze dried in custom made moulds to create a pore structure suitable for chondrogenesis. Uniaxial compressive testing of the scaffolds revealed improved mechanical properties following reinforcement with printed meshes, with the compressive modulus increasing from 0.8kPa (alone) to 0.5MPa (reinforced structure). The reinforced scaffolds maintained interconnected pores with the mean pore diameter increasing from 130 to 175µm. The reinforcement had no negative impact on MSC viability, with 90.1% viability in reinforced scaffolds at day 7. The compressive modulus of the reinforced CHyA scaffold is close to native articular cartilage, suggesting that this approach can be used for treatment of large cartilage defects


The Bone & Joint Journal
Vol. 97-B, Issue 12 | Pages 1634 - 1639
1 Dec 2015
Faschingbauer M Renner L Waldstein W Boettner F

We studied whether the presence of lateral osteophytes on plain radiographs was a predictor for the quality of cartilage in the lateral compartment of patients with varus osteoarthritic of the knee (Kellgren and Lawrence grade 2 to 3). The baseline MRIs of 344 patients from the Osteoarthritis Initiative (OAI) who had varus osteoarthritis (OA) of the knee on hip-knee-ankle radiographs were reviewed. Patients were categorised using the Osteoarthritis Research Society International (OARSI) osteophyte grading system into 174 patients with grade 0 (no osteophytes), 128 grade 1 (mild osteophytes), 28 grade 2 (moderate osteophytes) and 14 grade 3 (severe osteophytes) in the lateral compartment (tibia). All patients had Kellgren and Lawrence grade 2 or 3 arthritis of the medial compartment. The thickness and volume of the lateral cartilage and the percentage of full-thickness cartilage defects in the lateral compartment was analysed. There was no difference in the cartilage thickness or cartilage volume between knees with osteophyte grades 0 to 3. The percentage of full-thickness cartilage defects on the tibial side increased from < 2% for grade 0 and 1 to 10% for grade 3. The lateral compartment cartilage volume and thickness is not influenced by the presence of lateral compartment osteophytes in patients with varus OA of the knee. Large lateral compartment osteophytes (grade 3) increase the likelihood of full-thickness cartilage defects in the lateral compartment. Cite this article: Bone Joint J 2015;97-B:1634–9


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 80 - 80
1 Jan 2017
Renz Y Seebach M Hesse E Lotz B Blunk T Berberich O Richter W
Full Access

Long-term regeneration of cartilage defects treated with tissue engineering constructs often fails because of insufficient integration with the host tissue. We hypothesize that construct integration will be improved when implants actively interact with and integrate into the subchondral bone. Growth and Differentiation Factor 5 (GDF-5) is known to support maturation of chondrocytes and to enhance chondrogenic differentiation and hypertrophy of mesenchymal stromal cells (MSC). Therefore, we investigated whether GDF-5 is capable to stimulate endochondral ossification of MSC in vitro and in vivo and would, thus, be a promising candidate for augmenting fibrin glue in order to support integration of tissue engineering constructs into the subchondral bone plate. To evaluate the adhesive strength of fibrin glue versus BioGlue. ®. , a commercially available glue used in vascular surgery, an ex vivo cadaver study was performed and adhesion strength was measured via pull-out testing. MSC were suspended in fibrin glue and cultivated in chondrogenic medium with and without 150 ng/mL GDF-5. After 4 weeks, the formed cartilage was evaluated and half of the constructs were implanted subcutaneously into immunodeficient mice. Endochondral ossification was evaluated after 2 and 4 weeks histologically and by microCT analysis. BioGlue. ®. and GDF-5-augmented fibrin glue were tested for 4 weeks in a minipig cartilage defect model to assess their orthotopic biocompatibility. Pull-out testing revealed sufficient adhesive strength of fibrin glue to fix polymeric CellCoTec constructs in 6 mm cartilage defects, however, BioGlue. ®. showed significantly higher adhesive power. In vitro chondrogenesis of MSC under GDF-5 treatment resulted in equal GAG deposition and COLIIa1 and ACAN gene expression compared to controls. Importantly, significantly increased ALP-activity under treatment with GDF-5 on day 28 indicated enhanced hypertrophic differentiation compared to controls. In vivo, MSC-fibrin constructs pre-cultured with GDF-5 developed a significantly higher bone volume on day 14 and 28 compared to controls. When pre-cultured with GDF-5 constructs showed furthermore a significantly higher bone compactness (bone surface/bone volume coefficient) than controls, and thus revealed a higher maturity of the formed bone at 2 weeks and 4 weeks. Orthotopic biocompatibility testing in minipigs showed good defect filling and no adverse reactions of the subchondral bone plate for defects treated with GDF-5-augmented fibrin glue. Defects treated with BioGlue. ®. , however, showed considerable subchondral bone lysis. Thus, BioGlue. ®. – despite its adhesive strength – should not be used for construct fixation in cartilage defects. GDF-5-augmented fibrin glue is considered promising, because of a combination of the adhesive strength of fibrin with an enhanced osteochondral activity of GDF-5 on MSC. Next step is to perform a large animal study to unravel whether GDF-5 stimulated endochondral ossification can improve scaffold integration in an orthotopic cartilage defect model


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 143 - 143
1 Apr 2019
Hillstrom R Morgan OJ Rozbruch SR Fragomen AT Ranawat A Hillstrom H
Full Access

Introduction. Osteoarthritis (OA), a painful, debilitating joint disease, often caused by excessive joint stress, is a leading cause of disability (World Health Organisation, 2003) and increases with age and obesity. A 5° varus malalignment increases loading in the medial knee compartment from 70% to 90% (Tetsworth and Paley, 1994). Internal unloading implants, placed subcutaneously upon the medial aspect of the knee joint, are designed to offload the medial compartment of the knee without violating natural joint tissues. The aim of this study is to investigate the effect of an unloading implant, such as the Atlas™ knee system, on stress within the tibiofemoral joint with different grades of cartilage defects. Methods. To simulate surgical treatment of medial knee OA, a three-dimensional computer-aided design of an Atlas™ knee system was virtually fixed to the medial aspect of a validated finite element knee model (Mootanah, 2014), using CATIA v5 software (Dassault Systèmes, Velizy Villacoublay, France). The construct was meshed and assigned material properties and boundary conditions, using Abaqus finite element software (Dassault Systèmes, Velizy Villacoublay, France). A cartilage defect was simulated by removing elements corresponding to 4.7 mm. 2. The international cartilage repair society (ICRS) Grade II and III damage were simulated by normalized defect depth of 33% and 67%, respectively. The femur was mechanically grounded and the tibia was subjected to loading conditions corresponding to the stance phase of walking of a healthy 50-year-old 68-Kg male with anthropometrics that matched those of the cadaver. Finite element analyses were run for peak shear and von Mises stress in the medial and lateral tibiofemoral compartments. Results. Von Mises stress distribution in the tibial cartilage, with ICRS Grade II and III defects, without the unloading implant, at the end of weight acceptance (15% of the gait cycle) were analysed. The internal unloading implant reduces peak von Mises stress by 40% and 43% for Grade II and Grade III cartilage defects, respectively. The corresponding reductions in shear stress are 36% and 40%. Consistent reduction in peak von Mises stress values in the medial cartilage-cartilage and cartilage-meniscus contact areas were predicted throughout the stance phase of the gait cycle for ICRS Grade II defect. Similar results were obtained for Grade III defect and for peak shear stress values. There were no overall increases in peak von Mises stress values in the lateral tibial cartilage. Discussion and Conclusions. The internal unloading implant is capable of reducing von Mises and shear stress values in the medial tibial cartilage with ICRS Grade II and III defects at the cartilage-cartilage and cartilage-meniscus interfaces throughout the stance phase of the gait cycle. This did not result in increased stress values in the lateral tibial cartilage. Our model did not account for the viscoelastic effects of the cartilage and meniscus. Results of this study are based on only one knee specimen. The internal unloading implant may protect the cartilage in individuals with medial knee osteoarthritis, thereby delaying the need for knee replacements


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 62 - 62
17 Nov 2023
Lan T Wright K Makwana N Bing A McCarthy H Hulme C
Full Access

Abstract. Objectives. Bone marrow aspirate concentrate (BMAC), together with fibrin glue (Tisseel, Baxter, UK) and Hyaluronic acid (HA) were used as a one-step cell therapy treating patients with ankle cartilage defects in our hospital. This therapy was proven to be safe, with patients demonstrating a significant improvement 12 months post-treatment. Enriched mesenchymal stem cells (MSCs) in BMAC are suggested inducers of cartilage regeneration, however, currently there is no point-of-care assessment for BMAC quality; especially regarding the proportion of MSCs within. This study aims to characterise the cellular component of CCR-generated BMAC using a point-of-care device, and to investigate if the total nucleated cell (TNC) count and patient age are predictive of MSC concentration. Methods. During surgery, 35ml of bone marrow aspirate (BMA) was collected from each patients’ iliac crest under anaesthesia, and BMAC was obtained via a commercial kit (Cartilage Regeneration kit, CCR, Innotec. ®. , UK). BMAC was then mixed with thrombin (B+T) for injection with HA and fibrinogen. In our study, donor-matched BMA, BMAC and B+T were obtained from consented patients (n=12, age 41 ± 16years) undergoing surgery with BMAC therapy. TNC, red blood cell (RBC) and platelet (PLT) counts were measured via a haematology analyser (ABX Micros ES 60, Horiba, UK), and the proportion of MSCs in BMA, BMAC and B+T were assessed via colony forming unit-fibroblast (CFU-F) assays. Significant differences data in matched donors were tested using Friedman test. All data were shown as mean ± SD. Results. Mean TNC counts in BMA and BMAC were not significantly different (14.0 ± 4.4 million/ml and 19.4 ± 32.9 million/ml, respectively, P>0.9999). However, TNC counts were significantly lower in B+T compared to BMAC (9.7 ± 24.5 million/ml and 19.4 ± 32.9 million/ml, respectively, P=0.0167). Similarly, PLT counts were decreased in B+T compared to BMAC (40.7 ± 30.7 million/ml and 417.5 ± 365.5 million/ml, respectively, P<0.0001), however, PLTs were significantly concentrated in BMAC compared to BMA (417.5 ± 365.5 million/ml and 114.8 ± 61.6 million/ml, respectively, P=0.0429). RBC counts were significantly decreased in BMAC and B+T compared to BMA (P=0.0322 and P<0.0001, respectively). Higher concentration of MSCs were observed in BMAC compared to BMA (0.006% ± 0.01% and 0.00007% ± 0.0001%, respectively, P=0.0176). Similar to TNCs and PLTs, the proportion of MSCs significantly decreased in B+T compared to BMAC (0.0004% ± 0.001% and 0.006% ± 0.01%, respectively, P=0.0023). Furthermore, patient age and TNC counts did not correlate with MSC concentration (Spearman's Rank test, P=0.3266 and P=0.4880, respectively). Conclusions. BMAC successfully concentrated PLTs, but BMAC preparations were highly variable. Mixing BMAC and thrombin however, as described in the CCR protocol, resulted in a dramatic reduction in TNCs, PLTs and MSCs. TNC counts and patient age could not be used to predict the MSC proportion in the BMAC based on current data. Future work aims to look at the biomolecule profile of BMAC plasma, and to correlate them to patient clinical outcomes. Declaration of Interest. (a) fully declare any financial or other potential conflict of interest


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 86 - 86
1 Nov 2018
Paolo SD Wesseling M Pastrama M Van Rossom S Valente G Jonkers I
Full Access

In knee osteoarthritis (OA) patients, a focal cartilage defect is commonly found, especially in the medial compartment. In addition, cartilage softening is often observed at the defect rim. Both factors may alter the loading distribution and thereby the contact pressures, previously related to cartilage degeneration. To determine contact pressure in-vivo during motion, computational modelling can be used. The aim of this study was to analyse knee cartilage pressures during walking in healthy and damaged cartilage using a multi-scale modelling approach. Using 3D motion capture and musculoskeletal models, multi-body simulations of the stance phase of gait calculated knee kinematics and muscle, ligament and contact forces. These were subsequently imposed to a finite element (FE) model including tibial and femoral bones and cartilage. FE analyses were performed using intact cartilage as well as including a medial tibial cartilage defect, with and without softening of the defect rim. Specifically during loading response, a medial cartilage defect reduced the contact surface (−28%) and thereby increased the contact pressure (+33%) compared to intact cartilage, particularly on the medial compartment (+75% in contact pressure). Including softening of the cartilage rim increased the contact area (+22%) and decreased contact pressures (−9%) compared to the defect. This indicates that a focal defect increases the cartilage loading. This is partially compensated by softening of the cartilage rim. Therefore, the role of focal defects in altered cartilage loading and consequent OA development always needs to be discussed acknowledging the cartilage status at the defect rim


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 468 - 468
1 Sep 2009
Mueller PE Pietschmann MF Horng A Niethammer T Pagenstert I Glaser C Reiser M Jansson V
Full Access

Over the last 10 years ACI (Autologous Chondrocyte Implantation) has become an important surgical technique for treating large cartilage defects. The original method has been improved by using cell seeded scaffolds for implantation. The aim of our prospective study was to evaluate the efficiency of a matrix based ACI (MACI) with a collagen type I scaffold for repairing large cartilage defects of the knee. We present the clinical and radiological results of 22 pts. one year after collagen scaffold based ACI. Out of 39 pts. treated with ACI for cartilage defects of the knee 22 had reached the one year follow up. We documented preoperatively and postoperatively (3, 6 and 12 months) the clinical situation with the IKDC Knee Examination Form. MRI scans were evaluated at all time points. 41% of the pts. were female, 59% male. The average age was 33 yrs. (min:15; max:49), the average BMI 25,4 (min:19; max:36). One third of the cartilage defects were localized retropatellar, the remaining on the medial or lateral femoral condyle. The average defect size was 5.7 cm2. In about 75% of the cases an additional surgical procedure was performed (ACL-reconstruction, lateral release, meniscal surgery). One major complication (a deep wound infection) occured. The IKDC score improved over time during follow up significantly. Patients with retropatellar defects have a poorer outcome compared to femoral defects. The MRI showed an improvement of the implanted scaffold over time as well. The present study confirms the benefits of MACI in young patients with large cartilage defects of the knee. The matrix based ACI is a surgically less demanding technique then the traditional ACI. We expect a good long term outcome from MACI comparable to that of traditional ACI


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 142 - 142
1 Mar 2017
Sciarretta F
Full Access

PURPOSE. Recently, in tissue engineering several methods using stem cells have been developed to repair chondral and osteochondral defects. Most of these methods rely on the use of scaffolds. Studies in the literature have demonstrated, first in animals and then in humans, that the use of mesenchymal stem cells withdrawn by several methods from adipose tissue allows to regenerate hyaline articular cartilage. In fact, it has been cleared that adipose-derived cells have multipotentiality equivalent to bone marrow-derived stem cells and that they can very easily and very quickly be isolated in large amounts enabling their immediate use in operating room for one-step cartilage repair techniques. The purpose of this study is to evaluate the therapeutic effect of adipose-derived stem cells on cartilage repair and present our experience in the treatment of knee cartilage defects by the novel AMIC REPAIR TECHNIQUE AUGMENTED by immersing the collagen scaffold with mesenchymal stem cells withdrawn from adipose tissue of the abdomen. MATERIALS AND METHODS. Fat tissue processing involves mechanical forces and does not mandatorily require any enzymatic or chemical treatment in order to obtain the regenerative cells from the lipoaspirate. In our study, mesenchymal adipose stem cells were obtained by non-enzymatic filtration or microfragmentation of lipoaspirates of the abdomen adipose tissue that enabled the separation of the stromal vascular fraction and were used in one-step reconstruction of knee cartilage defects by means of this new AUGMENTED AMIC TECHNIQUE. The focal defects underwent bone marrow stimulation microfractures, followed by coverage with collagen double layer resorbable membrane (Chondro-gide. TM. -Geistlich Pharma AG, Wolhusen, Switzerland) soaked in the cells obtained from fat in 18 patients, aged between 31 and 58 years, at the level of the left knee in 10 cases and in the right in eight, with follow-up ranging between 12 and 36 months. RESULTS: Surgical procedures have been completed without technical problems neither intraoperative or early postoperative complications. The evaluation scores (IKDC, KOOS and VAS) showed a significant improvement, more than 30%, at the initial 6 months follow-up and furtherly improved in the subsequent follow-ups. Also the control MRIs showed a progressive filling and maturation of the repair tissue of the defects. CONCLUSIONS. Since we are reporting a short and medium-term experience, it is not, of course, possible to provide conclusive assessment considerations on this technique, as the experience has to mature along with the progression of follow-ups. The simplicity together with the absence of intraoperative difficulties or immediate complications and the experience gained by other authors, first in animals and then in early clinical cases, makes it, however, possible to say that this can be considered one of the techniques to which resort for one-step treatment of cartilage defects in the knee because it improves patient's conditions and has the potential to regenerate hyaline-like cartilage. Future follow-up works will confirm the results


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 86 - 86
1 Apr 2018
Van Rossom S Khatib N Van Assche D Holt C Jonkers I
Full Access

Healthy cartilage is essential for optimal joint function. Although, articular cartilage defects are highly prevalent in the active population and might hamper joint function, the effect of articular cartilage defects on knee contact forces and pressures is not yet documented. Therefore, the present study compared knee contact forces and pressures between patients with a tibiofemoral cartilage defect and healthy controls. This might provide additional insights in movement adaptations and the role of altered loading in the progression from defect to OA. Experimental gait data was collected in 15 patients with isolated articular cartilage defects (8 medial-affected, 7 lateral-affected) and 19 healthy asymptomatic controls and was processed using a musculoskeletal model to calculate contact forces and pressures. Differences between medial-affected, lateral-affected and controls were evaluated using Kruskal-Wallis tests and individually compared using Mann-Whitney-U tests (alpha <0.05). The lateral-affected group walked significantly slower compared to the healthy controls. No adaptations in the movement pattern that resulted in decreased loading on the injured condyle were observed. Additionally, the location of loading was not significantly affected. The current results suggest that isolated cartilage defects do not induce changes in the knee joint loading pattern. Consequently, the involved condyle will be equally loaded, indicating that a similar amount of force should be distributed over the remaining cartilage surrounding the articular cartilage defect and may cause local degenerative changes in the cartilage. This in combination with inflammatory responses might play a key role in the progression from articular cartilage defect to a more severe OA phenotype


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 3 - 3
1 Mar 2021
To K Zhang B Romain K Mak CC Khan W
Full Access

Abstract. Objective. Articular cartilage damaged through trauma or disease has a limited ability to repair. Untreated, these focal lesions progress to generalized changes including osteoarthritis. Musculoskeletal disorders including osteoarthritis are the most significant contributor to disability globally. There is increasing interest in the use of mesenchymal stem cells (MSCs) for the treatment of focal chondral lesions. There is some evidence to suggest that the tissue type from which MSCs are harvested play a role in determining their ability to regenerate cartilage in vitro and in vivo. In humans, MSCs derived from synovial tissue may have superior chondrogenic potential. Methods. We carried out a systematic literature review on the effectiveness of synovium-derived MSCs (sMSCs) in cartilage regeneration in in vivo studies in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol. Nineteen studies were included in our review; four examined the use of human sMSCs and the remainder were conducted using sMSCs harvested from animals. Results. Despite the variability of animals, cell harvesting techniques, methods of delivery, and outcome measures, all studies reported successful cartilage repair with sMSC transplantation. Conclusion. We conclude that sMSC transplantation holds promise as a treatment option for focal cartilage defects. We believe that defining the cell population being used, establishing standardized methods for MSC delivery, and the use of objective outcome measures should enable future high-quality studies such as randomized controlled clinical trials to provide the evidence needed to manage chondral lesions optimally. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 109 - 109
1 Mar 2021
Zoetebier B Sivasubramaniyan K Puricelli M Fu Y Hendriks J Kock L van Osch G Karperien M
Full Access

Osteoarthritis is the most common chronic condition of the joints. It is characterized by the degeneration of articular cartilage, formation of osteophytes and alterations in the synovium. This process has a severe impact on the quality of life of the patients and the currently available treatments are unsatisfactory and often merely focused on pain relief. In our group we are working on the development of in situ cross-linkable hydrogel platforms that could be used for resurfacing the damaged articular cartilage using a minimally invasive arthroscopic procedure. Stable fixation of the gel at the joint surface, facilitating the ingrowth of local stem and progenitor cell populations and supporting intrinsic repair mechanisms are considered minimal design parameters. To achieve this, we are exploring the use of enzymatically cross-linkable natural polymer-tyramine conjugates. Dextran-tyramine conjugates were prepared by activation of dextran-OH and subsequent reaction with tyramine. Hyaluronic acid-tyramine and protein-tyramine conjugates were prepared using DMTMM coupling. In situ crosslinking is achieved by mixing the polymer conjugates with the enzyme HRP and minute, non-toxic amounts of H2O2 as oxidizing agent. Support of cartilage formation was studied after mixing of the polymer conjugates with mesenchymal stem cells, chondrocytes or combinations of both prior to crosslinking. Cell ingrowth was studied by implanting the hydrogels in an ex-vivo cartilage defect while mechanically loading the explant in a bioreactor and cell migration in the hydrogels was evaluated by tracking the sprouting of fluorescently labelled cell-spheroids. We prepared dextran-tyramine conjugates with a degree of substitution of 10 tyramine residues per 100 monosaccharide units. The conjugated hyaluronic acid-tyramine had a degree of substitution of 10% of the carboxylic acid groups, while for the proteins the substitution was dependent on the protein type. Enzymatically crosslinked hydrogels, based on dextran and hyaluronic acid, with the addition of co-cross linkable proteins show excellent properties for application in the regeneration of damaged cartilage


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 73 - 73
1 Feb 2015
Minas T
Full Access

Cartilage is known to have limited intrinsic repair capabilities and cartilage defects can progress to osteoarthritis (OA). OA is a major economic burden of the 21st century, being among the leading causes of disability. The risk of disability from knee OA is as great as that derived from cardiovascular disease; a fact that becomes even more concerning when considering that even isolated cartilage defects can cause pain and disability comparable to that of severe OA. Several cartilage repair procedures are in current clinical application, including microfracture, osteochondral autograft transfer, osteochondral allograft transplantation, and autologous chondrocyte implantation (ACI). Given the economic challenges facing our health care system, it appears prudent to choose procedures that provide the most durable long-term outcome. Comparatively few studies have examined long-term outcomes, an important factor when considering the substantial differences in cost and morbidity among the various treatment options. This study reviews the clinical outcomes of autologous chondrocyte implantation at a minimum of 10 years after treatment of chondral defects of the knee. Mean age at surgery was 36 ± 9 years; mean defect size measured 8.4 ± 5.5cm2. Outcome scores were prospectively collected pre- and postoperatively at the last follow up. We further analyzed potential factors contributing to failure in hopes of refining the indications for this procedure. Conclusions: ACI provided durable outcomes with a survivorship of 71% at 10 years and improved function in 75% of patients with symptomatic cartilage defects of the knee at a minimum of 10 years after surgery. A history of prior marrow stimulation as well as the treatment of very large defects was associated with an increased risk of failure


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 8 - 8
1 Mar 2021
Hulme CH Perry J Roberts S Gallacher P Jermin P Wright KT
Full Access

Abstract. Objectives. The ability to predict which patients will improve following routine surgeries aimed at preventing the progression of osteoarthritis is needed to aid patients being stratified to receive the most appropriate treatment. This study aimed to investigate the potential of a panel of biomarkers for predicting (prior to treatment) the clinical outcome following treatment with microfracture or osteotomy. Methods. Proteins known to relate to OA severity, with predictive value in autologous cell implantation treatment or that had been identified in proteomic analyses (aggrecanase-1/ ADAMTS-4, cartilage oligomeric matrix protein (COMP), hyaluronic acid (HA), Lymphatic Vessel Endothelial Hyaluronan Receptor-1, matrix metalloproteinases-1 and −3, soluble CD14, S100 calcium binding protein A13 and 14-3-3 protein theta) were assessed in the synovial fluid (SF) of 19 and 13 patients prior to microfracture or osteotomy, respectively, using commercial immunoassays. Levels of COMP and HA were measured in the plasma of these patients. To find predictors of postoperative function, multiple linear regression analyses were performed. Results. Linear regression analyses demonstrated that a lower concentration of HA in pre-operative SF was predictive of improved knee function (higher Lysholm score) following microfracture surgery. Further, lower pre-operative activity of ADAMTS-4 in SF was a significant, independent predictor of higher post-operative Lysholm score (improved joint function) following osteotomy surgery. Conclusion. This study is novel in identifying biomarkers with the potential to predict clinical outcome in patients treated with microfracture or osteotomy of the knee. Lower concentrations of HA and undetectable activity of ADAMTS-4 in the joint fluid of individuals with cartilage defects/early-OA may be used in algorithms to stratify patients to the most appropriate surgery. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 11 - 11
1 Nov 2021
Imwinkelried T Heuberger R Eggli S
Full Access

Introduction and Objective. Local cartilage defects in the knee are painful and mostly followed by arthritis. In order to avoid impaired mobility, the osteochondral defect might be bridged by a synthetic compound material: An osteoconductive titanium foam as an anchoring material in the subchondral bone and an infiltrated polymer as gliding material in contact with the surrounding natural cartilage. Materials and Methods. Titanium foam cylinders (Ø38 mm) with porosities ranging from 57% to 77% were produced by powder metallurgy with two different grain sizes of the space holder (fine: 340 ± 110 μm, coarse: 530 ± 160 μm). The sintered titanium foam cylinders were infiltrated with UHMWPE powder on one end and UHMWPE bulk at the other end, at two different temperatures (160 °C, 200 °C), using a pressure of 20 MPa for 15 minutes. Smaller cylinders (Ø16 mm) were retrieved from the compound material by water jet cutting. The infiltration depths were determined by optical microscopy. The anchoring of the UHMWPE was measured by a shear test and the mechanical properties of the titanium foam were verified by a subsequent compression test. The tribological behaviour was investigated in protein containing liquid using fresh cartilage pins (Ø5 mm) sliding against a UHMWPE disc with or without a notch to simulate the gap between the implant and the surrounding cartilage. Friction coefficients were determined in a rotation tribometer and the cartilage wear in a multidirectional six-station tribometer from AMTI (load 10 – 50 N, sliding speed 20 mm/s, 37 °C). Results. UHMWPE could be infiltrated into titanium foam by 1.1 – 1.3 mm with fine pores and by 1.5 – 1.8 mm with coarse pores. The infiltration was neither dependent on the type of UHMWPE (powder or bulk) nor on the temperature. The polymer was so well anchored inside the titanium foam pores that the shear forces for the compounds exceeded the shear strength obtained for a UHMWPE-cylinder. This effect was due to the increased stiffness of the compound plug. Uniaxial compression of the titanium foams after the shear-off of the polymer revealed yield strengths ranging from 50 – 88 MPa for porosities of 62 – 73%. The Ø16 mm samples yielded beyond physiological loads in the knee (≥ 10x body weight) and behaved in a strain hardening and fully ductile manner, reaching deformations of at least 50 % of their initial height without the appearance of macroscopically visible cracks. For smaller plug diameters down to Ø8 mm, however, the lower porosity / higher strength foam should be used to limit elastic deformation of the compound to < 0.1 mm. Pore size did not significantly influence the strength and stiffness values. The elevated coefficient of friction between cartilage and UHMWPE of about 1 was not negatively affected by the presence of the gap. The height loss of the cartilage pin after 1 hour (respectively after 3600 reciproque wear cycles) was 0.2 ± 0.1 mm using a flat disc. For discs with a 1 mm wide V-notch, the wear increased to 0.9 ± 0.3 mm. Conclusions. The tested titanium foams are well suited to act as an anchoring material in the subchondral bone as mechanical properties can be tailored by choosing the adequate porosity and as bone ingrowth has previously been demonstrated for the used pore sizes. UHMWPE is not an ideal gliding partner against cartilage because the friction coefficients of frictions were high. The presence of a V-notched gap was detrimental for cartilage wear. More hydrophilic polymers like PCU should be tested as potential gliding materials


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 91 - 91
1 May 2011
Spahn G Klinger HM Mückley T Hofmann G
Full Access

Introduction: The debridement of deep cartilage defects is one of the most frequently used Methods: in arthroscopic surgery. This randomized study was undertaken to compare the effectiveness of simple mechanical debridement and the 52°C-controlled bipolar chondroplasty. Materials and Methods: A total of 60 patients (28 male, 32 female, average age 43.3 years, range 20 to 50 years) who were suffering from a grade III cartilage defect of the medial femoral condyle were included. Exclusion criteria were revision arthroscopy, injury or osteoarthritis (grade II or higher). After randomization, 30 patients underwent simple debridement of the cartilage defects, which was performed with a mechanical shaver (MSD = mechanical shaver debridement). The remaining patients underwent thermal chondroplasty, which was performed with a temperature-controlled bipolar device with a constant thermo-application of 51°C (RFC = Radio-Frequency-based Chondroplasty). The patients were evaluated by the Knee-injury and Osteoarthritis Outcome Score (KOSS) preoperatively and at time of follow-up. Activity levels were measured by the Tegner score (activity level before onset of the symptoms and at time of follow-up). Follow-up was undertaken 4 years after the arthroscopy. Results: No significant differences between the preoperative findings for the two groups were observed. One patient from the MSD group had died, and one female patient in the RFC group was lost to follow-up. A total of 18 patients had undergone revision operations due to persistent knee problems: in the MSD group, there were 8 endoprostheses, 4 osteotomies, and 2 revision arthroscopies; in the RFC group there was 1 one replacement, 2 osteotomies, and 1 revision arthroscopy with subtotal medial meniscectomy. The proportion of revisions was significantly higher in the MSD group (p=0.006). These patients were excluded from the evaluation. The remaining 40 patients from both groups benefited from the operation. The preoperative KOOS was 11.3 points in the MSD group and 15.5 points in the RFC group (p=0.279). Patients from the MSD group had a KOOS of 53.2 at the time of follow-up. In the RFC group the KOOS (71.8) was significantly higher (p< 0.001). Patients from both groups had to accept a decrease in their level of physical activity. However, patients from the RFC group had a significantly improved (p=0.005) Tegner activity score in comparison to the patients from the MSP group. The radiographic and MRI findings in the MSD group were also worse than in RFC patients. Conclusion: RFC is a potential method for the treatment of deep cartilage defects. The 4-year outcome is better than after MSD. Long-term results are still lacking


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 12 - 12
1 Mar 2021
Merrild NG Holzmann V Grigoriadis A Gentleman E
Full Access

Abstract. Objective. Clinical treatments to repair articular cartilage (AC) defects such as autologous cartilage implantation (mosaicplasty) often suffer from poor integration with host tissue, limiting their long-term efficacy. Thus to ensure the longevity of AC repair, understanding natural repair mechanisms that allow for successful integration between cartilaginous surfaces, as has been reported in juvenile tissue, may be key. Here, we evaluated cartilage integration over time in a pig explant model of natural tissue repair by assessing expression and localisation of major ECM proteins, enzymatic cross-linkers including the five isoforms of lysyl oxidase (LOX), small leucine-rich repeat proteoglycans (SLRP's), and proteases (e.g. ADAMTS4). Methods. AC was retrieved from the femoral condyles of 8-week-old pigs. Full thickness 6mmØ AC discs were prepared, defects were induced, and explants cultured for up to 28 days. After fixation, sections were stained using Safranin-O and antibodies against Collagen types I & II, LOX, and ADAMTS4. Gene expression analyses were performed using qPCR. We also cultured devitalized samples, either with or without enzymatic treatment to deplete proteoglycans, for 28 days and similarly assessed repair. Results. Safranin-O staining demonstrated successful integration of cartilage defects over a 28-day period. No significant regulation in the expression of Col1a1, Col2a1, LOX or SLPR genes was observed at any time point. Immunofluorescence staining revealed that only ADAMTS4 localized at the injury surface in integrated samples. Interestingly, we also observed successful spontaneous integration of proteoglycan-depleted devitalized tissue. Conclusion. Cartilage integration in our pig cartilage explant model did not appear to be mediated by upregulation of major cartilage ECM components, enzymatic cross-linkers, or SLRPs. However, spontaneous integration of devitalized, proteoglycan-depleted AC, and localised upregulation of ADAMTS4 at the injured surface in successfully integrated samples, suggest that ADAMTS4 may enhances normal repair in injured AC through local aggrecan depletion, therefore enabling spontaneous cross-linking of collagen fibrils. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 41 - 41
1 Apr 2018
Zevenbergen L Gsell W Chan D Neu C Himmelreich U Jonkers I
Full Access

Objective. Full-thickness cartilage defects are commonly found in symptomatic knee patients, and are associated with progressive cartilage degeneration. Although the risk of defect progression to degenerative osteoarthritis is multifactorial, articular cartilage defects change contact mechanics and the mechanical response of tissue adjacent to the defect. The objective of this study was to quantify changes in intra-tissue strain patterns occurring at the defect rim and opposing tissue in an experimental model mimicking in vivo cartilage-on-cartilage contact conditions. Methods. Macroscopically intact osteochondral explants with smooth surfaces were harvested form the femoral condyles of 9 months old bovine knees. Two groups were tested; reference group with intact cartilage (n=8) and defect group with a full thickness cylindrical defect (diameter 8 mm) in one cartilage surface from each pair (n=8). The explants with defect articular surface and the opposing intact cartilage were compressed at ∼0.33 times body weight (350N) during cycles of 2s loading followed by 1.4s unloading. In plane tissue deformations were measured using displacement encoded imaging with stimulated echoes (DENSE) on a 9.4T MRI scanner. A two-sample t-test was used to assess statistical significance (p<0.05) of differences in maximal Green-Lagrange strains between the defect, opposing surface and intact reference cartilage. Results. Strain levels were elevated in the cartilage neighbouring the defect rim and in the opposing articulating surface. Similar to intact cartilage, compressive and tensile strains presented a depth dependent variation. The maximal strains profiles were highest in the superficial zone and decreased with depth for all explants, except for the shear strains in the cartilage opposing the defect which were constant. The maximal tensile strain in the middle and superficial zone were significantly higher for the defect cartilage (3.97±1.99% and 4.52±2.04%) compared to the intact reference (1.91±1.13% and 2.53±1.27%), indicating that the defect edges are bulging towards the defect. The shear strains were significantly higher (∼1.5x) throughout cartilage depth of the defect rim compared to the intact reference cartilage. However, in the cartilage opposing the defect, shear strains were significantly lower (∼0.5x) compared to the intact cartilage representing less matrix distortion. No significant difference in maximal compressive strains were observed between the opposing intact and defect at all cartilage depths. Conclusions. Presence of isolated full thickness cartilage defects will affect the cartilage deformations. Even under pure compressive loading alone, the altered contact mechanics resulted in excessive strains at tissue adjacent to the defect potentially damaging the cartilage and inducing tissue degeneration


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 119 - 119
1 Mar 2021
Peters M Jeuken R Steijvers E Wijnen W Emans P
Full Access

The modified Hedgehog technique was previously used to reattach pure chondral shear-off fragments in the pediatric knee. In the modified Hedgehog technique, the calcified side of chondral fragments is multiple times incised and trimmed obliquely for an interlocking fit in the defect site. Fibrin glue with or without sutures is subsequently applied to fix the fragment to the defect. This preliminary report further elucidates the potential of the technique by evaluation of its application in young adults using patient reported outcome measures (PROMs) and high-field Magnetic Resonance Imaging (MRI) as outcome measures. Three patients with a femoral cartilage defect (2 medial, 1 lateral), and a concomitant pure chondral corpus liberum were operatively treated by the modified Hedgehog technique. Age at surgery ranged from 20.6–21.2 years, defect size ranged from 3.8–6.0 cm2. Patients were evaluated at three months and one year after surgery by PROMs and 7.0T MRI. PROMs included the Internation Knee Documentation (IKDC), Knee Injury and Osteoarthritis Outcome Score (KOOS) and Visual Analog Scale (VAS) questionnaires. 7.0T MRI (Magnetom, Siemens Healthcare, Erlangen, Germany) using a 28-channel proton knee coil (QED, Electrodynamics LLC, Cleveland, OH) included a proton density weighted turbo spin-echo sequence with fat suppression to assess morphological tissue structure andgagCEST imaging to measure the biochemical tissue composition in terms of glycosaminoglycans (GAG). Twelve months after surgery all patients reported no pain and showed full range of motion. While PROMs at three months showed large variability between patients, one year after surgery the scores were consistently improved. Over time, morphological MRI visualized improvements in integration of the cartilage fragment with the surrounding cartilage, which was supported by biochemical MRI showing increased GAG values at the defect edges. Statistics were not applied to the results because of the small sample size. The modified Hedgehog technique in young adults with an acute onset caused by a pure chondral corpus liberum can be considered promising. The improved PROM results over time were supported by 7.0T MRI that visualized improvements in tissue structure and biochemical composition. Inclusion of more patients in future studies would allow statistical analysis and more conclusive results. The etiology of loosening and time between onset of symptoms and surgery for successful graft integration may differ between pediatric and young adult patients and is subject for future studies


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 177 - 177
1 May 2012
Minas T Gomoll A Rosenberger R Royce R Bryant T
Full Access

Hypothesis. Cartilage defects pretreated with marrow stimulation techniques will have an increased failure rate. The first 321 consecutive patients treated at one institution with autologous chondrocyte implantation for full-thickness cartilage defects that reached more than two years of follow-up were evaluated by prospectively collected data. Patients were grouped based on whether they had undergone prior treatment with a marrow stimulation technique. Outcomes were classified as complete failure if more than 25% of a grafted defect area had to be removed in later procedures because of persistent symptoms. Results. There were 522 defects in 321 patients (325 joints) treated with autologous chondrocyte implantation. On average, there were 1.7 lesions per patient. Of these joints, 111 had previously undergone surgery that penetrated the subchondral bone; 214 joints had no prior treatment that affected the subchondral bone and served as controls. Within the marrow stimulation group, there were 29 (26%) failures, compared with 17 (8%) failures in the control group. Conclusion. Defects that had prior treatment affecting the subchondral bone failed at a rate three times that of nontreated defects. The failure rates for drilling (28%), abrasion arthroplasty (27%), and microfracture (20%) were not significantly different—possibly because of the lower number of microfracture patients in this cohort (25 of 110 marrow-stimulation procedures). The data demonstrate that marrow stimulation techniques have a strong negative effect on subsequent cartilage repair with autologous chondrocyte implantation and, therefore, should be used judiciously in larger cartilage defects that could require future treatment with autologous chondrocyte implantation. Unlike coventional wisdom, MSTs do ‘burn bridges’


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 118 - 118
1 Mar 2021
Jeuken R Roth A Peters M Welting T Rhijn L Thies J Emans P
Full Access

Focal knee resurfacing implants (FKRIs) are typically intended to treat focal cartilage defects in middle-aged patients. All currently available FKRIs are (partly) composed of metal, which potentially leads to degeneration of the opposing articulating cartilage and hampers follow-up using magnetic resonance imaging (MRI). The purpose of this study was to investigate the in vivo osseointegration process of a novel non-degradable thermoplastic polycarbonate-urethane (TPU) osteochondral implant. Bi-layered implants measuring 6 mm in diameter, with a double-curvature to match the approximate curvature of the goat medial femoral condyle were fabricated. TPU implants were composed of an articulating Bionate® II 80A top layer, and a Bionate® 75D bottom layer (DSM Biomedical, Geleen, the Netherlands) which is intended to osseointegrate. A biphasic calcium phosphate coating formulation, optimized during a prior in vitro study, was applied to half of the TPU implants, while the other half was left uncoated. Bi-layered metal implants (articulating cobalt-chromium top layer and titanium bottom layer) were used as positive control implants. Eight implants per group were implanted bilaterally in the medial femoral condyle of the stifle joints in 12 Dutch milk goats. 18F-sodium fluoride (18F-NaF) positron emission tomography-computed tomography (PET-CT) scanning was performed at 3 and 12 weeks postoperatively, and the corrected maximum standard uptake values (cSUVmax) was calculated to assess the peri-implant bone metabolism. After sacrifice 12 weeks postoperatively, bone histomorphometric analysis was performed to assess the bone-to-implant contact area (BIC). Student's T-test was used in case of normal distribution and the Mann-Whitney-U-test was used in case of abnormal distribution for comparison of BIC and cSUVmax. The BIC value of 10.27 ± 4.50% (mean ± SD) for the BCP-coated TPU implants was significantly (P=0.03) higher than the 4.50 ± 2.61% for the uncoated TPU implants. The uncoated TPU implants scored significantly (P=0.04) lower than the BIC of 12.81 ± 7.55% for the metal implants, whereas there was no significant difference between BCP-coated TPU implants and the metal implants (P=0.68). There was a strong correlation between the cSUVmax values and the BIC values at 12 weeks (Pearson's R=0.74, P=0.001). The cSUVmax values significantly decreased between 3 and 12 weeks for the metal implants (p=0.04). BCP-coated TPU implants followed a similar trend but did not reach statistical significance (p=0.07). cSUVmax in the uncoated TPU implants did not show a significant difference between the time-points (p=0.31). Osseointegration of BCP-coated TPU implants did not significantly differ from metal implants. 18F-NaF PET-CT is a feasible modality to assess osseointegration patterns and showed a similar trend between the BCP-coated and metal implants. Hence, an implant fully composed of TPU may avoid the typical metal-related drawbacks of currently available FKRIs. Long-term follow-up studies are advocated to address the effects of the implant to the opposing cartilage, and are therefore warranted


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 93 - 93
1 Mar 2021
Haartmans M Cillero-Pastor B Emanuel K Eveque-Mourroux M Tuijthof G Heeren R Emans P
Full Access

Early detection of knee osteoarthritis (OA) is critical for possible preventive treatment, such as weight loss, physical activity and sports advice and restoring biomechanics, to postpone total knee arthroplasty (TKA). Specific biomarkers for prognosis and early diagnosis of OA are lacking. Therefore, in this study, we analyzed the lipid profiles of different tissue types within Hoffa's fat pad (HFP) of OA and cartilage defect (CD) patients, using matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI). The HFP has already been shown to play an important role in the inflammatory process in OA by prostaglandin release. Additionally, MALDI-MSI allows us to investigate on tissue lipid distribution at molecular level, which makes it a promising tool for the detection of disease specific biomarkers for OA development. Samples of HFP were obtained of patients undergoing surgical treatment for OA (n=3) (TKA) or CD (n=3) (cartilage repair). In all cases, tissue was obtained without patient harm. HFP samples were washed in phosphate buffered saline (PBS) and snap-frozen directly after surgical dissection to remove redundant blood contamination and to prevent as much tissue degradation as possible. Tissue sections were cut at 15 µm thickness in a cryostat (Leica Microsystems, Wetzlar) and deposited on indium tin oxide glass slides. Norharmane (Sigma-Aldrich) matrix was sublimed onto the tissue using the HTX Sublimator (HTX Technologies, Chapel Hill). µMALDI-MSI was performed using Synapt G2Si (Waters) at 50 µm resolution in positive ion mode. MS/MS fragmentation was performed for lipid identification. Data were processed with in-house Tricks for MATLAB and analyzed using principle component analysis (PCA) and verlan. OA and CD HFP specific lipid profiles were revealed by MALDI-MSI followed by PCA and DA. With these analyses we were able to distinguish different tissue types within HFP of different patient groups. Further discriminant analysis showed HFP intra-tissue heterogeneity with characteristic lipid profiles specific for connective and adipose tissues, but also for synovial tissue and blood vessels, revealing the high molecular complexity of this tissue. As expected, lipid signals were lower at the site of the connective tissue, compared to the adipose tissue. In particular, tri-acyl glycerol, di-acyl glycerol, sphingomyelin and phosphocholine species were differently abundant in the adipose tissue of HFP of OA compared to CD. To our knowledge, this is the first study comparing lipid profiles in HFP of OA patients with CD patients using MALDI-MSI. Our results show different lipid profiles between OA and CD patients, as well as intra-tissue heterogeneity within HFP, rendering MALDI-MSI as a useful technology for OA biomarker discovery. Future research will focus on expanding the number of subjects and the improvement of lipid detection signals


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_IV | Pages 132 - 132
1 Mar 2012
Wimmer J Wendler N Russlies M Behrens P
Full Access

Autologous matrix-induced chondrogenesis (AMIC) is a new treatment option for full-thickness cartilage defect repair using the well-known microfracturing technique combined with a porcine collagen type I/III matrix implant and partially autologous fibrin sealant. A retrospective study has being carried out to investigate the objective and subjective clinical outcome of this procedure over a period of up to 2 years after the operation. 18 patients (10 male, 8 female) with localised cartilage defects were treated with AMIC. The mean age was 37 13 years. Defects treated were localised retropatellar (6), on the medial femoral condyle (7), on the lateral femoral condyle (2) and multiple lesions (3). During the clinical follow-up these patients were evaluated with the help of 3 different scores (IKDC score, Cincinnati score, Lysholm-Gillquist score). For the collective of 18 patients, one or more years had elapsed since the operation at the time this study was completed. 10 patients were included into the 2-year evaluation. The IKDC Score showed a mean improvement from 28 to 58 out of 100 at 1-year and from 25.5 to 69 out of 100 at 2-years post-operative. The Cincinnati and Lysholm-Gillquist scores showed the same tendency with an improvement of about 40 pecent at 1 year and about 55 percent at 2 years compared to pre-operative value. The improvement in the IKDC Score as well as the Cincinnati and Lysholm-Gillquist suggest that AMIC is a promising alternative in the treatment of local cartilage defects in the knee with good short and possibly mid-term results. Further follow up will reveal, if the good results are durable and AMIC, as matrix enhanced microfracturing technique can become a valuable, recognised cartilage repair technique


Full Access

Ouery: Matrix-coupled autologous chondrocyte transplantation (MACT) has become increasingly widespread in the therapy of cartilage defects. The objective of this controlled prospective study was to examine the mid-term results of MACT compared to those of Microfracturing (MF) for the treatment of cartilage defects in the knee joint and to determine possible advantages or disadvantages of the two methods. Method: In order to compare the two treatment methods, 40 patients with discrete cartilage defects were treated with MACT and 40 with MF between 4/01 – 4/03. As inclusion criterion, the patients had a chondral defect of at least 1.5 cm and as exclusion criterion, there could be no additional cartilage damage in the other areas of the knee. MRI examinations were performed preoperative (T2 gew. TSE-Sequence, fetts. FLASH-3D) and could be repeated after 6 and 12 months. Knee joint function, the activity level and the patient’s quality of life were evaluated in both groups pre- and postoperative using the modified Cincinnati Score and the Tegner Activity Index. Results: There was significant improvement in the scores used for the study in both the MF group and the MACT group. Comparison of the two groups revealed significantly greater clinical improvement in the MACT patients than in the MF patients (3.8 point increase MACT versus 2.6 point increase MF in the Cincinnati Score). Taking the size extent of the treated cartilage damage into account, there was, however, no relevant difference in defects less than 2,5 qcm. Conclusion: The study could demonstrate that both methods are successful in treating localized cartilage damage in the knee joint. Comparison of the two forms of therapy showed a greater extent of improvement in the MACT group. However, classification by the size of the defect revealed that this effect was relevant only in larger defects, so that the size of the defect should be a decisive criterion for the selection of therapy


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 194 - 194
1 Mar 2010
Gomoll A Rosenberger R Royce R Bryant T Minas T
Full Access

Marrow stimulation techniques such as drilling or microfracture are first-line treatment options for symptomatic cartilage defects. Common knowledge holds that these treatments do not compromise subsequent cartilage repair procedures with autologous chondrocyte implantation (ACI). We present our experience with ACI after prior marrow stimulation. This study reviewed prospectively collected data for the first 321 consecutive patients treated at our institution with ACI for full-thickness cartilage defects that have reached more than 2 years of follow-up. Patients were grouped based on whether they had undergone prior treatment with a marrow stimulation technique. Outcomes were classified as complete failure if more than 25% of a grafted defect area had to be removed in later procedures due to persistent symptoms. This includes treatment with revision ACI, allograft transplantation, partial or total knee replacement. 522 defects in 321 patients (325 joints) were treated with ACI. Patient average age was 35 (13–60), there were 185 men and 136 women, with a follow-up of 2–12 Years. On average, there were 1.7 lesions per patient (range, 1–5) with a transplant area of 4.8 cm2 per lesion and 8.1 cm2 per knee. 111 of these joints had previously undergone surgery that penetrated the subchondral bone: microfracture (n=25), abrasion chondroplasty (n=33), and drilling (n=53). 214 joints had no prior treatment that affected the subchondral bone and served as control. Within the marrow stimulation group, there were 27 (24%) failures compared with 17 (8%) failures in the control group. In our review of 321 patients, defects that had prior treatment affecting the subchondral bone failed at a rate 3 times that of non-treated defects. These data demonstrate that marrow stimulation techniques have a strong negative effect on subsequent cartilage repair, and should be used judiciously in larger cartilage defects that could require future treatment with ACI


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_III | Pages 310 - 310
1 Mar 2004
DŸrr H Martin H Pellengahr C Jansson V
Full Access

Introduction: In a photoelasticimetric model Ondrouch suggested a correlation between stress in arthritic joints, microfractures and bone cysts. Other authors believe in a causative role of access of joint ßuid to bone in periarticular osteolysis. In our opinion mechanical stress induced by cartilage defects induces microfractures followed by cystic bone degradation. Materials and Methods: A þnite element analysis using the well described parameters for cancellous and cortical bone as also cartilage was performed. Several typical situations of localized and general cartilage pathologies were calculated in a schematic hip joint situation. Results: A signiþcant impact of cartilage defect size and resulting stress distribution correlating well to cystic lesions of patients with osteoarthritis of the hip could be shown. In localized cartilage defects max. stress was calculated at the rims of the lesions in the subchondral bone. Assuming a situation with an allready preformed cyst either in the acetabulum or the femoral head, further enlargement of the cyst will appear due to a maximal stress at the rims of the lesions. Femoral lesions have a comparable small tendency to grow, thereas acetabular lesions will grow rapidly. Discussion and Conclusion: These þndings þt very well with the clinical observations. Cartilage lesions inducing microfractures by mechanical stress may be able to explain the process of subchondral cyst formation. A process involving osteoclasts and myxomatous cells within the bone marrow seems to be a subsequent mechanism of remodelling and formation of myxomatous cyst content


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 323 - 323
1 Sep 2005
Malik A Briggs T
Full Access

Introduction and Aims: The treatment of cartilage defects has been revolutionised by the introduction of autologous chondrocyte implantation (ACI) over the last decade. Several studies have shown superior clinical and histological results compared to traditional treatments such as mosaicplasty. ACI involves injecting chondrocytes into the defect and sealing it with periosteum or chondroguide membrane. Recently, a new technique has been introduced which allows chondrocytes to be embedded within a matrix which is then used to fill the cartilage defect. The aim is to assess the early functional, clinical and histological results of MACI for the treatment of full-thickness cartilage defects. Method: This is a prospective study. Fifty patients, mean age 34 (range 19–62) underwent MACI for their cartilage repair. The modified Cincinnati, Brittberg and Lysholm and Gillquist scores were used to assess functional outcome. These were compared with the results obtained in 40 patients; mean age 31 (range 15–51) treated with ACI. A review of the histology in both groups was carried out. Results: At two-year follow-up, functional assessment using the Brittberg and modified cincinnati scoring systems, as well as objective clinical assessment, showed that more than 75% of patients had good or excellent results following treatment with either ACI or MACI. There was no statistical difference in the functional scores between the two groups (p < 0.05). Histological results were similar in both groups. Conclusion: Our prospective study has shown that results of MACI are comparable to that obtained by ACI. Additional advantages of the MACI technique being a shorter operative time, easier technique and potential to treat larger defects


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 113 - 113
1 Mar 2006
Bitter T Gille J Russlies M Kurz B Behrens P
Full Access

Introduction: We developed a new treatment option for localized articular cartilage defects: the matrix-induced, autologous chondrocyte transplantation (MACT) in which we seeded autologous chondrocytes on porcine porous matrices of type I/III collagen (Chondro-Gide®, Geistlich Biomaterials, Wolhusen, Switzerland) instead of a periosteum flap.The target of this clinical prospective study was to evaluate the outcome for a follow up period of five years after transplantation. Methods: Between 1998 and 2001 we treated 38 patients (19 male and 19 female) with localized cartilage defects (Outerbridge grade three to four). Within the follow up time of this study until October 2002 the patients were assessed clinically 3, 6, 12, 18, 24, 36 and 60 month after the transplantation using four different standard rating scales: the Meyers-score, the Tegner/Lysholm-score, the Lysholm/Gilquist-score and the ICRS-score as well as MRI. Results were documented and compared with the pre operatives. Furthermore histological stainings of four patients were assessed. Results: Mean patient age was 35 years (19 to 58 years). Average defect size was 5,6 qcm, 10 defects localized patellar, 16 femoral medial,3 femoral lateral and 9 combined. Two years after operation 66,7% (n=25) of the patients rated the function of their knee as much better or better than before in the subjective evaluation. After five years the percentage decreased to 57,1% (n=10). Up to a follow-up time of 24 month the clinical outcome of all four scores illustrated an significant improvement. Five years after transplantation two scores still showed significant improvement (Meyers-score: p= 0,02; Lysholm-Gilquist-Score: p=0,02). The other two scores showed improvement which turned out to be non significant (Tegner-Lysholm-Score: p=0,19; ICRS-Score: p=0,06) MRI scanning results after one year could not detect the quality of cartilage defect repair. Histological evaluation of four patients might not identify any association between the quality of the tissue and the clinical outcome. Conclusion: Five years results in two scores (Meyer- and Lysholm-Gilquist-Score) still showing significant improvement imply that MACT has turned out to be an acceptable alternative for the treatment of localized cartilage defects in the knee


The Bone & Joint Journal
Vol. 96-B, Issue 4 | Pages 508 - 512
1 Apr 2014
van Amerongen EA Creemers LB Kaoui N Bekkers JEJ Kon M Schuurman AH

Damage to the cartilage of the distal radioulnar joint frequently leads to pain and limitation of movement, therefore repair of this joint cartilage would be highly desirable. The purpose of this study was to investigate the fixation of scaffold in cartilage defects of this joint as part of matrix-assisted regenerative autologous cartilage techniques. Two techniques of fixation of collagen scaffolds, one involving fibrin glue alone and one with fibrin glue and sutures, were compared in artificially created cartilage defects of the distal radioulnar joint in a human cadaver. After being subjected to continuous passive rotation, the methods of fixation were evaluated for cover of the defect and pull out force. No statistically significant differences were found between the two techniques for either cover of the defect or integrity of the scaffold. However, a significantly increased mean pull out force was found for the combined procedure, 0.665 N (0.150 to 1.160) versus 0.242 N (0.060 to 0.730) for glue fixation (p = 0.001). This suggests that although successful fixation of a collagen type I/III scaffold in a distal radioulnar joint cartilage defect is feasible with both forms of fixation, fixation with glue and sutures is preferable. Cite this article: Bone Joint J 2014;96-B:508–12


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 123 - 123
1 Sep 2012
Dhollander A Verdonk P Verdonk R Verbruggen G Almqvist K
Full Access

Aim. The present study was designed to evaluate the implantation of alginate beads containing human mature allogenic chondrocytes for the treatment of symptomatic cartilage defects in the knee. Methods. A biodegradable, alginate-based biocompatible scaffold containing human mature allogenic chondrocytes was used for the treatment of chondral and osteochondral lesions in the knee. Twenty-one patients were clinically prospectively evaluated with use of the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and a Visual Analogue Scale (VAS) for pain preoperatively and at 3, 6, 9, 12, 24 and 36 months of follow-up. Results. A statistically significant clinical improvement became apparent after 6 months and patients continued to improve during the 36 months of follow-up. Adverse reactions to the alginate/fibrin matrix seeded with the allogenic cartilage cells were not observed. Two of the procedures failed. One of the patients had loosening of the periosteal flap, which was attributed to a failure of the surgical procedure. The other failure case was the result of the poor quality and quantity of the repair tissue itself. Discussion. The results of this pilot study show that the alginate-based scaffold containing human mature allogenic chondrocytes is feasible for the treatment of symptomatic cartilage defects in the knee. The described technique provides clinical outcomes equal to those of other cartilage repair techniques


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 341 - 341
1 Jul 2014
Ito H Fujii T Kasahara T Ishikawa M Furu M Shibuya H Matsuda S
Full Access

Summary Statement. In articular cartilage defects, chemokines are upregulated and potentially induce the migration of bone marrow cells to accelerate the healing processes. Introduction. The treatment of damaged articular cartilages is one of the most challenging issues in sports medicine and in aging societies. In the microfracture technique for the treatment of articular cartilage defects, bone marrow cells are assumed to migrate from the bone marrow. Bone marrow cells are well-known for playing crucial roles in the healing processes, but how they can migrate from underlying bone marrow remains to be investigated. We have previously shown that SDF-1, one of chemokines, play crucial roles in the recruitment of mesenchymal stem cells in bone healing processes, and the induction of SDF-1 can induce a successful bone repair. If the migration can be stimulated by any means in the cartilage defects, a better result can be expected. The aim of this study was to elucidate the mechanisms of the migration of bone marrow cells and which factors contribute to the processes. Materials & Methods. Articular cartilage defects of 2 mm of diameter were created by drilling the cartilage with a wire to just the subchondral bone in 5-week-old SD rats. The width and depth of the created defects were confirmed by HE staining in histology. The healing tissues were harvested at days 2, 6, and 14 after the operation, and total RNAs were entracted. PCR array was conducted according to the manufacturer's instruction. Quantitative PCR (qPCR) was performed using cDNA of the healing tissues. Bone marrow cells were harvested from 5-week-old SD rat, and a standard migration assay was performed using chemokines. Results. CCL2, CCL3, CCL7 and CCL12 were upregulated in the healing tissues of cartilage defects shown by PCR array. The expression pattterns were confirmed by an expression analysis by qPCR. Both CCL2 and CCL3 induced the migration of bone marrow cells in the in vitro migration assay. Discussion/Conclusion. This study showed for the first time that CCL chemokines are upregulated in the articular cartilage defects and induce the migration of bone marrow cells. These results lead to an innovative measures along with an appropriate delivery method in induction the migration of bone marrow cells from the underlying bone marrow to stimulate articular cartilage healing processes


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_3 | Pages 17 - 17
1 Apr 2019
Kurian NM Shetty AA Kim SJ Shetty V Ahmed S Trattnig S
Full Access

Gel-based autologous chondrocyte implantation (ACI) over the years have shown encouraging results in repairing the articular cartilage. More recently, the use of cultured mesenchymal stem cells (MSC) has represented a promising treatment option with the potential to differentiate and restore the hyaline cartilage in a more efficient way. This study aims to compare the clinical and radiological outcome obtained in these two groups. Twenty-eight consecutive symptomatic patients diagnosed with full-thickness cartilage defects were assigned to two treatment groups (16 patients cultured bone marrow-derived MSC and 12 patients with gel-type ACI). The MSC group patients underwent microfracture and bone marrow aspiration in the first stage and injection of cultured MSC into the knee in the second stage. Clinical and radiological results were compared at a minimum follow up of five years. There was excellent clinical outcome noted with no statistically significant difference between the two groups. Both ACI and MSC group showed significant improvement of the KOOS, Lysholm and IKDC scores as compared to their preoperative values and this was maintained at 5 years follow up. The average MOCART score for all lesions was also nearly similar in the two groups. The mean T2* relaxation-times for the repair tissue and native cartilage were 27.8 and 30.6 respectively in the ACI group and 28 and 29.6 respectively in the MSC group. Use of cultured MSC is less invasive, technically simpler and also avoids the need for a second surgery as compared to an ACI technique. With similar encouraging clinical results seen and the proven ability to restore true hyaline cartilage, cultured MSC represent a favorable treatment option in articular cartilage repair


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 122 - 122
1 Aug 2012
Kumar KS Murakibhavi V Roberts S Guerra-Pinto F Robinson E Harrison P Mangam D McCall I Richardson J
Full Access

Background. Autologous Chondrocyte Implantation (ACI) is a procedure which is gaining acceptance for the treatment of cartilage defects in the knee with good results and a long term durable outcome. Its use in other joints has been limited, mainly to the ankle. We aimed to assess the outcome of ACI in the treatment of chondral and osteochondral defects in the hip. Methods. Fifteen patients underwent ACI for chondral or osteochondral defects in the femoral head with a follow up of upto 8 years (mean of 2 years) in our institution with a mean age of 37 years at the time of operation. Pre-operatively hip function was assessed by using the Harris Hip Score and MRI. Post-operatively these were repeated at 1 year and hip scores repeated annually. Failure was defined as a second ACI to the operated lesion or a conversion to a hip resurfacing or replacement. Results. The mean pre-op Harris Hip Score (HHS) was 55 which increased to 63 at 1 year and 70 at the latest follow up. Patients who underwent ACI for cartilage defects secondary to trauma (four) were better with a mean HHS of 69 at a mean follow up of 3.5 years. Six patients underwent THR at a mean of 32 months and were classed as failures. Five patients had evidence of avascular necrosis (AVN) of the femoral head post operatively of which four AVN pre-op. Conclusion. These early results suggest that ACI could be a viable option for the treatment of isolated chondral defects in the hip. The presence of AVN or bone cysts pre-op may be a predictor of failure


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 50 - 50
1 Nov 2018
Jonkers I
Full Access

Osteoarthritis is a multifactorial disease in which altered mechanical loading is one of the agreed contributing factors. Whereas in the past, altered mechanical loading was merely deferred from static, image-based evaluations of malalignment, the recent use of 3D motion capture allowed dynamic evaluation of joint loading in terms of dynamic alignment (e.g. varus trust) and even joint loading strategy (merely using proxy measures like knee adduction moment.) Combining these measurements with musculoskeletal models, the overall loading distribution in the joint due to muscle action underlying the patient's motion pattern can be quantified. Using this approach, our group showed the potential of this technique to differentiate between control subjects and subjects with early medial knee OA before the presence of radiographic evidence of structural joint degradation. Nevertheless, no changes in loading distribution could be detected in a cohort of subjects suffering of local cartilage defects in an otherwise healthy knee joint, indicating that patients did not present active unloading strategies despite the presence of clinical symptoms. Furthermore, subject-specific strategies aiming contributing to modified loading of the hip joint have been evaluated


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 29 - 29
1 Nov 2018
Levato R
Full Access

Current treatments of cartilage defects, including chondrocyte implantation and several tissue engineering strategies, often result in a repair tissue that does not replicate the architecture and depth-dependent properties of the native tissue. As a result, these therapies often only delay the occurrence degenerative diseases, such as osteoarthritis. Additionally, when the damage is extended to the subchondral bone, the regeneration of both bone and cartilage is major challenge, due to the dissimilar composition of the two tissues and the inherent challenge in recreating their strong interface, thus favouring the integration in vivo of the neo-tissue. The recent progresses in the field of biofabrication are opening new avenues for the treatment of damaged articulating joints. In particular, bioprinting technologies allow coordinating the deposition of multiple cell types and materials, thus permitting to mimic the complex architecture of osteochondral structures. In this lecture, the latest development in the field of (stem) cell-laden hydrogels, also termed bioinks, to create zonal-biomimetic cartilage constructs will be discussed, together with the integration of multiple (bio)printing strategies (i.e. co-fabrication of hydrogels, reinforcing polymers and bioceramics), and the impact of these technologies towards the generation of fully biofabricated, high-performance engineered osteochondral grafts, with potential application as tissue engineering constructs for regenerative medicine in orthopaedics


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 415 - 415
1 Sep 2009
Saris DB Vanlauwe J Victor J Bellemans J Luyten FP Fortems Y
Full Access

Purpose: This study compared the efficacy and safety of Characterized Chondrocyte Implantation (CCI) to microfracture in the repair of symptomatic cartilage defects of the femoral condyle. Methods: CCI (n=51) was compared to microfracture (n=61) in patients with grade III–IV symptomatic cartilage defects of the femoral condyles in a prospective, multicenter, randomized, controlled trial. Structural repair was assessed at 1 year by histopathologists blinded to the treatment using. computerized histomorphometry and. an overall histology assessment. Clinical outcome was measured using the Knee Injury and Osteoarthritis Outcome Score (KOOS). Safety was recorded throughout the study. Results: CCI resulted in better structural repair than microfracture at 1 year post-treatment, as assessed by histomorphometry (p=0.003) and overall histology (p=0.012). Structural repair parameters relating to chondrocyte phenotype and tissue structure were also superior with CCI. Noninferiority of CCI was demonstrated for clinical outcome at 12–18 months, and both treatments were generally well tolerated. Conclusion: At 1 year post-treatment, CCI resulted in superior tissue repair compared to microfracture. Short-term clinical outcome after 12–18 months was similar for both treatments, as was the safety profile. The superior structural repair achieved with CCI may lead to improved long-term clinical benefits


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 21 - 21
1 Nov 2018
Capar S van Osch G Verhaar J Bastiaansen-Jenniskens Y
Full Access

Joint injuries often result in inflammation and cartilage defects. When inflamed, the synovium secretes factors that prevent successful cartilage repair by inhibiting chondrogenic differentiation of progenitor cells. In particular the pro-inflammatory macrophages in the synovium are indicated to contribute to this anti-chondrogenic effect. Thus, we aimed to counteract the anti-chondrogenic effect of inflamed synovium by modulating synovial inflammation and its macrophages. Synovium tissue obtained from osteoarthritic patients undergoing a total knee replacement was cut into explants and cultured for 72 hours +/− 1 µM of the anti-inflammatory drug triamcinolone acetonide (TAA) (Sigma Aldrich). TAA significantly decreased gene expression of TNFA, IL1β and IL6, and increased expression of CCL18, IL1RA in synovial explants (all with p < 0.001). On the other hand, TAA significantly decreased the percentages of pro-inflammatory CD14+/CD80+ and CD14+/CD86+ macrophages in the synovium (both p < 0.001) as assessed by flow cytometry analyses. The percentages of anti-inflammatory CD14+/CD163+ macrophages, is significantly increased (p < 0.001) in TAA treated synovium. Conditioned medium (CM) from synovium explants downregulated the gene expression of cartilage matrix components collagen type-2 and aggrecan expression in chondrogenic MSCs. This chondrogenesis inhibiting effect was reduced by treating synovium with TAA during the production of the CM. Our findings indicate that reducing synovial inflammation might improve the joint environment for better cartilage repair, possibly by modulation of macrophage phenotypes


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 114 - 114
1 Nov 2018
Salonius E Puhakka J Hannula M Vasara A Paatela T Kiviranta I Muhonen V
Full Access

Articular cartilage repair is assumed to improve by covering the cartilage lesion with a biomaterial scaffold tailored to the specific requirements of the weight-bearing joint surface. We have tested the feasibility of a novel composite collagen-polylactide scaffold rhCo-PLA in cartilage repair. To confirm these results and further challenge the scaffold, we tested it in a large porcine cartilage defect. A critical-sized full-thickness chondral defect was made in the medial femoral condyle of 18 domestic pigs. This technically widest possible defect size of 11×17 mm was determined in a pilot test. Five weeks later, the defect was either treated with the novel rhCo-PLA scaffold or left untreated to heal spontaneously. After four months, the medial condyles were evaluated macroscopically using Goebel's score, in which the worst possible result receives a total of 20 points and imaged with µCT to evaluate subchondral bone. Macroscopic score and subchondral bone microstructure were similar in both study groups. The total Goebel score was higher in spontaneous group (9.75±3.9 for spontaneous and 9.1±3.7 for rhCo-PLA, respectively) but differences between individual animals were large. Subchondral bone volume fraction was 48.2±3.6% for rhCo-PLA and 44.2±3.4% for spontaneous. Trabecular thickness was greater in operated joints (207.9±18.8 µm for spontaneous and 242.9±32.9 µm for rhCo-PLA) than in contralateral non-operated joints (193.3±15.1 µm and 213.4±33.2 µm, respectively). These preliminary data demonstrate that individual differences in the macroscopic appearance were large but there were no significant differences between the two study groups in the score or subchondral bone structure


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 125 - 125
1 Nov 2018
Detamore M
Full Access

One of the core tenets of our philosophy for tissue regeneration include the use of “raw materials,” where biomaterials themselves serve as both building blocks and bioactive signals. In recent years, a few groups around the world have gravitated toward cartilage matrix as a potentially chondroinductive material for cartilage regeneration. The major challenge to date in cartilage injury has been creating a biomaterial-only strategy that is capable of regenerating true hyaline-like cartilage without the addition of growth factors or exogenous cells. In the past few years, we have focused our efforts on establishing chondroinductivity in vitro, and in developing new materials synthesis strategies to provide ease of application for orthopedic surgeons in the operating room. By leveraging nanotechnology, we have developed a paste-like material constructed from cartilage matrix with encouraging mechanical performance post-crosslinking, and which avoids contraction after extended time. Looking to the future, we are working on next-generation approaches to chondroinductive materials. We have encouraging preliminary data which suggest the possibility of a chondroinductive response to a novel peptide sequence in vitro, which may be enhanced by simultaneous inclusion of adhesion peptides. Initial in vivo data in regeneration of rabbit femoral condyle cartilage defects may suggest promising regenerative capabilities with hydrogels based on these peptides. If indeed chondroinductive materials exist, and if they can be delivered easily, are safe, and can be provided at reasonable cost and with a reasonable regulatory strategy, chondroinductive materials may hold the potential to revolutionize cartilage regeneration


The Bone & Joint Journal
Vol. 105-B, Issue 8 | Pages 880 - 887
1 Aug 2023
Onodera T Momma D Matsuoka M Kondo E Suzuki K Inoue M Higano M Iwasaki N

Aims

Implantation of ultra-purified alginate (UPAL) gel is safe and effective in animal osteochondral defect models. This study aimed to examine the applicability of UPAL gel implantation to acellular therapy in humans with cartilage injury.

Methods

A total of 12 patients (12 knees) with symptomatic, post-traumatic, full-thickness cartilage lesions (1.0 to 4.0 cm2) were included in this study. UPAL gel was implanted into chondral defects after performing bone marrow stimulation technique, and assessed for up to three years postoperatively. The primary outcomes were the feasibility and safety of the procedure. The secondary outcomes were self-assessed clinical scores, arthroscopic scores, tissue biopsies, and MRI-based estimations.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_III | Pages 115 - 115
1 Feb 2012
van Niekerk L Panagopoulos A Triantafyllopoulos I Kumar V
Full Access

Introduction. The purpose of this study is to evaluate the early functional outcome and activity level in athletes and soldiers with large full thickness cartilage defects of the knee that underwent either ‘classic’ autologous chondrocyte implantation using periosteal flap coverage (ACI-P) or 3-D matrix-assisted chondrocyte implantation (ACI-M). Methods. Between April 2002 and January 2004, 19 patients (15 male, 4 female, average age 32.2 years) with 22 full-thickness cartilage defects in 19 knees were treated with ACI in our centre. The mean post-injury interval was 39.8 months whereas 17 (89.5%) patients had undergone at least one surgical procedure before ACI. The average defect size was 6.54 cm. 2. (located in MFC:7, LFC:7 or trochlear:2 while 3 patients had bifocal lesions in both LFC and TRC). Novocart. ¯. cultured chondrocytes with periosteal flap coverage were used in 11 patients and Novocart-3D. ¯. cell impregnated collagen patch in 8. The functional outcome was evaluated with IKDC form, Tegner activity scale and Lysholm score after a mean follow-up period of 26.5 months. Results. The average IKDC and Lysholm scores were improved from 39.16 and 42.42 pre-operatively to 62.4 and 69.4 at the latest follow-up respectively. The mean Tegner activity scale was 8.73 before injury, 3.63 pre-operatively and 5.21 at the latest follow-up. There was no statistically significant difference between the two groups regarding the clinical outcome and the overall athletic or military performance. Second-look arthroscopy was performed in 11 (57.8%) patients due to persistent pain and/or mechanical symptoms. Generally, the ACI site showed adequate graft integration except for one partial failure. Conclusions. The early results of ACI in high-performance athletes and professional soldiers are not as good as other recent studies suggest. Motivational issues during prolonged rehabilitation, patient age and very large defects may influence early results in this select group of patients


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_II | Pages 316 - 317
1 May 2006
Clatworthy M Young S Deverall H Harper T
Full Access

Microfracture is a stem cell stimulation technique to promote the healing of full thickness articulate cartilage defects. Sixty-six patients have undergone microfracture for full thickness articulate cartilage defects over a five year period. All procedures were performed by one surgeon following the technique of Steadman. All patients were under 46, had an isolated chondral lesion, had a stable well aligned knee and were a minimum of one year post surgery. Patients were evaluated with a preoperative and follow up IKDC score, WOMAC score, KOOS Score, Tegner activity level and SF 36, VAS pain scores and overall knee function score. Failure was determined by the need for a secondary chondral procedure. Nine patients failed. Thus the overall success rate was 86%. The failure rate was higher with larger lesions. There was a significant improvement in IKDC score, WOMAC score, KOOS Score, Tegner activity level and SF 36, VAS pain scores and overall knee function score. Microfracture has a good success rate in the short to medium term with isolated full thickness articular cartilage lesions in the stable well aligned knee


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 20 - 20
1 Jan 2019
Khatib N Wilson C Mason DJ Holt CA
Full Access

Focal cartilage defects (FCDs) found in medial and lateral compartments of the knee are accompanied with patient-reported pain and loss of joint function. There is a deficit of evidence to explain why they occur. We hypothesise that aberrant knee joint loading may be partially responsible for FCD pathology, therefore this study aims to use 3-dimensional motion capture (MoCap) analysis methods to investigate differences in gait biomechanics of subjects with symptomatic FCDs. 11 subjects with Outerbridge grade II FCDs of the tibiofemoral joint (5 medial compartment, 6 lateral compartment) and 10 non-pathological controls underwent level-gait MoCap analysis using an infra-red camera (Qualisys) and force-plate (Bertec) passive marker system. 6-degree of freedom models were generated and used to calculate spatio-temporal measures, and frontal and sagittal plane knee, hip and ankle rotation and moment waveforms (Visual 3D). Principle component analysis (PCA) was used to score subjects based on common waveform features, and PC scores were tested for differences using Mann-Whitney tests (SPSS). No group differences were found in BMI, age or spatio-temporal measures. Medial-knee FCD subjects experienced higher (p=0.05) overall knee adduction moments (KAMs) compared to controls. Conversely, lateral-knee FCD subjects found lower (p=0.031) overall KAMs. Knee flexion and extension moments (KFMs/KEMs) were relatively reduced (p=0.013), but only in medial FCD subjects. This was accompanied by a significantly (p=0.019) higher knee flexion angle (KFA) during late-stance. KAMs have been shown to be predictive of frontal plane joint contact forces, and therefore our results may be reflective of FCD subjects overloading their respective diseased knee condyles. The differences in knee sagittal plane knee moments (KFMs/KEMs) and angles (KFA) seen in medial FCD subjects are suggestive of gait adaptations to pain. Overall these results suggest treatments of FCDs should consider offloading the respective affected condyle for better surgical outcomes


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 32 - 39
1 May 2024
Briem T Stephan A Stadelmann VA Fischer MA Pfirrmann CWA Rüdiger HA Leunig M

Aims

The purpose of this study was to evaluate the mid-term outcomes of autologous matrix-induced chondrogenesis (AMIC) for the treatment of larger cartilage lesions and deformity correction in hips suffering from symptomatic femoroacetabular impingement (FAI).

Methods

This single-centre study focused on a cohort of 24 patients with cam- or pincer-type FAI, full-thickness femoral or acetabular chondral lesions, or osteochondral lesions ≥ 2 cm2, who underwent surgical hip dislocation for FAI correction in combination with AMIC between March 2009 and February 2016. Baseline data were retrospectively obtained from patient files. Mid-term outcomes were prospectively collected at a follow-up in 2020: cartilage repair tissue quality was evaluated by MRI using the Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) score. Patient-reported outcome measures (PROMs) included the Oxford Hip Score (OHS) and Core Outcome Measure Index (COMI). Clinical examination included range of motion, impingement tests, and pain.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 505 - 505
1 Oct 2010
Mayer S Büttner A Jansson V Mayer W Müller P Schieker M Schiergens T Sievers B
Full Access

Background: In regenerative medicine the autologous cartilage implantation (ACI) has been used for the repair of cartilage defects. As modification of ACI, the matrix assisted ACI is used nowadays with varying results. There is a general discussion about whether supporting scaffolds should be used or whether a scaffold-free cartilage repair is the method of choice. The major problem of scaffold-free regenerates is how to keep the cells in place after transplantation. Aim of this study was to examine a new scaffold-free diffusion-culture model, which uses a mega-congregate of chondrocytes cultured at an air-medium interface. This scaffold-free high-density diffusion culture could be used to repair cartilage defects. Material and methods: Human chondrocytes from passage 1–7 were expanded in monolayer and transferred to pellet-culture or diffusion-culture. After one week cultures were stained with toluidine blue and safranin-O and evaluated by immunohistochemical staining for type II collagen. Quantitative real time reverse transcriptase polymerase chain reaction (qRT-PCR) was performed for the mRNAs of cartilage markers. Results: Positive alcian blue staining was detectable in diffusion-culture for human chondrocytes up to passage 7. Within passages the amount of proteoglycan production in relationship to the number of cells increased. There was a positive signal for Collagen type II in diffusion-cultures up to passage 7. In qRT-PCR a redifferentiation of human chondrocytes was shown by the transfer into diffusion-culture. Within passage 1 to 3 human chondrocytes which were cultured in monolayer lost the ability to express Collagen Type II but could regain it if they were transferred to diffusion-culture. At diffusion-culture chondrocytes showed the highest expression of Collagen type II at passage 1 when compared to monolayer or to pellet-culture. Conclusion: It could be shown that the cultivation in a scaffold-free diffusion-culture can lead to redifferentiation of human chondrocytes Chondrocytes in diffusion-cultures tend to form their own matrix and produce Collagen type II at higher amounts than in monolayer or in normal pellet-cultures. Therefore diffusion-culture congregates might be an appropriate tool to be used for a new scaffold-free cartilage regeneration approach


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 169 - 169
1 May 2011
Alevrogiannis S Skarpas G Triantafyllopoulos A Lygdas P Stavropoulos N
Full Access

Purpose: To present our experience in using autologous 3D chondrocyte implantation, performed in fully arthroscopical manner, for treatment of cartilage defects, due to osteochondritis descecans in the talus. Materials and Methods: A total of 12 patients were presented to our clinic with severe ankle pain due to osteochondritis descecans in the right(8) and left(4) talus between June 2008 and June 2009. The lesions were located at the medial aspect of the right talus (7) and the medial aspect of the left talus (4) as well as the central aspect (1) of the right talus, measuring (8) 1×1.5 cm2 and (4) 1.5x1.5 cm2 were classified intraoperatively as Outerbridge IV. They underwent arthroscopy in order to collect cartilage from non-weight bearing area of the talus(1st stage ACI) and then send it for chondrocyte culture. After 6 weeks the cultivated chondrocytes were applied fully arthroscopically as 3D chondrospheres to cover the chondral defects(2nd stage ACI). Pre-op and post-op evaluation was done using the LYSHOLM & GILLQUIST score, Patient Outcome Function score and Visual Analogue Pain score. Results: The procedures progressed uneventfully. A specialized rehabilitation protocol was followed. We assessed the patient at six months and 1 year post-operatively; the Lysholm & Gillquist Score rose from 45.5 to 72.5, in VAS pain significantly reduced from 6.3 to 1.7 in the 1 year period and the Patient Outcome Function score showed significantly better performance. The follow-up using MRI showed adequate filling of the defect without significant graft-associated complications for the same period. The clinical outcome was excellent. Conclusions: Our preliminary results of autologous 3D chondrocyte implantation for the treatment of cartilage defects, due to osteochondritis descecans in the talus seems to be more than encouraging. A greater number of cases and further mid and long term follow-up has to be studied in order to prove the efficacy of the method. As far as we know this is the first publication in the literature regarding 3nd generation ACI technique fully arthroscopically performed, concerning the talus, in our country


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_III | Pages 267 - 267
1 Mar 2004
Darmanis S Papanikolaou A Papadopoulos G Papalois A Stamatis E
Full Access

Aims: The objective of our study is to elucidate the chondrogenic potential of free autologous periosteal grafts in treating articular cartilage defects, especially in complicated cases where apart from the cartilage defect there are coexisting lesions. Methods: 60 young rabbits were randomly divided in 5 groups. A cartilage defect 0.5 ⋄ 0.5 was created in both knees of each rabbit and covered with free autologous periosteal graft. In the right knee an additional ligamentous lesion was created. Results: All the knees were amputated at one, two and three months postoperatively. Apart from the histological examination, the cartilage specimens were tested biomechanically. An indentation test was used using a Shore A sclerometer and the data were evaluated and compared. In the test group the produced fibrocartilage or hyaline-like cartilage, was mechanically inferior (hardness 50–70 GPa) comparing to the control knees group (98 GPa). The results were statistically evaluated (using O’Driscoll’s histological grading scale and Wilcoxon rank sum test). Conclusions: Autologous periosteal transplantation can be used in daily practise, as it is a method relatively easy to perform with low cost and without any contra-indications. Nevertheless, in cases of unstable knees the method has poor results and ligamentous repair is recommended first


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 459 - 460
1 Sep 2009
Steck E Lorenz H Gotterbarm T Jung M Richter W
Full Access

Mesenchymal stem cells (MSC) are promising for the treatment of articular cartilage defects; however, common protocols for in vitro chondrogenesis induce typical features of hypertrophic chondrocytes reminiscent of endochondral bone formation. This may implicate a risk for graft stability. We here analysed the early healing response in experimental full-thickness cartilage defects, asking whether and how MSC can differentiate to chondrocytes in an orthotopic environment. Cartilage defects in knees of minipigs were covered with a collagen-type I/III membrane, and half of them received transplantation of expanded autologous MSC. Integration into surrounding cartilage tissue was poor to moderate after 1 and 3 weeks and no sign of cartilaginous matrix production as indicated by negative safranin-O staining was visible for both groups. At 8 weeks regenerative tissue was integrated into the surrounding tissue and a safranin-O positively stained neocartilage was detectable in 4 tissue regenerates out of 6 in the MSC group compared to 2 out of 6 in the MSC-free group. At 1 and 3 weeks after surgery only marginal Col2A1 and no AGC expression were detectable in both groups. At 8 weeks Col2A1 and AGC levels had significantly increased. Hypertrophic maker induction (Col10A1 and MMP13) was similar in both groups 8 weeks after surgery. Immunostaining for collagen type X, however, was restricted to the regenerative tissue close to the subchondral bone in both groups, while collagen type II staining was detected from below the superficial to the deep zone. Our data provide molecular evidence for spontaneous differentiation of MSC in cartilage and the development of a collagen type II positive, collagen type X negative neocartilage. Whether by remodelling of defect filling tissue collagen type X positive areas will further diminish or even disappear from repair cartilage at later stages has to be evaluated in a longer follow-up study


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 577 - 577
1 Dec 2013
Wang C
Full Access

Background:. Full thickness cartilage defect of the knee frequently resulted in fibrous tissue formation, and larger lesions often lead to degenerative arthritis of the knee. Many techniques are designed to repair the cartilage defect including chondrocyte transplantation, microfracture and osteochondral graft. Each method has achieved some success but no universal results. Autologus osteochondral graft has gained in clinical popularity because of its technical feasibility and cost effectiveness. Purpose:. The purpose of this retrospective study was to evaluate the medium-term results of autologous osteochondral graft for focal contained articular cartilage defects of the knee in 25 patients with 26 knees with 2- to 7-year follow-up. Patients and Methods:. The cohort consisted of 17 men and 8 women with an average age of 31.3 ± 11.8 (range 20 to 65) years. One patient had bilateral knees. The diagnosis included 9 osteonecrosis, 10 osteochondritis dessicans, and 7 traumatic defects. A 1.0 mm oversized 10 mm long ossteochondral plug was harvested from either from the sulcus terminalis or the intercondylar notch, and implanted into the recipient site The numbers of osteochondral plug ranged from 1 to 3. In larger lesions, osteochondral grafts were implanted in the weight bearing area, and microfracture in non-weight bearing area. Postoperative management included crutch walking with non-weight bearing for 6 weeks, then partial weight bearing for another 6 weeks before full weight bearing. Range of knee motion, quadriceps and hamstring strengthening exercises were encouraged. The evaluations included functional assessment, radiograph of the knee and second look arthroscopy. Results:. At follow-up of 52.9 ± 20.3 (range 25 to 84) months, the results were 50% excellent, 35% good, 11% fair and 4% poor. Overall satisfactory results were noted in 85%. The improvements in pain and function of the knee ranged from 8 to 16 weeks after surgery. There was no correlation of the clinical results with the diagnosis of the lesion. However, the lesion size greater than 500 mm. 2. is associated with failure. Radiographic degenerative changes were noticed in 6 (23%) and 7 (27%) in medial compartment, 5 (19%) and 5 (19%) in lateral compartment, and 1 (4%) and 2 (8%) in the patellofemoral compartment pre- and postoperatively (P > 0.05). Twelve knees underwent a second look arthroscopy. Of the 11 asymptomatic knees, 8 knees with the defect smaller than 500 mm. 2. showed complete bonding of the graft to the adjacent host cartilage, and 3 cases showed minimal fissuring and fibrous tissue formation between graft and host tissue. One symptomatic knee with greater than 500 mm. 2. lesion showed extensive fibrous tissue between the graft and host cartilage. Conclusion:. Autologous osteochondral graft provides good or excellent results in 85% of patients with focal contained chondral and osteochondral defects of the knee. There was no correlation of the clinical results with the nature of the disease and the size of the lesion smaller than 500 mm. 2. Any lesion larger than 500 mm. 2. is prone to poor clinical outcome


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 2 | Pages 276 - 288
1 Mar 2002
Fortier LA Mohammed HO Lust G Nixon AJ

Composites of chondrocytes and polymerised fibrin were supplemented with insulin-like growth factor-I (IGF-I) during the arthroscopic repair of full-thickness cartilage defects in a model of extensive loss of cartilage in horses. Repairs facilitated with IGF-I and chondrocyte-fibrin composites, or control defects treated with chondrocyte-fibrin composites alone, were compared before death by the clinical appearance and repeated analysis of synovial fluid, and at termination eight months after surgery by tissue morphology, collagen typing, and biochemical assays. The structure of cartilage was evaluated histologically by Toluidine Blue reaction and collagen type-I and type-II in situ hybridisation and immunohistochemistry. Repair tissue was biochemically evaluated by DNA assay, proteoglycan quantitation and characterisation, assessment of collagen by reverse-phase high-performance liquid chromatography, and collagen typing using cyanogen bromide digestion and peptide separation by polyacrylamide gel electrophoresis. The results at eight months showed that the addition of IGF-I to chondrocyte grafts enhanced chondrogenesis in cartilage defects, including incorporation into surrounding cartilage. Gross filling of defects was improved, and the tissue contained a higher proportion of cells producing type-II collagen. Measurements of collagen type II showed improved levels in IGF-I-treated defects, supporting in situ hybridisation and immunohistochemical assessments of the defects. IGF-I improves the repair capabilities of chondrocyte-fibrin grafts in large full-thickness repair models


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 368 - 368
1 Jul 2008
Khan W Adesida A Andrew J Hardingham T
Full Access

Introduction: Autologous chondrocytes harvested from articular cartilage are being used for the repair of focal cartilage defects. The procedure involves injury to the cartilage and alternative sources of stem cells for use in repair are being explored. Stem cells have been found in many tissue including bone marrow and the infrapa-tellar fat pad. Infrapatellar fat pad derived stem cells present a viable and easily accessible source of stem cells for the repair of cartilage defects and tissue engineering applications. Hypoxia has been shown to improve chondrogenesis in stem cells derived from the bone marrow. We explore the hypothesis that this effect would also apply to stem cells derived from the infrapatellar fat pad. Materials and methods: Cell aggregates from early passage stem cells isolated from the infrapatellar fat pad were placed in chondrogenic media for 14 days either in a normoxic (20% oxygen) or hypoxic (5% oxygen) environment. Gene expression analysis, DNA and glycosoaminoglycan assays and immunohistochemi-cal studies were performed on the aggregates to assess chondrogenesis. Results: Cells grown under hypoxic conditions showed significantly improved chondrogenesis as determined by relatively higher gene expression of proteoglycans, collagens and SOX genes. The cell aggregates also had a higher glycosoaminoglycan content and glycosoamino-glycan content per DNA. Immunohistochemical studies confirm enhanced production of collagen types I and II and aggrecan. Discussion: These findings confirm the previously documented effects of hypoxic culture conditions on stem cells and extend the findings to include infrapatellar fat pad derived stem cells. Our findings suggest that oxygen tension has a role in regulating the function of stem cells as they undergo chondrogenesis. In culture these cells appear to function optimally in an atmosphere of reduced oxygen that more closely approximates documented in vivo oxygen tension. This has important implications in future tissue engineering applications of these cells


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_III | Pages 210 - 210
1 Mar 2004
Erggelet C
Full Access

Defects of the joint cartilage are of enormous medical and socio-economic impact. Meanwhile is widely acknowledged that untreated cartilage defects lead to an early onset of osteoarthritis. Intrinsic factors for the genesis of osteoarthritis are unknown. It is wellknown however that joint cartilage has only a limited capacity of regeneration. The conservative treatment of early osteoarthritis should focus on the following principles: Limit the pain. Various drugs are available for the symptomatic treatment of osteoarthritis (e.g. NSAIR, cortison, herbal preparations). Intrarticular injections with antiinflammatory agents (e.g. hyaluronan, cortison, IL-1 antagonists) have been proven to reduce pain and dysfunction. Orthetic devices are able to unload joint compartments destroyed by osteoarthritic cartilage lesions. Arthroscopic lavage and debridement eliminate inflammation mediating substances and balance the synovial environment. Maintain the function. Physiotherapy and massage fight the stiffness of the joint and enhance the periarticular circulation. Daily activity should be encouraged and supported e.g. by walking aids and custom-made shoewear. Reduce factors for progression. A successful dietary program can minimize overload of osteoarthritic joints. Surgical procedures to restore and maintain meniscal function, joint stability and physiological loading are beneficial to prevent further cartilage deterioration. Regeneration of cartilaginous surfaces e.g. by marrow stimulation techniques or autologous chondrocyte transplantation will ease joint function and inhibit enzymatic degradation of healthy cartilage. In the last 10 years modern biochemical and cell biological techniques opened new horizons for the treatment of cartilage defects and osteoarthritis Future will teach us the value of cartilage regeneration to treat osteoarthritis. The biologic approach of cell based therapies and the arthroscopic application of resorbable implants widen the indications for the conservative surgical treatment of osteoarthritis


Bone & Joint Research
Vol. 12, Issue 8 | Pages 497 - 503
16 Aug 2023
Lee J Koh Y Kim PS Park J Kang K

Aims

Focal knee arthroplasty is an attractive alternative to knee arthroplasty for young patients because it allows preservation of a large amount of bone for potential revisions. However, the mechanical behaviour of cartilage has not yet been investigated because it is challenging to evaluate in vivo contact areas, pressure, and deformations from metal implants. Therefore, this study aimed to determine the contact pressure in the tibiofemoral joint with a focal knee arthroplasty using a finite element model.

Methods

The mechanical behaviour of the cartilage surrounding a metal implant was evaluated using finite element analysis. We modelled focal knee arthroplasty with placement flush, 0.5 mm deep, or protruding 0.5 mm with regard to the level of the surrounding cartilage. We compared contact stress and pressure for bone, implant, and cartilage under static loading conditions.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 5 | Pages 672 - 685
1 May 2007
Goodrich LR Hidaka C Robbins PD Evans CH Nixon AJ

Gene therapy with insulin-like growth factor-1 (IGF-1) increases matrix production and enhances chondrocyte proliferation and survival in vitro. The purpose of this study was to determine whether arthroscopically-grafted chondrocytes genetically modified by an adenovirus vector encoding equine IGF-1 (AdIGF-1) would have a beneficial effect on cartilage healing in an equine femoropatellar joint model. A total of 16 horses underwent arthroscopic repair of a single 15 mm cartilage defect in each femoropatellar joint. One joint received 2 × 10. 7. AdIGF-1 modified chondrocytes and the contralateral joint received 2 × 10. 7. naive (unmodified) chondrocytes. Repairs were analysed at four weeks, nine weeks and eight months after surgery. Morphological and histological appearance, IGF-1 and collagen type II gene expression (polymerase chain reaction, in situ hybridisation and immunohistochemistry), collagen type II content (cyanogen bromide and sodium dodecyl sulphate-polyacrylamide gel electrophoresis), proteoglycan content (dimethylmethylene blue assay), and gene expression for collagen type I, matrix metalloproteinase (MMP)-1, MMP-3, MMP-13, aggrecanase-1, tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) and TIMP-3 were evaluated. Genetic modification of chondrocytes significantly increased IGF-1 mRNA and ligand production in repair tissue for up to nine weeks following transplantation. The gross and histological appearance of IGF-1 modified repair tissue was improved over control defects. Gross filling of defects was significantly improved at four weeks, and a more hyaline-like tissue covered the lesions at eight months. Histological outcome at four and nine weeks post-transplantation revealed greater tissue filling of defects transplanted with genetically modified chondrocytes, whereas repair tissue in control defects was thin and irregular and more fibrous. Collagen type II expression in IGF-1 gene-transduced defects was increased 100-fold at four weeks and correlated with increased collagen type II immunoreaction up to eight months. Genetic modification of chondrocytes with AdIGF-1 prior to transplantation improved early (four to nine weeks), and to a lesser degree long-term, cartilage healing in the equine model. The equine model of cartilage healing closely resembles human clinical cartilage repair. The results of this study suggest that cartilage healing can be enhanced through genetic modification of chondrocytes prior to transplantation


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 18 - 18
1 Apr 2018
Caron M Janssen M Peeters L Surtel D van Rhijn L Emans P Welting T
Full Access

INTRODUCTION. The generation of cartilage from progenitor cells for the purpose of cartilage repair is often hampered by unwanted hypertrophic differentiation of the generated tissue due to endochondral ossification. Continuing on our earlier studies, our goal is to further improve the engineering of hyaline cartilage for the treatment of a cartilage defect in our in vivo model for subperiosteal generation of cartilage, by tuning the differentiation status of the generated cartilage and prevent hypertrophic differentiation. As a healthy cartilage matrix contains high amounts of aggrecan we hypothesise that aggrecan supplementation of the bio-gel used in the generation of the subperiosteal cartilage, mimics the composition of the extracellular matrix environment of cartilage with potential beneficial properties for the engineered cartilage. METHODS. A 2% (m/v) low melting agarose was injected between the bone and periosteum at the upper medial side of the tibia of both legs of New Zealand white rabbits (DEC 2012–151). The agarose was left unloaded (n=7) or supplemented (n=7) with 2% (w/v) bovine aggrecan (Sigma-Aldrich). After 14 days, rabbits were euthanised. Generated subperiosteal cartilage tissue was analysed for weight, GAG and DNA content. In addition, RT-qPCR and (immuno)histochemistry was performed for key markers of different phases of endochondral ossification. RESULTS. The nett weight of the generated subperiosteal cartilage tissue was not significantly different between groups, nor was the GAG content different. No significant differences in chondrogenic marker expression (COL2A1, SOX9, ACAN and PTHrP) were detected. Interestingly, gene expression levels of hypertrophic markers COL10A1 and ALPL were significantly decreased. COL1A1 expression was not significantly different between groups. DISCUSSION. In summary, generation of subperiosteal cartilage was successful when an agarose bio-gel was injected beneath the periosteum. The addition of aggrecan to the bio-gel did not result in differences in weight or GAG content in cartilage samples between conditions. However, lower levels of hypertrophic markers were observed, while leaving chondrogenic marker expression unaltered. These data show the potential of aggrecan to favourably influence the subperiosteal microenvironment for the in vivo generation of hyaline cartilage for the optimisation of cartilage regenerative medicine approaches


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 2 | Pages 179 - 183
1 Feb 2005
Whittaker J Smith G Makwana N Roberts S Harrison PE Laing P Richardson JB

Autologous chondrocyte implantation (ACI) has been used most commonly as a treatment for cartilage defects in the knee and there are few studies of its use in other joints. We describe ten patients with an osteochondral lesion of the talus who underwent ACI using cartilage taken from the knee and were prospectively reviewed with a mean follow-up of 23 months. In nine patients the satisfaction score was ‘pleased’ or ‘extremely pleased’, which was sustained at four years. The mean Mazur ankle score increased by 23 points at a mean follow-up of 23 months. The Lysholm knee score returned to the pre-operative level at one year in three patients, with the remaining seven showing a reduction of 15% at 12 months, suggesting donor-site morbidity. Nine patients underwent arthroscopic examination at one year and all were shown to have filled defects and stable cartilage. Biopsies taken from graft sites showed mostly fibrocartilage with some hyaline cartilage. The short-term results of ACI for osteochondral lesions of the talus are good despite some morbidity at the donor site


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 24 - 24
1 Apr 2018
Fischer J Scholtes S Krämer E Weisser M Roth W Luginbuehl R Grossner T Richter W
Full Access

Objective. In order to effectively utilize mechanical signals in the clinic as a non-drug-based intervention to improve cartilage defect regeneration after surgical treatment, it is essential to identify crucial components of the cellular response that are typical to the anabolic process. The mechanisms behind the effect of mechanical stimulation are, however, not fully understood and the signaling pathways involved in the anabolic response of chondrocytes to mechano-transduction are not well described. Therefore, a genome-wide identification of mechano-regulated genes and candidate pathways in human chondrocytes subjected to a single anabolic loading episode was performed in this study and time evolution and re-inducibility of the response was characterized. Design. Osteochondral constructs consisting of a chondrocyte-seeded collagen-scaffold connected to β-tricalcium-phosphate were pre-cultured for 35 days and subjected to dynamic compression (25% strain, 1 Hz, 9×10 minutes over 3h) before microarray-profiling was performed. Proteoglycan synthesis was determined by 35S-sulfate-incorporation over 24 hours. Protein alterations were determined by Western blotting. Results. Cell viability and hardness of constructs were unaltered by dynamic compression while proteoglycan synthesis was significantly stimulated (1.45-fold, p=0.016). Among 115 significantly regulated genes, 114 were up-regulated, 48 of them ≥ two-fold. AP-1-relevant transcription factors FOSB and FOS strongly increased in line with elevated ERK1/2-phosphorylation and rising MAP3K4 expression. Expression of proteoglycan-synthesizing enzymes CHSY1 and GALNT4 was load-responsive as were factors associated with the MAPK-, TGF-β-, calcium-, retinoic-acid-, Wnt- and Notch-signaling pathway which were significantly altered. SOX9, BMP4 and BMP6 levels rose significantly also after multiple loading episodes at daily intervals even at the 14th cycle with no indication for desensitation. Canonical pSmad2/3 and pSmad1/5/9-signalling was apparently unaltered. Conclusion. This study associates raising SOX9 protein levels, pERK stimulation and increased CHSY1 expression with anabolic loading of chondrocytes and suggests that more pathways than so far anticipated apparently work together in a complex network of stimulators and feedback-regulators. Knowledge on time evolution of mechanosensitive indicators responding to anabolic loading is crucial to maximize cartilage matrix-deposition for the generation of high-level cartilage replacement tissue


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 78 - 78
1 Apr 2018
Caron M Janssen M Peeters L Surtel D Koole L van Rhijn L Welting T Emans P
Full Access

INTRODUCTION. The generation of cartilage from progenitor cells for the purpose of cartilage repair is often hampered by unwanted ossification of the generated tissue due to endochondral ossification. Our in vitro data show that celecoxib is able to suppress the hypertrophic differentiation phase of endochondral ossification in differentiating human bone marrow stem cells via inhibition of prostaglandin signalling. Continuing on our earlier studies our goal is to further improve the engineering of hyaline cartilage for the treatment of cartilage defects, by determining if celecoxib released from poly(D,L-lactic acid)microspheres is able to prevent unwanted ossification in an in vivo model for the subperiosteal cartilage generation. METHODS. A 2% (m/v) low melting agarose was injected between the bone and periosteum at the upper medial side of the tibia of both legs of New Zealand white rabbits (DEC 2012–151). The agarose was left unloaded or (n=8) or loaded (n=7) with celecoxib-loaded PGLA microspheres (poly(D,L-lactic acid) microspheres were loaded with 20% (w/w) Celecoxib (Pfizer)). Fourteen days post-injection, rabbits were euthanised. The developed subperiosteal cartilage tissue was analysed for weight, GAG and DNA content. In addition, RT-qPCR and (immuno)histochemistry were performed for key markers of different phases of endochondral ossification. RESULTS. The Functional release of celecoxib from poly(D,L-lactic acid) microspheres was confirmed in vitro by decreased prostaglandin E2 levels in cell culture. The subperiosteal cartilage tissue from the celecoxib group was significantly higher in weight and DNA content as compared to the control condition. GAG content was not significantly different between groups. No significant differences in chondrogenic marker expression (COL2A1, SOX9, ACAN and PTHrP) were detected, but levels of hypertrophic markers COL10A1, RUNX2 and ALPL were significantly decreased. COL1A1 expression was not significantly different between groups. DISCUSSION. In summary, subperiosteal generation of cartilage was successful when an agarose bio-gel was injected subperiosteally. Supplementation of the agarose gel with celecoxib-loaded microspheres favourably changed the weight of the generated cartilage tissue, combined with significantly lower expression levels of indicators of chondrocyte hypertrophy, while leaving chondrogenic differentiation capacity unaltered. These data hold the promise that local supplementation of celecoxib during in vivo cartilage regeneration protects the tissue from adverse hypertrophic differentiation


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_17 | Pages 9 - 9
1 Nov 2017
Shetty A Kim S Alva K Ahmed S
Full Access

Introduction. We describe five results of a novel single stage arthroscopic technique for the treatment of articular cartilage defects of the knee. This involves micro drilling and application of Atelo-collagen (Coltrix) and fibrin gel scaffold. Materials and Method. The preclinical study involved two groups of rabbits treated with micro-drilling, and micro-drilling with Atelo-collagen and fibrin gel. New cartilage was subjected to staining with H&E for tissue morphology, toluidine blue (collagen) and safranin O (GAG), immunohistochemistry with antibodies for collagen type I and II, and scanning and transmission electron microscopy to analyse the microstructural morphologies. The micro-drilling with Atelo-collagen, fibrin gel scored better than the micro-drilling alone. Patients (n=30) with symptomatic ICRS grade III/IV chondral defects (lesion size 2–8cm. 2. ) are recruited for this prospective study. The surgical procedure involved micro-drilling and application of Atelo–collagen and fibrin gel under CO. 2. insufflation. Patients underwent morphological evaluation with MRI (T2*-mapping and d-GEMRIC scans). Clinical assessment was done with Lysholm, IKDC and KOOS scores. Radiological assessment was performed with MOCART score. Results. At five years, Lysholm score was 74, compared to 49 pre-operatively (p<0.05). KOOS (symptomatic) improved to 92 from 62 (p<0.05). IKDC (subjective) went to 78 from 40 (p<0.05). The mean T2* relaxation-times for the repair tissue and native cartilage were 26 and 29.9 respectively. Average MOCART score for all lesions was 70. Conclusion. This technique shows encouraging clinical results at five-year follow-up. The morphological MRI shows good cartilage defect filling and the biochemical MRI suggests hyaline like repair tissue


Bone & Joint Research
Vol. 11, Issue 6 | Pages 349 - 361
9 Jun 2022
Jun Z Yuping W Yanran H Ziming L Yuwan L Xizhong Z Zhilin W Xiaoji L

Aims

The purpose of this study was to explore a simple and effective method of preparing human acellular amniotic membrane (HAAM) scaffolds, and explore the effect of HAAM scaffolds with juvenile cartilage fragments (JCFs) on osteochondral defects.

Methods

HAAM scaffolds were constructed via trypsinization from fresh human amniotic membrane (HAM). The characteristics of the HAAM scaffolds were evaluated by haematoxylin and eosin (H&E) staining, picrosirius red staining, type II collagen immunostaining, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Human amniotic mesenchymal stem cells (hAMSCs) were isolated, and stemness was verified by multilineage differentiation. Then, third-generation (P3) hAMSCs were seeded on the HAAM scaffolds, and phalloidin staining and SEM were used to detect the growth of hAMSCs on the HAAM scaffolds. Osteochondral defects (diameter: 3.5 mm; depth: 3 mm) were created in the right patellar grooves of 20 New Zealand White rabbits. The rabbits were randomly divided into four groups: the control group (n = 5), the HAAM scaffolds group (n = 5), the JCFs group (n = 5), and the HAAM + JCFs group (n = 5). Macroscopic and histological assessments of the regenerated tissue were evaluated to validate the treatment results at 12 weeks.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 79 - 79
1 Apr 2018
Timur UT Caron M Welting T van Rhijn L Emans P Jahr H
Full Access

Introduction. In vitro expansion of human articular chondrocytes (HACs) is required for cell-based strategies to treat cartilage defects. We have earlier shown that culturing HACs at increased osmolarity (i.e., 380 mOsm), as compared to plasma osmolarity (i.e., 280 mOsm), increases collagen type II (COL2A1) expression in vitro. Our earlier results showed that knockdown of TGF-β2, a prototypic member of the TGF-β superfamily and an accepted key regulator of chondrocyte differentiation, resulted in increased COL2A1 production. BMPs are members of the TGF-β superfamily which are known to be involved in the regulation of COL2A1 expression. In this study, we aimed to elucidate the role of BMP signaling, in the upregulation of COL2 production upon TGF-β2 knockdown (KD) under hyperosmotic culture conditions. Methods. HACs from five OA patients (passage 1) were cultured in cytokine-free medium, under 280 or 380 mOsm respectively, under standard 2D in vitro conditions. TGF-β2 knockdown (KD) by siRNA was performed in the presence or absence of the established bone morphogenetic protein (BMP) type I receptor (BMPRI) inhibitor dorsomorphin (10 μM). Expression of COL2A1 was evaluated by qRT-PCR. Results. Culturing HACs at 380 mOsm increased COL2A1 mRNA expression. Addition of dorsomorphin decreased COL2A1 mRNA expression at both 280 and 380 mOsm, but its expression was still significantly higher at 380 mOsm. In hyperosmotic 380 mOsm culture conditions, TGF-β2 KD further increased COL2A1 mRNA expression, while addition of dorsomorphin under these conditions abrogated this effect. Still, expression of COL2A1 mRNA levels remained higher as compared to 280 mOsm. Conclusion. This study confirms that BMP signalling is involved in the expression of the single best accepted key chondrocyte marker, COL2A1, in osteoarthritic HACs. However, inhibition of BMP signalling could not abrogate the increase in COL2A1 expression under hyperosmotic culture conditions. Our data suggest an inverse regulation of TGF-β2 and COL2A1, under these conditions, which may largely be dependent on increased BMPRI-mediated cell signaling. Our findings further suggest that hyperosmotic culture improves COL2A1 expression by means that are independent of TGF-β- and BMPRI-signaling. Further elucidation of the molecular network underlying this observation is ongoing


The Bone & Joint Journal
Vol. 105-B, Issue 7 | Pages 735 - 742
1 Jul 2023
Andronic O Germann C Jud L Zingg PO

Aims

This study reports mid-term outcomes after periacetabular osteotomy (PAO) exclusively in a borderline hip dysplasia (BHD) population to provide a contrast to published outcomes for arthroscopic surgery of the hip in BHD.

Methods

We identified 42 hips in 40 patients treated between January 2009 and January 2016 with BHD defined as a lateral centre-edge angle (LCEA) of ≥ 18° but < 25°. A minimum five-year follow-up was available. Patient-reported outcomes (PROMs) including Tegner score, subjective hip value (SHV), modified Harris Hip Score (mHHS), and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) were assessed. The following morphological parameters were evaluated: LCEA, acetabular index (AI), α angle, Tönnis staging, acetabular retroversion, femoral version, femoroepiphyseal acetabular roof index (FEAR), iliocapsularis to rectus femoris ratio (IC/RF), and labral and ligamentum teres (LT) pathology.


The Bone & Joint Journal
Vol. 106-B, Issue 3 | Pages 232 - 239
1 Mar 2024
Osmani HT Nicolaou N Anand S Gower J Metcalfe A McDonnell S

Aims

To identify unanswered questions about the prevention, diagnosis, treatment, and rehabilitation and delivery of care of first-time soft-tissue knee injuries (ligament injuries, patella dislocations, meniscal injuries, and articular cartilage) in children (aged 12 years and older) and adults.

Methods

The James Lind Alliance (JLA) methodology for Priority Setting Partnerships was followed. An initial survey invited patients and healthcare professionals from the UK to submit any uncertainties regarding soft-tissue knee injury prevention, diagnosis, treatment, and rehabilitation and delivery of care. Over 1,000 questions were received. From these, 74 questions (identifying common concerns) were formulated and checked against the best available evidence. An interim survey was then conducted and 27 questions were taken forward to the final workshop, held in January 2023, where they were discussed, ranked, and scored in multiple rounds of prioritization. This was conducted by healthcare professionals, patients, and carers.


Bone & Joint 360
Vol. 12, Issue 3 | Pages 18 - 22
1 Jun 2023

The June 2023 Foot & Ankle Roundup360 looks at: Nail versus plate fixation for ankle fractures; Outcomes of first ray amputation in diabetic patients; Vascular calcification on plain radiographs of the ankle to diagnose diabetes mellitus; Elderly patients with ankle fracture: the case for early weight-bearing; Active treatment for Frieberg’s disease: does it work?; Survival of ankle arthroplasty; Complications following ankle arthroscopy.


Bone & Joint Research
Vol. 13, Issue 7 | Pages 342 - 352
9 Jul 2024
Cheng J Jhan S Chen P Hsu S Wang C Moya D Wu Y Huang C Chou W Wu K

Aims

To explore the efficacy of extracorporeal shockwave therapy (ESWT) in the treatment of osteochondral defect (OCD), and its effects on the levels of transforming growth factor (TGF)-β, bone morphogenetic protein (BMP)-2, -3, -4, -5, and -7 in terms of cartilage and bone regeneration.

Methods

The OCD lesion was created on the trochlear groove of left articular cartilage of femur per rat (40 rats in total). The experimental groups were Sham, OCD, and ESWT (0.25 mJ/mm2, 800 impulses, 4 Hz). The animals were euthanized at 2, 4, 8, and 12 weeks post-treatment, and histopathological analysis, micro-CT scanning, and immunohistochemical staining were performed for the specimens.


Bone & Joint Research
Vol. 12, Issue 7 | Pages 397 - 411
3 Jul 2023
Ruan X Gu J Chen M Zhao F Aili M Zhang D

Osteoarthritis (OA) is a chronic degenerative joint disease characterized by progressive cartilage degradation, synovial membrane inflammation, osteophyte formation, and subchondral bone sclerosis. Pathological changes in cartilage and subchondral bone are the main processes in OA. In recent decades, many studies have demonstrated that activin-like kinase 3 (ALK3), a bone morphogenetic protein receptor, is essential for cartilage formation, osteogenesis, and postnatal skeletal development. Although the role of bone morphogenetic protein (BMP) signalling in articular cartilage and bone has been extensively studied, many new discoveries have been made in recent years around ALK3 targets in articular cartilage, subchondral bone, and the interaction between the two, broadening the original knowledge of the relationship between ALK3 and OA. In this review, we focus on the roles of ALK3 in OA, including cartilage and subchondral bone and related cells. It may be helpful to seek more efficient drugs or treatments for OA based on ALK3 signalling in future.


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_III | Pages 251 - 251
1 Nov 2002
Palmer S Machan S Cross M
Full Access

Introduction: Dysfunction of the patellofemoral mechanism presents as patella dislocation or subluxation with or without anterior knee pain. Causes are numerous and include ligamentous deficiency, muscular deficiency, anomlies of bony alignment and patellofemoral joint abnormalities. The 130 different procedures described to treat this condition reflect the multiple pathologies responsible. No single procedure has gained widespread acceptance. We present a surgical technique that attempts to correct as many of these deficiencies of the patellofemoral mechanism as possible. Method: The procedure consists of a lateral release, a vastus medialis tendon advancement and a tibial tubercle osteotomy. The ‘Q’ angle is corrected by medialisation of the tubercle, patella alta is corrected by a distalisation technique and joint reaction forces through the patellofemoral joint are reduced by placing the tibial tuberosity in a more anterior position. 100 patients who have undergone this procedure have been identified. 81 percent initially presented with patella subluxation or dislocation. The remainder complained of anterior knee pain with evidence of abnormal patella tracking on examination. 52 percent of our patients had undergone at least one previous patellofemoral realignment procedure which had failed. 43 percent of the patients had generalised ligamentous laxity. Results: The mean follow-up was 2.6 years from the index operation. 81 percent of the patients stated the operation had improved or abolished their symptoms. Generalised ligamentous laxity was present in the remaining 19 percent and seemed to correlate with a poor outcome. 66 percent of patients stated they were satisfied with the outcome of the surgery. Two patients developed recurrent subluxation after surgery and one of these has undergone a revision distal realignment procedure. Using the functional category described by Crosby and Insall for patellofemoral symptoms 66 percent had a good-to-excellent outcome, 23 percent had a fair outcome and 10 percent of the patients stated they were worse following the procedure with increased anterior knee pain. 100 percent of these patients had grade 3 or 4 cartilage defects on retropatella surface. 57% of patients returned to sporting activity. 14% of the remainder had not returned to sporting activity because of persisting symptoms in the knee. 57 percent of patients had lost a mean 12.5 degrees of flexion of the knee at follow-up [range 5–30]. 5 percent of patients developed minor complications following surgery. No radiological deterioration was seen in any patients although coexistent patellofemoral osteoarthritis was seen in 25 percent of patients. There was no loss of fixation in any of the patients. Discussion: A multifaceted approach to the complex problem of patellofemoral dysfunction appears to achieve satisfactory functional results in patients even when previous surgical realignment has failed. The procedure appears to be associated with low morbidity although a loss of flexion of the knee is to be expected. Generalised ligamentous laxity and cartilage defects on the retropatella surface appear to be associated with poor results and anterior knee pain in the absence of instability may be a cause for persisting symptoms


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 88 - 88
1 Apr 2018
Jeuken R Roth A Peters M van Rietbergen B Emans P
Full Access

INTRODUCTION. Adequate osseointegration of knee resurfacing implants for the treatment of focal cartilage defects is an important prerequisite for good clinical outcomes. Inadequate initial fixation and sustained micromotion may lead to osteolysis and ultimately implant failure. PET/CT with the bone seeking tracer 18F-sodium fluoride (18F-NaF) allows for localisation and quantification of abnormalities in bone metabolism. 18F-NaF PET/CT has been shown to correlate with loosening of implants in the hip and spine. Here, we asses osseointegration of the knee resurfacing implants using micro-computed tomography (µCT) and correlate µCT parameters to 18F-NaF uptake on PET/CT scans taken 3 and 12 weeks after surgery. We hypothesize that 18F-NaF uptake at 12 weeks and its relative decrease between 3 and 12 weeks correlates with osseointegration at 12 weeks postoperatively. Polymer implants with Young”s moduli approximately equal to- and below the Young's modulus of bone, with- and without surface modification were used in this study next to a control metal implant. METHODS. Five different osteochondral implants were implanted bilaterally in critically-sized osteochondral defects in 16 goats. At 3 and 12 weeks postoperatively, a 10-minute static PET/CT-scan (Philips, Gemini TF PET/CT) was made 60 minutes after intravenous injection of 18F-NaF. Image processing resulted in an overall bone metabolism parameter, i.e. standardized uptake value (SUV). A cylindrical region of interest was drawn around each implant to obtain the maximum SUV (SUVmax). Bone quality parameters were quantified in a cylinder surrounding the implant using µCT after sacrifice as a measure for osseointegration. The in vivo 18F-NaF PET/CT uptake parameters were correlated to the bone quality parameters. RESULTS. Implant osseointegration strongly varied for the different implants. Some implant groups exhibited very poor osseointegration with clear signs of osteolysis, while titanium implants exhibited good osseointegration. A strong correlation was observed between bone quality parameters as determined using µCT and SUVmax at 12 weeks. The SUVmax of the implants with poor osseointegration remained high, while implants with good osseointegration showed a relative decrease in SUVmax between 3 and 12 weeks. CONCLUSION. This study suggests that the SUVmax of PET/CT 12 weeks after surgery correlates well for the quality of osseointegration assessed on µCT 12 weeks after surgery. De relative decrease of SUVmax between the given time points had a strong correlation with the degree of osseointegration. In this study, large differences in the quality of osseointegration were observed. The role of surface modification, elasticity and micromotion still remain to be determined as well as if 18F-NaF is sensitive enough to discriminate between smaller differences and what the optimum time point would be to predict the ultimate osseointegration


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 68 - 68
1 May 2017
Masieri F Byles N
Full Access

Background. Microfracture (MF) and Autologous Chondrocyte Implantation (ACI) are used to repair symptomatic condylar cartilage defects (grade II-IV Outerbridge). Superiority of ACI to MF is still debated. The aim of the study was to conduct a systematic literature review, compare superiority of ACI versus MF in a meta-analysis and investigate the correlation between patient age and outcome of both treatments. Methods. Extended literature search was conducted (papers from January 2001 to present), looking at patient characteristics, pre- and post-operative scores and cartilage repair assessment evaluation. Methodological quality was verified through modified Coleman score and assessment bias. A fixed-effect meta-analysis was conducted, comparing post-operative standardised mean differences between ACI and MF. Pearson correlation coefficient between post-operative score and age was calculated against ACI and MF. Results. of 490 studies systematically analysed, 8 met the inclusion criteria, accounting for 255 patients treated with ACI and 259 with MF. Overall mean postoperative scores were 81.38±8.31 for ACI and 74.9±7.0 for MF, with no significant difference (p=0.13). The average modified Coleman score of the studies was 82.6, with low bias among them. The meta-analysis displayed an overall effect estimate of 0.3 favouring ACI treatment versus MF (95%CI=0.12–0.48, P=0.001). Significant heterogeneity was although observed (I2>70%). Pearson correlation coefficient calculated between mean post-operative score and mean age, surprisingly failed to indicate clear correlation for ACI (r=0.11) and MF (r=0.18) respectively. Conclusions. Minor statistically significant superiority of ACI intervention versus MF in knee cartilage repair was found, together with high levels of heterogeneity, halting the possibility to make full recommendation of ACI versus MF. Level of Evidence. Ia (systematic review and meta-analysis)


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 32 - 32
1 May 2017
Beninatto R Barbera C Pavan M Galesso D Serena E Elvassore N
Full Access

Background. Hyaluronic acid (HA) hydrogels are becoming an increasingly attractive choice for the creation of new biomaterials useful in wound care, tissue engineering and regenerative medicine, because of their high level of biocompatibility and biodegradability, and for their ability to imitate the environment of the extracellular matrix (ECM). Due to the poor biomechanical properties of native hyaluronan, a variety of chemical modifications have been devised to provide mechanically and chemically stiffer materials. Methods. In this work, 200 kDa hyaluronic acid was modified with coumarin moieties via a functional linker (FID119) and photo-polymerised into networks through a [2+2] cycloaddition reaction using near-UV light (l. max. =365 nm). This method allows to obtain “wall-to-wall” hydrogels starting from moderately viscous solutions. FID119 can therefore be deposited in the cartilage defect as an aqueous solution and can be polymerised in situ after UV irradiation. Results. With a HA molar derivatisation ranging from 10% to 40% and a concentration varying from 10 mg/mL to 40 mg/mL, hydrogels exhibited a wide range of physical properties. When a suspension of human dermal fibroblasts was photo-encapsulated within the hydrogels, cells retained a rounded morphology throughout the period of culture and showed no spreading. Cells remained viable after 48 hours encapsulation, confirming that their viability was affected neither by the polymerisation process nor by UV irradiation. In this study we have also evaluated the proliferation of fibroblasts encapsulated in HA-hydrogels at different degree of reticulation, concentrations and polymerisation time. By means of the resazurin reduction assay (Alamar Blue) it has been shown that encapsulated fibroblasts showed overall lower metabolic activity compared to fibroblasts cultured in traditional 2D tissue culture plastic dishes, in all the tested conditions. Conclusions. This work represents a first step towards the development and characterisation of new HA-based advanced biomaterial to be used as scaffolds in cartilage regeneration. The screening of the different FID119 preparations led to the selection of three prototypes representing the best compromise between physical-chemical properties and biocompatibility. Level of Evidence. III


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 15 - 15
1 Apr 2017
Timur U van der Windt A Caron M Welting T Emans P Jahr H
Full Access

Background. Treatment of cartilage defects requires in vitro expansion of human articular chondrocytes (HACs) for autologous chondrocyte implantation (ACI). During standard expansion culture (i.e. plasma osmolarity, 280 mOsm) chondrocytes inevitably lose their specific phenotype (i.e. collagen type II (COL2) expression). This de-differentiation makes them inappropriate for ACI. Physiological osmolarity (i.e. 380 mOsm) improves COL2 expression in vitro, but the underlying reason is unknown. However, an accepted key regulator of chondrocyte differentiation, transforming growth factor beta (TGFβ), is known to stimulate COL2 production. In this study we aimed to elucidate if TGFβ signaling could potentially be driving the COL2 expression under physiological culture conditions. Material and methods. After informed consent was obtained, HACs were isolated from five osteoarthritis (OA) patients and cultured in cytokine-free medium of 280 or 380 mOsm, respectively, under standard 2D in vitro conditions with or without lentiviral TGFβ2 knockdown (RNAi). Expression of TGFβ isoforms, superfamily receptors and chondrocyte marker genes was evaluated by qRT-PCR, TGFβ2 protein secretion by ELISA and TGFβ bioactivity using luciferase reporter assays. Statistical significance was assessed by a student's t-test. Results. TGFβ isoform expression was differentially altered by physiological osmolarity. Specifically, 380 mOsm increased TGFβ2 expression and protein secretion, as well as TGFβ activity. Upon TGFβ2 isoform-specific knockdown COL2 expression was induced. Physiological osmolarity and TGFβ2 RNAi also induced TGFβ1, TGFβ3 and their type I receptor ALK5. Conclusions. We showed that TGFβ2 knockdown increases COL2 expression in human osteoarthritic chondrocytes in vitro, possibly through a regulatory feedback loop involving TGFβ1, TGFβ3 induction and an increased ALK5/ALK1 ratio. This study indicates that TGFβ signalling is involved in osmolarity-induced chondrocyte marker gene expression. Pharmacological targeting of this pathway holds potential to further improve future osmolarity-mediated phenotypic stabilisation in advanced cell-based cartilage repair strategies. Level of Evidence. preclinical. Disclosure. We have nothing to disclose


Bone & Joint 360
Vol. 12, Issue 5 | Pages 21 - 23
1 Oct 2023

The October 2023 Sports Roundup360 looks at: Extensor mechanism disruption in the treatment of dislocated and multiligament knee injuries; Treatment of knee osteoarthritis with injection of stem cells; Corticosteroid injection plus exercise or exercise alone as adjuvants for patients with plantar fasciitis?; Generalized joint hypermobility and a second ACL injury?; The VISA-A ((sedentary) questionnaire for Achilles tendinopathy?.


Aims

Arthroscopic microfracture is a conventional form of treatment for patients with osteochondritis of the talus, involving an area of < 1.5 cm2. However, some patients have persistent pain and limitation of movement in the early postoperative period. No studies have investigated the combined treatment of microfracture and shortwave treatment in these patients. The aim of this prospective single-centre, randomized, double-blind, placebo-controlled trial was to compare the outcome in patients treated with arthroscopic microfracture combined with radial extracorporeal shockwave therapy (rESWT) and arthroscopic microfracture alone, in patients with ostechondritis of the talus.

Methods

Patients were randomly enrolled into two groups. At three weeks postoperatively, the rESWT group was given shockwave treatment, once every other day, for five treatments. In the control group the head of the device which delivered the treatment had no energy output. The two groups were evaluated before surgery and at six weeks and three, six and 12 months postoperatively. The primary outcome measure was the American Orthopaedic Foot and Ankle Society (AOFAS) Ankle-Hindfoot Scale. Secondary outcome measures included a visual analogue scale (VAS) score for pain and the area of bone marrow oedema of the talus as identified on sagittal fat suppression sequence MRI scans.


Bone & Joint Open
Vol. 4, Issue 7 | Pages 523 - 531
11 Jul 2023
Passaplan C Hanauer M Gautier L Stetzelberger VM Schwab JM Tannast M Gautier E

Aims

Hyaline cartilage has a low capacity for regeneration. Untreated osteochondral lesions of the femoral head can lead to progressive and symptomatic osteoarthritis of the hip. The purpose of this study is to analyze the clinical and radiological long-term outcome of patients treated with osteochondral autograft transfer. To our knowledge, this study represents a series of osteochondral autograft transfer of the hip with the longest follow-up.

Methods

We retrospectively evaluated 11 hips in 11 patients who underwent osteochondral autograft transfer in our institution between 1996 and 2012. The mean age at the time of surgery was 28.6 years (8 to 45). Outcome measurement included standardized scores and conventional radiographs. Kaplan-Meier survival curve was used to determine the failure of the procedures, with conversion to total hip arthroplasty (THA) defined as the endpoint.


Bone & Joint Research
Vol. 12, Issue 10 | Pages 615 - 623
3 Oct 2023
Helwa-Shalom O Saba F Spitzer E Hanhan S Goren K Markowitz SI Shilo D Khaimov N Gellman YN Deutsch D Blumenfeld A Nevo H Haze A

Aims

Cartilage injuries rarely heal spontaneously and often require surgical intervention, leading to the formation of biomechanically inferior fibrous tissue. This study aimed to evaluate the possible effect of amelogenin on the healing process of a large osteochondral injury (OCI) in a rat model.

Methods

A reproducible large OCI was created in the right leg femoral trochlea of 93 rats. The OCIs were treated with 0.1, 0.5, 1.0, 2.5, or 5.0 μg/μl recombinant human amelogenin protein (rHAM+) dissolved in propylene glycol alginate (PGA) carrier, or with PGA carrier alone. The degree of healing was evaluated 12 weeks after treatment by morphometric analysis and histological evaluation. Cell recruitment to the site of injury as well as the origin of the migrating cells were assessed four days after treatment with 0.5 μg/μl rHAM+ using immunohistochemistry and immunofluorescence.