header advert
Results 21 - 28 of 28
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 3 - 3
1 Feb 2017
Gupta A Knowles N Ferreira L Athwal G
Full Access

Background

Glenoid baseplate fixation for reverse shoulder arthroplasty relies on the presence of sufficient bone stock and quality. Glenoid bone may be deficient in cases of primary erosions or due to bone loss in the setting of revision arthroplasty. In such cases, the best available bone for primary baseplate fixation usually lies within the three columns of the scapula. The purpose of this study was to characterise the relationship of the three columns of the scapula independent of glenoid anatomy and to establish the differences between male and female scapular anatomy.

Methods

Fifty cadaveric scapulae (25 male, 25 female) were analysed using CT-based imaging software. The surface geometries of the coracoid, scapular spine and inferior scapular column were delineated in the sagittal plane. A linear best-fit line was drawn to establish the long axis of each column independent of the glenoid. The width of the glenoid was measured and points marked at the midpoint of each measurement. A best-fit line starting at the supra glenoid tubercle passing through the midpoints was chosen as the superior inferior (SI) axis of the glenoid.

An orthogonal plane to the scapular plane was developed parallel to the glenoid face. The axis representing each of the three columns of the scapula and the SI axis of the glenoid, were projected onto this plane. The relationship between each column was analysed with respect to each other and with respect to the SI glenoid axis. Thus, measurements obtained gave the relationships of the three columns of the scapula (independent of the glenoid) and their relationships to the long axis of the glenoid (dependant on the glenoid). Comparisons were made between males and females using the independent t-tests.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 5 - 5
1 Dec 2016
Holmes S Diaz A Athwal G Faber K O'Gorman D
Full Access

Propionibacterium acnes infection of the shoulder after arthroplasty is a common complication. Current detection methodologies for P. acnes involve prolonged anaerobic cultures that can take up to three weeks before findings can be reported. Our aim was to develop a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) approach that is both sensitive and specific to P. acnes that would enable a 24-hour turnaround between biopsy and results.

Comparisons between the 16S ribosomal sequences of P. acnes and closely related bacteria identified two unique regions in P.acnes to which PCR primers were designed. Additionally, two unique restriction enzyme cut sites for HaeIII were identified within this amplicon. To test the PCR method, arthroscopic surgical biopsies were mechanically homogenised and boiled for 20 minutes to lyse the cellular membranes. PCR was performed using standard conditions followed by a one hour HaeIII enzymatic digest of the PCR product. Resultant fragments were visualised on polyacrylamide gels stained with ethidium bromide. All experiments included no-template controls to rule out reagent contamination and independently confirmed P. acnes DNA as a positive control. Serial dilutions of P. acnes cultures in Robertson's cooked-meat broth and spectrophotometric analysis of cellular concentration were used to assess the sensitivity of the PCR reaction.

A unique 564 base-pair PCR amplicon was derived from different strains of P. acnes. This amplicon was confirmed as P. acnes DNA by gel excision and DNA sequencing. HaeIII digests of the amplicon yielded 3 restriction fragments at the sizes predicted by in silico analyses. Sensitivity testing confirmed that as few as 10 P. acnes cells in a 50µl reaction volume could be detected using this assay. P. acnes was also detected in surgical biopsy samples.

P. acnes infections following shoulder arthroplasty are a serious complication placing a burden on the healthcare system and the patient due to the lengthy surgical revision process that follows. The infections are also difficult to diagnose. This unique assay combines the sensitivity of PCR with the specificity of RFLP mapping to specifically identify P. acnes in surgical isolates. We anticipate that this assay will allow us to determine if a biopsy is P. acnes positive within 24-hours of sampling, allowing for more aggressive antibiotic therapy and monitoring to avoid implant failure and revision surgery. Additionally, this PCR-RFLP method may decrease the false positive rate of extended length cultures due to P. acnes contamination.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 6 - 6
1 Dec 2016
Langohr G Giles J Johnson J Athwal G
Full Access

Despite reverse total shoulder arthroplasty (RTSA) being primarily indicated for massive rotator cuff tears, it is often possible to repair portions of the infraspinatus and subscapularis of patients undergoing this procedure. However, there is disagreement regarding whether these tissues should be repaired, as their effects remain unclear. Therefore, we investigated the effects of rotator cuff repair and changes in humeral and glenosphere lateralisation (HLat & GLat) on deltoid and joint loading.

Six shoulders were tested on an in-vitro muscle driven active motion simulator. Cuff tear arthropathy was simulated in each specimen, which was then implanted with a custom adjustable RTSA fitted with a six axis load sensor. We assessed the effects of 4 RTSA configurations (i.e. all combinations of 0&10mm of HLat & GLat) on deltoid force, joint load, and joint load angle during abduction with/out rotator cuff repair. Deltoid and joint loads recorded by the load cell are reported as a % of Body Weight (%BW). Repeated measures ANOVAs and pairwise comparisons were performed with p<0.05 indicating significance.

Cuff repair interacted with HLat & GLat (p=0.005, Fig. 1) such that with no HLat, GLat increased deltoid force without cuff repair (8.1±2.1%BW, p=0.012) and this effect was significantly increased with cuff repair (12.8±3.2%BW, p=0.010). However, adding HLat mitigated this such that differences were not significant. HLat and GLat affected deltoid force regardless of cuff status (−2.5±0.7%BW, p=0.016 & +7.7±2.3%BW, p=0.016, respectively). Rotator cuff repair did significantly increase joint load (+11.9±2.1%BW, p=0.002), as did GLat (+13.3±1.5%BW, p<0.001).

The increases in deltoid and joint load caused by rotator cuff repair confirm that it acts as an adductor following RTSA and increases deltoid work. Additionally, cuff repair's negative effects are exacerbated by GLat, which strengthens its adduction affect, while Hlat increases the deltoid's abduction effect thus mitigating the cuff's antagonistic effects. Cuff repair increases concavity compression within the joint; however, Hlat produces a similar effect by wrapping the deltoid around the greater tuberosity – which redirects its force – and does so without increasing the magnitude of muscle and joint loading. The long-term effects of increased joint loading due to rotator cuff repair are unknown, however, it can be postulated that it may increase implant wear, and the risk of deltoid fatigue. Therefore, RTSA implant designs which improve joint compression without increasing muscle and joint loading may be preferable to rotator cuff repair.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 10 - 10
1 Dec 2016
West E Knowles N Ferreira L Athwal G
Full Access

Shoulder arthroplasty is used to treat osteoarthritis, post-traumatic arthritis, and avascular necrosis. Modular components allow for natural variability in shoulder anatomy, including retroversion and head-neck angles. Surgical options include anatomic or guide-assisted cut at a fixed retroversion and head-neck angle. The purpose of this study was to determine the variability between head height (HH) and anteroposterior (AP) and superoinferior (SI) diameters using anatomic and guide-assisted humeral head cuts.

Computed tomography scans of 10 cadaveric shoulder specimens (5 male, 5 female) were converted to 3D models. An anatomic humeral head cut plane was placed at the anatomic head–neck junction maintaining the posterior cuff insertion for all shoulders by a fellowship trained shoulder surgeon. Cut planes were generated for standard implant head neck angles (125°,130°,135°, and 140°) and retroversion angles (20°,30°, and 40°) in commercial cutting guides, for a combination of 12 repeated cut conditions per specimen. The humeral HH and the head diameter were measured in the AP and the SI planes for anatomic and guide-assisted osteotomy planes. Differences were compared using a separate two-way repeated measures ANOVA for each dependent variable.

Guide-assisted cuts showed no significant effect on HH due to head-neck (p=0.205) or retroversion angles (p=0.190). These results persisted by gender (male: head-neck p=0.659 and retroversion p=0.386; female: head-neck p=0.204 and retroversion p=0.190). SI diameter increased by 1.3 mm with increasing head-neck angle (p<0.001), but there was no effect due to retroversion (p=0.148). A head-neck angle of 125° caused the greatest decrease in SI diameter of −2.8 mm compared to the anatomic cut, averaged over the retroversion range. The greatest reduction of SI diameter, −3.4 mm compared to anatomic, occurred with 125° head-neck angle and 20° retroversion. By gender, males showed a significant effect from head-neck angle (p=0.008), but females did not (p=0.077). There was no significant difference from retroversion in either gender group (male p=0.792; female p=0.057). There was no significant difference in AP diameter by head-neck (p=0.192) or retroversion angles (p=0.168). These results persisted in the males (head-neck p=0.420 and retroversion p=0.780). In females, there was no effect from head-neck angle (p=0.232); however, retroversion angle trended toward significance (p=0.050).

For patients whose natural anatomy falls outside the range of the commercial cut guides, templated resection may result in deviation from natural humeral head dimensions. Due to the large variability in anatomic retroversion and head-neck angles in the subjects of this study, further study with a larger sample size is needed to investigate observed trends. These preliminary results have implications for manufacturers to create guides to represent a larger segment of the population, and surgeons' intra-operative choice.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 8 - 8
1 Nov 2016
Griffiths M Langohr G Athwal G Johnson J
Full Access

There are a variety of sizes currently available for reverse total shoulder arthroplasty (RTSA) implant systems. Common sizing options include a smaller 36 to 38 mm or a larger 40 to 42 mm glenosphere, and are typically selected based on surgeon preference or patient size. Previous studies have only evaluated the abduction and adduction range of motion within a single plane of elevation, providing a limited view of the joint's possible range of motion. The purpose of this study was to use computer modeling to evaluate the abduction and adduction range of motion across multiple planes of elevation for a range of glenosphere sizes.

Computed tomography images of four cadaveric specimens (age: 54 ± 24 years) were used to obtain the osseous anatomy to be utilised in the model. Solid-body motion studies of the RTSA models were constructed with varying glenosphere diameters of 33, 36, 39, 42, and 45 mm in Solidworks (Dassault Systems, US). The implant components were scaled, while maintaining a consistent centre of rotation. Simulations encompassing the full range of abduction and adduction were conducted for the planes of elevation between −15˚ and 135˚ at 15˚ intervals, with the motion of the humerus being constrained in neutral internal-external rotation throughout all planes. Angles of elevation were obtained utilising the humeral long axis and the RTSA centre of rotation. Statistical analysis was performed using repeated measures ANOVA.

Glenosphere diameter was found to significantly affect the adduction range of motion (p=0.043), in which the largest size provided approximately 17˚ more adduction range of motion than the smallest. However, abduction range of motion was not found to be significantly affected through the alteration of glenosphere size (p=0.449). The plane of elevation was not found to significantly affect abduction or abduction (p=0.585 & p=0.225, respectively).

Increasing glenosphere diameter resulted in an increased adduction range of motion when averaged across the tested planes of elevation; however the observed influence on abduction was not significant. These are similar to the trends observed in the previous single plane of elevation studies. These findings illustrate the importance of implant sizing related to range of motion. Further studies are required to determine the influence of glenosphere size on internal and external range of motion.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 9 - 9
1 Nov 2016
Langohr G Haverstock J Johnson J Athwal G
Full Access

Shoulder arthroplasty, both primary (TSA) and reverse (RTSA), are common interventions for arthritis and cuff tear arthropathy. The effect of shoulder arthroplasty on shoulder motion is of particular interest in assessing the effectiveness of the procedure and the development and biomechanical testing of implants. A comparison of the arthroplasty shoulder to that of the non-operated contralateral shoulder provides insight into how well the reconstruction has restored natural shoulder motion. The purpose of this study was to ascertain the shoulder motion of patients who have undergone shoulder arthroplasty and to compare the motion of the reconstructed and contralateral natural sides.

Eleven human subjects (70±9yrs) who had undergone total shoulder arthroplasty wore a custom instrumented shirt for the waking hours of one day. The 3D orientation of each humeral sensor was transformed with respect to the torso to allow for the calculation of humeral elevation and plane of elevation angles. Joint angles for each subject were then discretised, and the operative and contralateral normal (control) shoulders were then compared.

The majority of both the arthroplasty and control shoulder elevation motions took place below 80° of elevation, totaling on average 1910±373 and 1887±312 motions per hour, respectively. Conversely, elevations greater than 80° were significantly less with occurrences totaling only 55±31 and 78±41 motions per hour for the arthroplasty and control shoulders, respectively (p<0.01). Both the arthroplasty and control shoulder were at elevations below 80° for 88±7% and 87±7% of the day, respectively. When the total motion of the arthroplasty and non-operative control shoulders were compared, no statistically significant difference was detected (p=0.8), although the non-operated side exhibited marginally more motion than the operated side, an effect which was larger at higher elevation angles (p=0.3).

This study provides insight into the effects of shoulder arthroplasty on thoraco-humeral motion and compares it to the non-operative side. Interestingly, there were no significant differences measured between the arthroplasty and the control side, which may demonstrate the effectiveness of reconstruction on restoring natural shoulder motion. It is interesting to note that on average, each shoulder arthroplasty elevated above 80° approximately 55 times per hour, corresponding to just under 330,000 motions per year. Similarly, when elevations greater than 60° are extrapolated, the resulting yearly motions total approximately 1.5 million cycles (Mc), which suggests that the ‘duty cycle’ of the shoulder is similar to the hip, approximated to be between 1–2 Mc per year. Arthroplasty wear simulators should be calibrated to simulate these patterns of motion, and component design may be improved by understanding the kinematics of actual shoulder motion.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 52 - 52
1 Nov 2016
Ng J Nishiwaki M Gammon B Athwal G King G Johnson J
Full Access

Fracture or resection of the radial head can cause unbalance and long-term functional complications in the elbow. Studies have shown that a radial head excision can change elbow kinematics and decrease elbow stability. The radial head is also important in both valgus and varus laxity and displacement. However, the effect of radial head on ulnohumeral joint load is not known. The objective of this experimental study was to compare the axial loading produced at the ulnohumeral joint during active flexion with and without a radial head resection.

Ten cadaveric arms were used. Each specimen was prepared and secured in an elbow motion simulator. To simulate active flexion, the tendons of the biceps, brachialis, brachioradialis, and triceps were attached to servo motors. The elbow was moved through a full range of flexion. To quantify loads at the ulnohumeral joint, a load cell was implanted in the proximal ulna. Testing was conducted in the intact then radial head resected case, in supination in the horizontal, vertical, varus and valgus positions.

When comparing the average loads during flexion, the axial ulnar load in the horizontal position was 89±29N in an intact state compared to 122±46N during radial head resection. In the vertical position, the intact state produced a 67±16N load while the resected state was 78±23N. In the varus and valgus positions, intact state resulted in loads of 57±26N and 18±3N, respectively. Conversely, with a radial head resection, varus and valus positions measured 56±23N and 54±23N loads, respectively. For both joint configurations, statistical differences were observed for all flexion angles in all arm positions during active flexion (p=0.0001). When comparing arm positions and flexion angle, statistical differences were measured between valgus, horizontal and vertical (p<0.005) except for varus position (p=0.64).

Active flexion caused a variation in loads throughout flexion when comparing intact versus radial head resection. The most significant variation in ulnar loading occurred during valgus and horizontal flexion. The vertical and varus position showed little variation because the position of the arm is not affected by the loss of the radial head. However, in valgus position, the resected radial head creates a void in the joint space and, with gravity, causes greater compensatory ulnar loading. In the horizontal position, the forearm is not directly affected by gravitational pull and cannot adjust to counterbalance the resected radial head, therefore loads are localised in the ulnohumeral joint. These findings prove the importance of the radial head and that a radial head resection can overload the ulnohumeral side.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 17 - 17
1 Nov 2016
Reeves J Athwal G Johnson J
Full Access

To evaluate the efficacy of using a novel button-suture construct in place of traditional screws to provide bone block fixation for the Latarjet procedure.

Four paired cadaveric shoulders (n=8) were denuded, with the exception of the conjoint tendon on the coracoid, and were potted. A 15% anterior glenoid bone defect was simulated. Right and left specimens were randomised into two groups: double-screw versus quadruple-button Latarjet reconstruction techniques. A uniaxial mechanical actuator loaded the Latarjet reconstructed glenoid articular surface via a 47mm diameter metallic hemisphere. Cyclic loading between 50–200N was applied to the glenoid at a rate of 1Hz for 1000 cycles. Testing was repeated three times for conjoint tendon loads of 0N, 10N and 20N. The relative positions of three points on the inferior, central and superior edges of the coracoid bone fragment were optically tracked with respect to a glenoid coordinate system throughout testing. Screw and button constructs were compared on the basis of maximum relative displacement at these points (RINF, RCENT, RSUP). Statistical significance was assessed using a paired-samples t-test in SPSS.

When conjoint tendon loading was not present the double screw and quadruple button constructs were not significantly (P>0.779) different (0N: RINF: 0.11 (0.05)mm vs. 0.12 (0.03)mm, RCENT: 0.12 (0.04)mm vs. 0.12 (0.03)mm, RSUP: 0.13 (0.04)mm vs. 0.12 (0.03)mm). Additionally, the double screw construct was not found to differ (P>0.062) from the quadruple button in terms of resultant coracoid displacement for all central and superior points, regardless of conjoint loading (10N: RCENT: 0.11 (0.03)mm vs. 0.19 (0.05)mm, RSUP: 0.11 (0.01)mm vs. 0.18 (0.04)mm; 20N: RCENT: 0.13 (0.01)mm vs. 0.30 (0.13)mm, RSUP: 0.13 (0.03)mm vs. 0.26 (0.14)mm). It was only for the inferior point with conjoint loading of 10N and 20N that the double screw construct began to produce significantly lower displacements than the quadruple button (10N: RINF: 0.11 (0.03)mm vs. 0.23 (0.05)mm, P=0.047; 20N: RINF: 0.12 (0.02)mm vs. 0.39 (0.15)mm, P=0.026).

The results of the screw and button constructs when conjoint tendon loading was absent suggest that the button may be a suitable substitute to the screw when the coracoid is used as a bone block. Due to the small resultant displacements (max: screw = 0.19mm, button = 0.52mm), it is suggested that buttons may also act as a substitute to screws for Latarjet procedures, provided conjoint tendon overloading is minimised during the post-operative graft healing period. These in-vitro results support the in-vivo results of Boileau et al (2015) that demonstrated the suture-button technique to be an excellent alternative to screw fixation Latarjet, with graft healing in 91% of their subjects.