header advert
Results 101 - 120 of 173
Results per page:
Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 340 - 340
1 May 2009
Chou J Anderson I Astley T Poon P
Full Access

Reverse total shoulder replacement is a viable surgical option for Cuff Tear Arthropathy. Short term results have been promising. Longer term follow-up has demonstrated a high rate of scapular notching. This is attributed to mechanical impingement between the humeral cup and scapular neck when the arm is fully adducted. The long term sequelae of scapular notching are unclear but there is concern that it may compromise fixation of the glenoid component and affect functional outcomes.

Design modifications to address this problem include the newly available eccentric glenospheres and larger diameter glenospheres. These glenospheres are designed to offer greater ranges of motion and theoretically may reduce the risk of impingement and notching. The purpose of this biomechanical study is to demonstrate the difference in range of motions with each design of glenosphere. To our knowledge there is no published literature evaluating this design differences.

The SMR (Lima Orthotec) reverse total shoulder prothesis was implanted into a synthetic bone model (Sawbones, Pacific Laboratories, Vashon, Washington). Four different types of glenospheres (Standard 36 mm, Eccentric 36 mm, Standard 44 mm, Eccentric 44 mm) were then implanted into the same model which was fixed on a measurement table. The precision coordinate measurement device (FARO-Arm, SO6/Rev22, FARO Technologies Inc., Lake Mary, Florida) was used to establish the centres of rotation and ranges of motion.

To date, the collection of data has just been completed, but the data are yet to be analysed. In conclusion, this is a biomechanical study evaluating the ranges of motion and risk of notching, comparing different designs of glenospheres in Reverse Total Shoulder Joint Replacement.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 256 - 256
1 May 2009
Sivardeen Z Ali A Jones V Kato Anderson A Madegowda R Raha N Shahane S Stanley D
Full Access

Total elbow arthroplasty (TEA), as a primary procedure and open reduction and internal fixation (ORIF) have been used to treat complex intra-articular distal humeral fractures in elderly patients. The failure rate after ORIF is high and TEA has often been used as a salvage procedure. Although satisfactory results have been reported after TEA as a primary procedure, there are no publications reporting the results of TEA after failed internal fixation (FIF). In this study we compared the results of patients that had TEA after FIF with those that had had primary arthroplasty (PA). We reviewed the results of 9 consecutive patients who had FIF with 12 patients who had PA. All the operations were performed by one surgeon using the same technique and same prosthesis. Both groups of patients were similar with respect to ages, sex, co-morbidity and hand dominance. The mean follow-up for both groups of patients was 5 years. At final review, patients who had had FIF had a mean Mayo score of 68 and a range of flexion/extension of 90 degrees, there was 1 infection and 1 case of loosening. The PA group had a mean Mayo score of 88 and a range of flexion/extension of 96 degrees, there were no cases of infection or loosening. This study shows the results of TEA are satisfactory either as a PA or after FIF, however the results after PA are significantly better than after FIF.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 352 - 352
1 May 2009
Graydon A Pitto R Malak S Anderson I
Full Access

Implant malposition remains one of the common causes of total knee replacement (TKR) failure and increased wear. Recent advances in computer technology have made available navigation systems for TKR and other orthopaedic procedures. The purpose of our study was:

to develop a method to assess the accuracy of an image-free TKR navigation system;

to assess its accuracy in a leg with normal or near-normal mechanical axis;

to assess its accuracy in a leg with abnormal mechanical axis.

The system chosen was an image-free system based on electromagnetic technology, the MedTronic AxiEM TKR navigation system. To facilitate measurements, an artificial leg (phantom) was constructed from machined Plexiglas with simulated hip and knee joints. Additional joints located at the midshaft of the tibia and femur allowed deformation in the flexion/extension (y), varus/valgus (x) and rotational (z) planes. Using a highly accurate digital calliper unit (FaroARM Technologies, USA) to precisely measure co-ordinates with pre-machined points on the phantom, a software program was developed to convert these local co-ordinates into a determination of actual leg alignment. This technique was verified using repeated measurement with variable coordinates, giving accuracy to within 0.05 of a degree.

Simulated procedures were then performed with both normal and abnormal leg mechanical axis. At specific points in the procedure, information was compared between the FaroARM digital measurements and the CAS system. Repeated serial measurements were undertaken. In the setting of normal alignment, accuracy to within one degree was demonstrated. In the setting of abnormal x, y and z plane alignment in both femur and tibia, accuracy to within two degrees was demonstrated.

Several clinical studies have been performed to assess the precision of computer navigation in TKR. This study was designed to assess the accuracy of a clinically validated navigation system. The study demonstrates the high level of in-vitro accuracy of the MedTronic AxiEM navigation system in both normal and abnormal mechanical leg alignment settings.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 228 - 228
1 May 2009
Anderson J Drosdowech D Faber K MacDermid J
Full Access

This study evaluated the impact of smoking on the surgical outcome of rotator cuff repair controlling for age, gender, and size of tear.

Two hundred and fifty patients were evaluated by a blind evaluator and by self report (SST and WORC questionnaires) at baseline and one year post-op. Types of cuff repair included arthroscopic, mini-open and open procedures. Smoking status was evaluated as a current smoker, quit, or never smoked. Smoking history was subsequently dichotomised into smoker and non-smoker. Generalised linear modeling was used to determine the impact of smoking on surgical outcome using age, gender, and tear size as covariates.

The mean age of the population used was 56+/−11 years in which 70% were males and 30% females. Tear size was distributed amongst this population as small (0–1 cm {44.9%}), moderate (1–3cm {22.7%}), large (3–5cm {15.2%}) and massive (5+cm {17.2%}). All preliminary analyses indicated gender affected tear size and surgical outcomes, and was also associated with smoking status. Due to this confounding effect, males and females were separated for subsequent analysis. The SST questionnaire found smoking to have a significant negative effect on the 1-year l outcomes of males (8.5 vs. 6.1 p=0.025). A similar trend was seen with the WORC (p=0.07). No significant effects were seen for females, but the sample size was underpowered.

Analysis of this population of rotator cuff repairs showed complex interrelationships may exist between gender, age, physical demands and smoking status. The existence of these confounding interrelationships may explain the mixed results seen in the literature concerning smoking and orthopedic procedures. This relatively large cohort established a negative impact of smoking on outcome, after controlling for covariates and confounders. Future research on mediators of cuff outcome should consider potential confounders. Conclusion: Smoking negatively effected surgical outcomes for males but was inconclusive for females. Sex behaved as a confounding variable that masked the smoking effects.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 353 - 353
1 May 2009
Shim V Pitto R Streicher R Anderson I
Full Access

A number of densitometry studies have reported dramatic density losses in the acetabular region after uncemented Total Hip Arthroplasty (THA)1,2. However the mechanical implication of such loss is not yet known. This study aims to perform a mechanical analysis with patient specific Finite Element (FE) models to find out how the stress distribution affects the Bone Mineral Density (BMD) changes after uncemented THA.

An existing patient CT dataset collected for a densitometry study was used to generate patient-specific FE models with a previously validated FE mesh generation method3. Boundary and loading conditions included the hip joint force and the forces of 21 muscles attached to the pelvic bone at eight characteristic phases of a gait cycle 4. Tensile and compressive components of principal stresses were calculated after each simulation.

In general, both compressive and tensile principal stresses decreased after uncemented THA but the magnitude of decrease for tensile stresses was much greater than compressive stresses. The changes in tensile stresses were matched with BMD loss patterns. In particular, the densitometry study revealed that areas dorsal to the prosthesis lost more bone density than areas ventral to the prosthesis1. The stress distribution pattern showed that such areas experienced high tensile stress initially and then a dramatic decrease in their magnitude while their compressive stresses remained relatively unchanged. On the other hand, the regions where BMD was maintained - the areas superior to the cup - experienced high compressive stresses initially, which remained relatively high three years after the surgery.

Although it is a result from one patient, results suggest that changes to tensile and compressive stresses might influence BMD differently after uncemented THA. Our hypothesis is that regions with high tensile stress experience bone loss while BMD of the regions with high compressive stress are maintained. More patient datasets are being processed to test this hypothesis. Findings from this study can explain the phenomena of retroacetabular osteolysis, late migration and implant failure of press-fit cups observed in long-term clinical studies.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 352 - 352
1 May 2009
Malak S Anderson I Pitto R
Full Access

Implant malposition is one of the most common causes of failure in resurfacing arthroplasty of the hip (RAH). Recent advances in computer technology have made available navigation systems for RAH and other orthopaedic procedures. The purpose of our study was:

to develop a method to assess the accuracy of an image-free RAH navigation system;

to assess its accuracy in a leg with normal anatomy and with deformity of the proximal femur.

We used the Ci-CAS RAH navigation system (DePuy - BrainLab). To facilitate measurements, an artificial leg (phantom) was constructed from machined aluminium with simulated hip and knee joints. The hip and knee articulating surfaces were synthetic bone material (Sawbones – Pacific Laboratories). An additional joint located at the trochanteric region allowed deformation in varus/valgus and ante/retroversion of the head/neck segment. Using a highly accurate digital calliper unit (FaroARM Technologies, USA) to precisely measure co-ordinates with pre-machined points on the phantom, a software program was developed to convert these local co-ordinates into a determination of actual anatomy and leg alignment. This technique was verified using repeated measurement with variable co-ordinates, giving accuracy to within 0.05 of a degree.

Simulated procedures were performed with both normal and abnormal anatomy of the proximal femur. At specific points in the procedure, information was compared between the FaroARM digital measurements and the Ci-CAS system. Repeated serial measurements were undertaken. In the setting of normal alignment, accuracy to within 0.5 degrees was demonstrated. In the setting of abnormal alignment (varus/valgus and ante/retroversion) of the proximal femur, accuracy to within 2 degrees was demonstrated.

To our knowledge, this is the first study to assess accuracy of a RAH navigation system. The study demonstrates a satisfactory level of accuracy for the Ci-CAS in both normal and abnormal anatomical settings. Currently, no international standard or methodology exists against which these results can be compared. In the near future, introduction of new navigation technologies will make crucial the development of international standards for pre-clinical validation of computer-assisted navigation systems. The present study is a first attempt to address this issue.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 361 - 361
1 May 2009
Espinosa N Dudda M Anderson J Bernadi M Casser J
Full Access

Background: Calcaneonavicular coalitions (CNC) have been reported to be associated with anatomical aberrations of either the calcaneus and/or navicular bones. These morphological abnormalities may complicate accurate surgical resection. Three-dimensional analysis of spatial orientation and morphological characteristics may help in preoperative planning of resection.

Materials and Methods: Sixteen feet diagnosed with CNC were evaluated by means of 3D CT modeling. Three angles were defined that were expressed in relation to one reproducible landmark (lateral border of the calcaneus): the dorsoplantar inclination, anteroposterior inclination and socket angle. The contact surface area was determined from the depth and width of the coalitions. Three-dimensional reconstructions of the calcanei evaluated the presence and morphology of the anterior calcaneal facet and of a navicular beak. The inter-observer correlations were assessed for the accuracy of the measurement methods. Sixteen normal feet were used as controls for comparison of the socket angle and anatomy of the anterior calcaneal facet and of the navicular beak.

Results: The dorsoplantar inclination angle averaged 50° (±17), the anteroposterior inclination angle 64° (±15), and the pathologic socket angle 98° (±11). The average contact area was 156mm2. Ninety-four percent of all patients in the CNC group revealed a plantar navicular beak. In 50% of those patients the anterior calcaneal facet was replaced by the navicular portion and in 44% the facet was totally missing. In contrast, the socket angle in the control group averaged 77° (± 18), which was found to be statistically different than the CNC group (p=0.0004). Only 25% of the patients in the control group had a plantar navicular beak. Statistically significant inter-observer correlations were found for all measured angles.

Conclusions: Computer aided CT analysis and reconstructions help to determine the spatial orientations of CNC and provide useful information in order to anticipate morphological abnormalities of the calcaneus and navicular.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 344 - 344
1 May 2009
Blyth P Stott N Peters I Anderson I
Full Access

Cannulated screw fixation is currently the treatment of choice for slipped capital femoral epiphyses (SCFE). A SCFE module of the Bonedoc simulator was created in order to test the ability of advanced trainees to place the screw in the correct position, and the practicality of using the simulator within the orthopaedic surgery training curriculum.

Bonedoc (University of Auckland) is a virtual reality simulator of image guided orthopaedic operations1. This simulator runs in Internet Explorer (Microsoft, USA) using the Octaga (Octaga, Norway) plugin. The total download is around 4 MB. The SCFE module was created from a CT scan of a Grade 2 acute on chronic SCFE. DICOM images were imported into 3DView (www.rmrsystems.co.uk) and a mesh created. The generic femur from the DHS module was morphed within the CAD package Blender (Blender.org) to conform to this reconstructed SCFE mesh.

Forty two advanced trainees operated on the same virtual SCFE during a training weekend. The trainees had 25 minutes to become familiar with the simulator and complete the operative case. The trainees performed all tasks relevant to the operation. At the operation’s conclusion the trainees self-assessed their performance. Subsequently the simulator provided surgically relevant objective feedback on aspects such as exact position of the screw, misplaced attempts and the number of x-rays. The results were analysed using SAS (SAS Institute, USA) in subgroups based on year on the scheme, as well as correlated within each operation.

There was no difference in the accuracy with which the virtual slipped capital femoral epiphysis was pinned by trainees in different years in the training programme. However, 26 of the 39 of the virtual screws were placed in the superior direction. There was no correlation between number of X-ray images taken and final accuracy of screw placement. The number of misplaced drill holes was correlated both with number of X-ray images taken (p< 0.01) and operative time (p< 0.01) but not with final accuracy of the screw. An increase in misplaced attempts was correlated with angulation errors in the anterior plane (p< 0.01). There was no correlation between the trainees’ self assessment and any of the measured variables.

The Bonedoc simulator provides a means to test trainees on technical aspects of a surgical procedure. It provides objective results, which can mimic real world outcomes. In addition, the ability to test all trainees on the same virtual operative case allows standardisation of assessment. All trainees completed the task to a similar level of accuracy, which may reflect the overall skill level in advanced trainees within the New Zealand. However, many trainees placed the screw in the superior portion of the femoral head, which is thought to increase the risk of avascular necrosis2. Further work is required to evaluate how accurately performance on the simulator predicts performance in the operating theatre


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 350 - 350
1 May 2009
Oberhofer K Mithraratne K Stott S Walt S Anderson I
Full Access

Cerebral palsy (CP) results from an injury to the immature brain; and it leads to progressive musculoskeletal (MS) impairment in most affected patients. Orthopaedic surgery involving muscle-tendon lengthening is a method for managing short muscles in CP patients. Knowledge of muscle length prior to surgery is beneficial to surgical success. However, using common assessment methods like 3D gait analysis or physical examination, accurate pre-surgery estimation of muscle lengths during walking is difficult.

Computer models of the lower limbs, which provide more insight into muscle functioning during walking, have become increasingly important within the research field of CP. MS models are commonly driven by joint kinematics from clinical gait analysis. The most often used MS model in CP related research is based on the geometry of an adult human man with muscles modelled as line segments. This approach might be reasonable for small muscles with well-defined paths; however, for long muscles with multiple attachment points and curved paths, a more realistic 3D muscle model is required.

The aim of this study is the development of a clinical assessment tool for CP patients by incorporating kinematic data from gait analysis into a 3D finite-element MS model of the lower limbs. Ethical approval has been obtained to develop subject-specific MS models of 12 children with CP and 12 control children (age 8 – 12 years) based on magnetic resonance images. Kinematic data from 3D gait analysis is used as input data to transform the bony structures. Soft-tissue muscle deformation is modelled according to a variant of free-form deformation called the Host-Mesh Fitting Technique. So far, MS models of the lower limbs of three control children and of one child with CP were developed. The resulting muscle length changes during walking agree reasonably well with published data. The proposed modelling approach together with the library of 24 MS models will enable us to develop a powerful tool to investigate gait of children with CP.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 342 - 342
1 May 2009
Mutu-Grigg J Malak S Anderson I Cullen J
Full Access

The goal of this study was to determine which of two techniques for the treatment of peri-prosthetic femoral shaft fractures has the greatest torsional integrity. The study designed was a laboratory study, using 13 matched pairs of embalmed femurs. The femurs were implanted with a cemented total hip prosthesis, with a transverse osteotomy distal to the stem. These fractures were fixed either with a metal plate with three proximal unicortical screws and three distal bicortical screws or with three proximal cables and three distal bicortical screws. The fracture fixation was tested to failure in torsion. The pattern of failure and torsional limits were recorded.

There was no significant difference to failure level between the two constructs. Failure with the proximal unicortical screws was usually catastrophic versus non-catastrophic with proximal cables. The femurs were significantly more likely to fracture in internal rotation.

Treatment with proximal cables has the same load to failure in torsion but significantly less complications than with unicortical screws, in agreement with the literature. The findings of the construct being weaker in internal rotation, appears to be a new finding and an area of possible new research.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 229 - 229
1 May 2009
Bourne RB Anderson CK Chesworth BM Hornick LE Zaric GS
Full Access

The purpose of this study was to establish a model to predict the future need for total hip and knee replacement surgery over the next ten years.

Analysis based on queuing theory and Ontario data (Ontario Joint Replacement Registry) considered such factors as changing demographics, specific wait time objectives and changing indicators to predict the future need for THR and TKR up to 2015.

26 725 Ontarians were waiting for THR and TKR surgery on any given day in 2004–05. Each month, the number of new decisions for surgery exceeded the actual number of surgeries by over 20%, adding another five hundred patients to the wait list. We predict that the population > fifty-five years of age will increase by 3.4% annually and that the willingness of patients to consider TJR surgery will increase by 8.7%/year To reduce wait times and establish a steady state of waiting (less than 6 months wait), more than 50 000 surgeries per year must be provided within five years and 70 000 total joint replacements per year by 2014–15 as compared to the 31 448 performed annually at this time. Providing this volume of surgeries means that the number of surgeons will have to double within five to seven years.

The results of this queuing theory analysis predict a substantial need for markedly increased THR and TKR volumes and orthopaedic manpower over the next decade.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 352 - 352
1 May 2009
Munro J Shim V Pitto R Anderson I
Full Access

Long term clinical follow-up of total hip arthroplasty (THA) has identified problems associated with cyst formation. Such cysts are formed as a result of expansile osteolysis, which starts on a small area of the skeleton and spreads into the bone away from the surface of the prosthesis. Since large areas of the prosthesis are still in immediate contact with the skeleton the prosthesis is not loose and the patients are usually without pain. However this form of osteolysis may destroy large areas of the skeleton before it is detected and result in a sudden fracture due to a weakened skeleton. While there are some short term prospective trials that have shown changes in bone density in the periacetabular region, one needs a biomechanical model to understand factors that influence bone remodeling leading to cyst formation. This study aims to develop a mathematical model for studying the mechanical effects of bone cysts in the acetabulum of THA patients.

2D finite element (FE) models of patients with known restroacetabular cystic disease were generated using coronal CT images from the central region of the acetabulum. The boundary between bone and soft tissue was segmented and an FE model generated. Mesh convergence tests were performed to identify a suitable level of mesh refinement. Three material zones representing– cortical bone (E=17GPa), cancellous bone (E=1GPa) and a titanium cup (E=120GPa) – were included in the model. A series of simulations were run to investigate how cysts affect stress distribution as well as the mechanical consequence of medial wall deficiency.

The presence of a cyst did not alter the pattern of stress distribution in the lateral and medial wall. But the strain energy function increased significantly at the inferior margin of the cyst within its cancellous bone. This may encourage bone formation at the cyst margin and help to explain the sclerotic walls seen in some cysts. Models with absent medial walls showed that both compressive and tensile stresses lowered in the cortical wall and the strain energy function reduced almost to zero. This suggests that a medial wall defect has a high risk of progression.

The current 2D model cannot incorporate complex acetabular geometry or complex forces acting on the hip. Therefore the current model will be further developed into a 3D FE model of the whole pelvis that also represents the pelvic ring structure more adequately. Physiologically meaningful boundary conditions as well as patient specific geometry and material properties will be used to investigate mechanical effects of bone cysts realistically.


Full Access

Lateralisation of the tuberosity tibia causes distal malalignment of the extensor mechanism of the knee and can lead to lateral tracking patella (LTP), resulting in anterior knee pain, or objective patellar instability (OPI), resulting in recurrent luxations. For a precise preoperative diagnosis the tuberositas tibia (TT) trochlear groove (TG) distance was measured on a CT scan. A distance of more than 15 mm was considered to be pathological.

In a prospective study, the clinical results of a subtle, CT-guided medial tuberosity transfer for LTP and OPI were evaluated. 30 Consecutive patients with LTP and 30 patients with OPI and an increased TT TG were included. Outcomes were documented at 3, 12 and 24 months follow-up using the Lysholm scale, the Kujala score, and a visual analogue pain score. Postoperatively all but one patient reported good improvement in stability (no persistent subluxations or luxations). All patients had a marked improvement in pain and functional scores at follow up. Complications seem to be related to the peroperative technique. CT-guided TT transfer appears to be satisfactory and safe method for treating patients with an increased TT TG leading to either LTP or OPI.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 60 - 60
1 Mar 2009
Fountain J Anderson A Flowers M Bell M
Full Access

Introduction: This study examined the cohort of patients selectively screened over a 5 year period with ultrasonography according to our risk factors (positive Ortolani or Barlow manoeuvre, breech presentation, first degree affected relative and talipes equinovarus) for developmental hip dysplasia (DDH). The aims were to evaluate the success of those managed in a Pavlik harness and identify predictive factors for those that failed treatment.

Methods: 1181 patients were selectively screened between 1999 and 2004. Of those, 128 patients (189 hips) were identified as having hip instability. Failure was defined as inability to achieve or maintain hip reduction in a Pavlik harness. A proforma was designed to document patients’ risk factors and ultrasound findings at time of initial dynamic ultrasound scan where the senior radiographer and treating consultant were present. Each hip was classified according to Graf type. Acetabular indices were recorded prior to discharge.

Results: All 128 patients with hip instability were managed in a Pavlik harness. This was abandoned for surgical treatment in 9 patients (10 hips) giving a failure rate of 5.3 % (0.17 per 1000 live births). All those successfully managed had an acetabular index of less than 30 degrees at follow up (6 – 48 months). 7 hips in the series were classified as Graf type IV, of these, 6 went on to fail management in a Pavlik harness. 67% of those that failed were also breech presentation compared to 22% of those managed successfully. There were no complications associated with management in a Pavlik harness. 16 patients born within our region presented after 12 weeks of age with DDH resulting in a late presentation rate of 0.3 per 1000 live births.

Discussion: Our overall rate of selective screening is 14 per 1000 live births with a subsequent treatment rate of 2.3 per 1000 is comparable with other centres. Our rate of failure for DDH in a Pavlik harness 0.17 per 1000 live births is an improvement on any previously published results. Irreducible hips, Graf type IV hips and breech presentation correlated with a high likelihood of treatment failure.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 8 | Pages 1068 - 1072
1 Aug 2008
Kuklo TR Groth AT Anderson RC Frisch HM Islinger RB

This article has been retracted, an editorial will follow.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 392 - 392
1 Jul 2008
Pollintine P Cooper I Anderson H Green L Cooper C Lanham S Oreffo R Dolan P
Full Access

Introduction: Epidemiology suggests that an intrauterine nutrient restriction increases the likelihood of osteoporosis in later life, possibly due to differences in bone structure and strength. We hypothesise that, in an ovine model, early nutritional compromise reduces vertebral cancellous bone density and cortical thickness, and thereby reduces vertebral compressive strength.

Materials and methods: Lumbar spines were dissected from 8 sheep (6 male, 2 female: mean age 2.7 yrs). Spines were divided into different groups, based on the early diet of the sheep: group CC received a control diet, group IU received low protein in utero, and group PN received low protein both in utero and postnatally. Fifteen motion segments (consisting of two vertebrae and the intervening disc and ligaments) were prepared from the spines, and compressed to failure using a hydraulically-controlled materials testing machine to obtain yield strength. 1mm-thick bone slices were taken from the mid-sagittal and para-sagittal regions of each vertebral body and micro-radiographed. Digital images of the micro-radiographs were analysed to obtain the cancellous bone density in anterior and posterior regions, and the cortical thickness in the anterior, posterior, superior and inferior regions. Repeated measures ANOVA was used to test for differences in parameters at the different locations, and between the groups.

Results: The anterior cortex was 28% thinner for the IU group, and 23% thinner for the PN group compared to controls (both p< 0.001). In the PN group, the superior cortex was also 18% thinner than controls (p< 0.02). There was no significant difference between cancellous bone density in either region. Yield strength was 16% lower in the IU group compared to controls, but this did not reach significance.

Discussion: In the nutritionally compromised groups, cortical thickness was lower in regions of the vertebral body where fractures often occur in elderly people. However, the reduction in cortical thickness is not accompanied by a significant reduction in compressive strength in the sheep model. These findings suggest that the well-maintained cancellous bone protects the vertebra from fracture.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 155 - 155
1 Mar 2008
Shim V Anderson I Rossaak M Streicher R Pitto R
Full Access

In recent years, some attempts have been made to develop a method that generates finite element (FE) models of the femur and pelvis using CT. However, due to the complex bone geometry, most of these methods require an excessive amount of CT radiation dosage. Here we describe a method for generating accurate patient-specific FE models of the total hip using a small number of CT scans in order to reduce radiation exposure.

A previously reported method for autogenerating patient-specific FE models of the femur was extended to include the pelvis. CT osteodensitometry was performed on 3 patients who had hip replacement surgery and patient-specific FE models of the total hip were generated. The pelvis was generated with a new technique that incorporated a mesh morphing method called ‘host mesh fitting’. It used an existing generic mesh and then morphed it to reflect the patient specific geometry. This can be used to morph the whole pelvis, but our patient dataset was limited to the acetabulum. An algorithm was developed that automated all the procedures involved in the fitting process.

Average error between the fitted mesh and patient specific data sets for the femur was less than 1mm. The error for the pelvis was about 2.5mm. This was when a total 18 CT scans with 10mm gap were used – 12 of the femur, and 6 of the pelvis. There was no element distortion and a smooth element surface was achieved.

Previously, we reported a new method for automatically generating a FE model of the femur with as few CT scans as possible. Here we describe a technique that customizes a generic pelvis mesh to patient-specific data sets. Thus we have developed a novel hybrid technique which can generate an accurate FE model of the total hip using significantly less CT scans.

An automated method of generating FE models for the total hip with reduced CT radiation exposure will be a valuable clinical tool for surgeons.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 155 - 155
1 Mar 2008
Shim V Anderson I Rossaak M Streicher R Pitto R
Full Access

In recent years, some attempts have been made to develop a method that generates finite element (FE) models of the femur and pelvis using CT. However, due to the complex bone geometry, most of these methods require an excessive amount of CT radiation dosage. Here we describe a method for generating accurate patient-specific FE models of the total hip using a small number of CT scans in order to reduce radiation exposure.

A previously reported method for autogenerating patient-specific FE models of the femur was extended to include the pelvis. CT osteodensitometry was performed on 3 patients who had hip replacement surgery and patient-specific FE models of the total hip were generated. The pelvis was generated with a new technique that incorporated a mesh morphing method called ‘host mesh fitting’. It used an existing generic mesh and then morphed it to reflect the patient specific geometry. This can be used to morph the whole pelvis, but our patient dataset was limited to the acetabulum. An algorithm was developed that automated all the procedures involved in the fitting process.

Average error between the fitted mesh and patient specific data sets for the femur was less than 1mm. The error for the pelvis was about 2.5mm. This was when a total 18 CT scans with 10mm gap were used – 12 of the femur, and 6 of the pelvis. There was no element distortion and a smooth element surface was achieved.

Previously, we reported a new method for automatically generating a FE model of the femur with as few CT scans as possible. Here we describe a technique that customizes a generic pelvis mesh to patient-specific data sets. Thus we have developed a novel hybrid technique which can generate an accurate FE model of the total hip using significantly less CT scans.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 166 - 166
1 Mar 2008
Graydon A Malek S Anderson I Pitto R
Full Access

The correct positioning of implant components in total knee replacement (TKR) is important for a successful long-term outcome. In order to address the problems inherent with conventional alignment methods, several computer-assisted navigation systems (CAS) have been developed. Despite numerous reports of clinical outcomes and system reliability, there is a lack of studies independently evaluating the precision and accuracy of such systems. We report on the design and development of a method and device to evaluate the accuracy of such a computer-assisted navigation system in two situations; 1) Normal or near-normal lower limb mechanical axis, and 2)Simulated femoral and/or tibial extra-articular deformity in either varus/valgus (x), internal/external rotation (y) or flexion/extension (z) planes.

The system assessed was the Ci Knee-CAS navigation system (BrainLab/De Puy). This image-free system requires the registration of specific anatomical points to identify the mechanical axis of the lower limb and therefore provide information on resection level and alignment. In order to precisely measure and accurately reproduce these points we constructed a phantom device along anatomical guidelines, with lockable joints located at the mid-shaft of both femur and tibia. We then identified geometric CAS data; 1) Tibial resection height, and 2) Tibial resection plane, and using specially written software compared this against validated co-ordinate measurements independently obtained by a FaroArm co-ordinate measurement system (FARO Technologies, USA). This enabled data from the navigation system to be directly compared against highly accurate reference measurements.

Accuracy of the system was then assessed with both normal mechanical alignment of the lower limbs and simulated extra-articular deformity.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 2 | Pages 180 - 185
1 Feb 2007
Koëter S Diks MJF Anderson PG Wymenga AB

An abnormal lateral position of the tibial tuberosity causes distal malalignment of the extensor mechanism of the knee and can lead to lateral tracking of the patella causing anterior knee pain or objective patellar instability, characterised by recurrent dislocation. Computer tomography is used for a precise pre-operative assessment of the tibial tubercle-trochlear groove distance. A distance of more than 15 mm is considered to be pathological and an indication for surgery in symptomatic patients.

In a prospective study we performed a subtle transfer of the tibial tuberosity according to the information gained from the pre-operative CT scan. This method was applied to two groups of patients, those with painful lateral tracking of the patella, and those with objective patellar instability. We evaluated the clinical results in 30 patients in each group. The outcome was documented at 3, 12 and 24 months using the Lysholm scale, the Kujala score, and a visual analogue pain score.

Post-operatively, all but one patient in the instability group who had a patellar dislocation requiring further surgery reported good improvement with no further subluxation or dislocation. All patients in both groups had a marked improvement in pain and functional score. Two patients sustained a tibial fracture six and seven weeks after surgery. One patient suffered a per-operative fracture of the tibial tubercle which later required further fixation.

If carefully performed, this type of transfer of the tibial tubercle appears to be a satisfactory technique for the treatment of patients with an increased tibial tubercle-trochlear groove distance and who present with symptoms related to lateral maltracking of the patella.