Abstract
Damage to articular cartilage is difficult to treat, as it has a low capacity to regenerate. Biomimetic natural polymer scaffolds can potentially be used to regenerate cartilage. Collagen hyaluronic acid (CHyA) scaffolds have been developed in our laboratory to promote cell infiltration and repair of articular cartilage. However, the low mechanical properties of such scaffolds potentially limit their use to the treatment of small cartilage defects. 3D-printed polymers can provide a reinforcing framework in these scaffolds, thus allowing their application in the treatment of larger defects. The aim of this study was to create mechanically functional biomaterial scaffolds by incorporating a CHyA matrix into 3D-printed polymer meshes resulting in an integrated porous material composite with improved mechanical properties for repair of large cartilage defects. 3D-printed meshes were developed to facilitate an architecture suitable for nutrient flow, cell infiltration, and even CHyA incorporation. And the meshes were freeze dried in custom made moulds to create a pore structure suitable for chondrogenesis. Uniaxial compressive testing of the scaffolds revealed improved mechanical properties following reinforcement with printed meshes, with the compressive modulus increasing from 0.8kPa (alone) to 0.5MPa (reinforced structure). The reinforced scaffolds maintained interconnected pores with the mean pore diameter increasing from 130 to 175µm. The reinforcement had no negative impact on MSC viability, with 90.1% viability in reinforced scaffolds at day 7. The compressive modulus of the reinforced CHyA scaffold is close to native articular cartilage, suggesting that this approach can be used for treatment of large cartilage defects.