Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

BIOMECHANICAL EVALUATION OF DIFFERENT DESIGNS OF GLENOSPHERES IN REVERSE TOTAL SHOULDER REPLACEMENT: RANGE OF MOTION AND RISK OF SCAPULAR NOTCHING



Abstract

Reverse total shoulder replacement is a viable surgical option for Cuff Tear Arthropathy. Short term results have been promising. Longer term follow-up has demonstrated a high rate of scapular notching. This is attributed to mechanical impingement between the humeral cup and scapular neck when the arm is fully adducted. The long term sequelae of scapular notching are unclear but there is concern that it may compromise fixation of the glenoid component and affect functional outcomes.

Design modifications to address this problem include the newly available eccentric glenospheres and larger diameter glenospheres. These glenospheres are designed to offer greater ranges of motion and theoretically may reduce the risk of impingement and notching. The purpose of this biomechanical study is to demonstrate the difference in range of motions with each design of glenosphere. To our knowledge there is no published literature evaluating this design differences.

The SMR (Lima Orthotec) reverse total shoulder prothesis was implanted into a synthetic bone model (Sawbones, Pacific Laboratories, Vashon, Washington). Four different types of glenospheres (Standard 36 mm, Eccentric 36 mm, Standard 44 mm, Eccentric 44 mm) were then implanted into the same model which was fixed on a measurement table. The precision coordinate measurement device (FARO-Arm, SO6/Rev22, FARO Technologies Inc., Lake Mary, Florida) was used to establish the centres of rotation and ranges of motion.

To date, the collection of data has just been completed, but the data are yet to be analysed. In conclusion, this is a biomechanical study evaluating the ranges of motion and risk of notching, comparing different designs of glenospheres in Reverse Total Shoulder Joint Replacement.

Correspondence should be addressed to Associate Professor N. Susan Stott at Orthopaedic Department, Starship Children’s Hospital, Private Bag 92024, Auckland, New Zealand