Abstract
Mesenchymal stem cells (MSC) are promising for the treatment of articular cartilage defects; however, common protocols for in vitro chondrogenesis induce typical features of hypertrophic chondrocytes reminiscent of endochondral bone formation. This may implicate a risk for graft stability. We here analysed the early healing response in experimental full-thickness cartilage defects, asking whether and how MSC can differentiate to chondrocytes in an orthotopic environment.
Cartilage defects in knees of minipigs were covered with a collagen-type I/III membrane, and half of them received transplantation of expanded autologous MSC. Integration into surrounding cartilage tissue was poor to moderate after 1 and 3 weeks and no sign of cartilaginous matrix production as indicated by negative safranin-O staining was visible for both groups. At 8 weeks regenerative tissue was integrated into the surrounding tissue and a safranin-O positively stained neocartilage was detectable in 4 tissue regenerates out of 6 in the MSC group compared to 2 out of 6 in the MSC-free group. At 1 and 3 weeks after surgery only marginal Col2A1 and no AGC expression were detectable in both groups. At 8 weeks Col2A1 and AGC levels had significantly increased. Hypertrophic maker induction (Col10A1 and MMP13) was similar in both groups 8 weeks after surgery. Immunostaining for collagen type X, however, was restricted to the regenerative tissue close to the subchondral bone in both groups, while collagen type II staining was detected from below the superficial to the deep zone.
Our data provide molecular evidence for spontaneous differentiation of MSC in cartilage and the development of a collagen type II positive, collagen type X negative neocartilage. Whether by remodelling of defect filling tissue collagen type X positive areas will further diminish or even disappear from repair cartilage at later stages has to be evaluated in a longer follow-up study.
Correspondence should be addressed to EORS Secretariat Mag. Gerlinde M. Jahn, c/o Vienna Medical Academy, Alserstrasse 4, 1090 Vienna, Austria. Fax: +43-1-4078274. Email: eors@medacad.org