Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

COMPARISON OF HUMERAL HEAD OSTEOTOMY USING ANATOMIC AND GUIDE-ASSISTED CUTS

Canadian Orthopaedic Association (COA) and Canadian Orthopaedic Research Society (CORS) Annual Meeting, June 2016; PART 2.



Abstract

Shoulder arthroplasty is used to treat osteoarthritis, post-traumatic arthritis, and avascular necrosis. Modular components allow for natural variability in shoulder anatomy, including retroversion and head-neck angles. Surgical options include anatomic or guide-assisted cut at a fixed retroversion and head-neck angle. The purpose of this study was to determine the variability between head height (HH) and anteroposterior (AP) and superoinferior (SI) diameters using anatomic and guide-assisted humeral head cuts.

Computed tomography scans of 10 cadaveric shoulder specimens (5 male, 5 female) were converted to 3D models. An anatomic humeral head cut plane was placed at the anatomic head–neck junction maintaining the posterior cuff insertion for all shoulders by a fellowship trained shoulder surgeon. Cut planes were generated for standard implant head neck angles (125°,130°,135°, and 140°) and retroversion angles (20°,30°, and 40°) in commercial cutting guides, for a combination of 12 repeated cut conditions per specimen. The humeral HH and the head diameter were measured in the AP and the SI planes for anatomic and guide-assisted osteotomy planes. Differences were compared using a separate two-way repeated measures ANOVA for each dependent variable.

Guide-assisted cuts showed no significant effect on HH due to head-neck (p=0.205) or retroversion angles (p=0.190). These results persisted by gender (male: head-neck p=0.659 and retroversion p=0.386; female: head-neck p=0.204 and retroversion p=0.190). SI diameter increased by 1.3 mm with increasing head-neck angle (p<0.001), but there was no effect due to retroversion (p=0.148). A head-neck angle of 125° caused the greatest decrease in SI diameter of −2.8 mm compared to the anatomic cut, averaged over the retroversion range. The greatest reduction of SI diameter, −3.4 mm compared to anatomic, occurred with 125° head-neck angle and 20° retroversion. By gender, males showed a significant effect from head-neck angle (p=0.008), but females did not (p=0.077). There was no significant difference from retroversion in either gender group (male p=0.792; female p=0.057). There was no significant difference in AP diameter by head-neck (p=0.192) or retroversion angles (p=0.168). These results persisted in the males (head-neck p=0.420 and retroversion p=0.780). In females, there was no effect from head-neck angle (p=0.232); however, retroversion angle trended toward significance (p=0.050).

For patients whose natural anatomy falls outside the range of the commercial cut guides, templated resection may result in deviation from natural humeral head dimensions. Due to the large variability in anatomic retroversion and head-neck angles in the subjects of this study, further study with a larger sample size is needed to investigate observed trends. These preliminary results have implications for manufacturers to create guides to represent a larger segment of the population, and surgeons' intra-operative choice.


Email: