Advertisement for orthosearch.org.uk
Results 1 - 20 of 4094
Results per page:
Bone & Joint Research
Vol. 9, Issue 11 | Pages 798 - 807
2 Nov 2020
Brzeszczyńska J Brzeszczyński F Hamilton DF McGregor R Simpson AHRW

MicroRNAs (miRNAs) are a class of small non-coding RNAs that have emerged as potential predictive, prognostic, and therapeutic biomarkers, relevant to many pathophysiological conditions including limb immobilization, osteoarthritis, sarcopenia, and cachexia. Impaired musculoskeletal homeostasis leads to distinct muscle atrophies. Understanding miRNA involvement in the molecular mechanisms underpinning conditions such as muscle wasting may be critical to developing new strategies to improve patient management. MicroRNAs are powerful post-transcriptional regulators of gene expression in muscle and, importantly, are also detectable in the circulation. MicroRNAs are established modulators of muscle satellite stem cell activation, proliferation, and differentiation, however, there have been limited human studies that investigate miRNAs in muscle wasting. This narrative review summarizes the current knowledge as to the role of miRNAs in the skeletal muscle differentiation and atrophy, synthesizing the findings of published data. Cite this article: Bone Joint Res 2020;9(11):798–807


Bone & Joint Research
Vol. 2, Issue 10 | Pages 214 - 219
1 Oct 2013
Chezar A Berkovitch Y Haddad M Keren Y Soudry M Rosenberg N

Objectives. The most prevalent disorders of the shoulder are related to the muscles of rotator cuff. In order to develop a mechanical method for the evaluation of the rotator cuff muscles, we created a database of isometric force generation by the rotator cuff muscles in normal adult population. We hypothesised the existence of variations according to age, gender and dominancy of limb. Methods. A total of 400 healthy adult volunteers were tested, classified into groups of 50 men and women for each decade of life. Maximal isometric force was measured at standardised positions for supraspinatus, infraspinatus and subscapularis muscles in both shoulders in every person. Torque of the force was calculated and normalised to lean body mass. The profiles of mean torque-time curves for each age and gender group were compared. Results. Our data showed that men gradually gained maximal strength in the fifth decade, and showed decreased strength in the sixth. In women the maximal strength was gained in the fourth decade with gradual decline to the sixth decade of life. The dominant arm was stronger in most of the tested groups. The torque profiles of the rotator cuff muscles in men at all ages were significantly higher than that in women. Conclusions. We found previously unrecognised variations of rotator cuff muscles’ isometric strength according to age, gender and dominancy in a normal population. The presented data may serve as a basis for the future studies for identification of the abnormal patterns of muscle isometric strength in patients with pathology of the rotator cuff muscles. Cite this article: Bone Joint Res 2013;2:214–19


Bone & Joint Research
Vol. 2, Issue 4 | Pages 70 - 78
1 Apr 2013
Hamilton DF McLeish JA Gaston P Simpson AHRW

Objectives. Lower limb muscle power is thought to influence outcome following total knee replacement (TKR). Post-operative deficits in muscle strength are commonly reported, although not explained. We hypothesised that post-operative recovery of lower limb muscle power would be influenced by the number of satellite cells in the quadriceps muscle at time of surgery. . Methods. Biopsies were obtained from 29 patients undergoing TKR. Power output was assessed pre-operatively and at six and 26 weeks post-operatively with a Leg Extensor Power Rig and data were scaled for body weight. Satellite cell content was assessed in two separate analyses, the first cohort (n = 18) using immunohistochemistry and the second (n = 11) by a new quantitative polymerase chain reaction (q-PCR) protocol for Pax-7 (generic satellite cell marker) and Neural Cell Adhesion Molecule (NCAM; marker of activated cells). Results. A significant improvement in power output was observed post-operatively with a mean improvement of 19.7 W (95% confidence interval (CI) 14.43 to 30.07; p < 0.001) in the first cohort and 27.5 W (95% CI 13.2 to 41.9; p = 0.002) in the second. A strong correlation was noted between satellite cell number (immunohistochemistry) and improvement in patient power output (r = 0.64, p = 0.008). Strong correlation was also observed between the expression of Pax-7 and power output (r = 0.79, p = 0.004), and the expression of NCAM and power output (r = 0.84, p = 0.001). The generic marker explained 58% of the variation in power output, and the marker of activated cells 67%. Conclusions. Muscle satellite cell content may determine improvement in lower limb power generation (and thus function) following TKR


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 21 - 21
1 Nov 2021
Kaya CS Yucesoy CA
Full Access

Introduction and Objective. Clinically, it is considered that spastic muscles of patients with cerebral palsy (CP) are shortened, and produce higher force in shorter muscle lengths. Yet, direct quantification of spastic muscles’ forces is rare. Remarkably, previous intraoperative tests in which muscle forces are measured directly as a function of joint angle showed for spastic gracilis (GRA) that its passive forces are low, and only a small percentage of its maximum active force is measured in flexed knee positions. However, the relationship of force characteristics of spastic GRA with its muscle-tendon unit length (l. MTU. ) is unknown. Combining intraoperative experiments with participants’ musculoskeletal models developed based on their gait analyses, we aimed to test if spastic GRA muscle (1) operates at short l. MTU. compared to that of typically developing (TD) children, and exerts higher (2) passive and (3) active forces at shorter lengths, within gait-relevant l. MTU. range. Materials and Methods. Ten limbs of seven children with CP (GMFCS-II) were tested. Pre-surgery, gait analyses were conducted. Intraoperatively, isometric spastic GRA distal forces were measured in ten hip-knee joint angle combinations, in two conditions: (i) passive state and (ii) maximal activation of the GRA exclusively. In OpenSim, gait_2392 model was used for each limb to calculate l. MTU. 's per each hip and knee angle combination and the gait-relevant l. MTU. range, and to analyze gait relevant spastic muscle force - l. MTU. data. l. MTU. values were normalized for the participants’ thigh lengths. Two-way ANOVA was used to compare the patients’ l. MTU. to those of the seven age-matched TD children to test the first hypothesis. In order to test the second and the third hypotheses, Spearman's rank correlation coefficient (ρ) was calculated to seek a correlation between the muscle's operational length (represented by mean l. MTU. within gait cycle) and muscular force characteristics (the percent force at shortest l. MTU. of peak force, either in passive or in active conditions) within gait-relevant l. MTU. range. Results. ANOVA showed that l. MTU. 's of spastic GRA are shorter (on average by 15.4%) compared to those of TD. At the shortest gait-relevant l. MTU. , the GRA passive force was 84.6 (13.7)% of the peak passive force; and the active force was 55.8 (33.9)% of the peak active force. Passive state forces show an increase at longer lengths, whereas active state force characteristics vary in a patient-specific way. Spearman's rank correlation indicated weak correlations between muscle's operational length and muscular force characteristics (ρ= −0.30 P= 0.40, and ρ= −0.27 P= 0.45, for passive and active states, respectively). Therefore, only the first hypothesis was confirmed. Conclusions. Novel muscle force - l. MTU. data for spastic GRA were obtained using intraoperative data and modelling combined. The modelling showed in concert with the clinical considerations that spastic GRA may be a shortened muscle. However, because the model does not distinguish the muscle-belly and tendon lengths, it cannot isolate shorter muscle belly length and how this compares to the data of TD children remains unknown. Moreover, the absence of a strong correlation between shorter operational muscle length and higher force production either in passive or in active conditions highlights the influence of other factors (e.g., muscle structural proteins, and muscle mechanical characteristics including intermuscular interactions etc.) on the pathology rather than ascribing it solely to the length of a spastic muscle itself


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 8 - 8
1 Dec 2020
Kaya C Yucesoy C
Full Access

Background. Spastic muscles of patients with cerebral palsy (CP) are considered structurally as shortened muscles, that produce high force in short muscle lengths. Yet, previous intraoperative studies in which muscles’ forces are measured directly as a function of joint angle showed consistently that spastic knee flexor muscles produce a low percentage of their maximum force in flexed knee positions. They also showed effects of epimuscular myofascial force transmission (EMFT): simultaneous activation of different muscles elevated target muscle's force. However, quantification of spastic muscle's force - muscle-tendon unit length (l. MTU. ) data during gait is lacking. Aim. Combining intraoperative experiments with participants’ musculoskeletal models developed based on their gait analyses, we aimed to test the following hypotheses: activated spastic semitendinosus (ST) muscle (1) operates at short l. MTU. 's during gait, forces are (2) low at short l. MTU. 's and (3) increase by co-activating other muscles. Methods. Ten limbs of seven children with CP (GMFCS-II) were tested. Pre-surgery, gait analyses were conducted. Intraoperatively, isometric spastic ST distal forces were measured in ten hip-knee joint angle combinations, in two conditions: (i) activation of the ST individually and (ii) simultaneously with the gracilis, biceps femoris, and rectus femoris muscles endorsing EMFT. In OpenSim, gait_2392 model was used for each limb to (a) calculate l. MTU. per each hip and knee angle combination and the gait relevant l. MTU. range, and (b) analyze gait relevant spastic muscle force - l. MTU. data. Two-way ANOVA was used to compare the patients’ l. MTU. to those of the seven age-matched typically developing (TD) children. l. MTU. values were normalized for the participants’ thigh length. (a) was used to test hypothesis (1) and (b) to test hypotheses (2) and (3): in condition (i), the percent of peak force exerted at the shortest l. MTU. calculated per limb was used as a metric for (2). In condition (ii), mean percent change in muscle force calculated within gait-relevant l. MTU. range was used as a metric for (3). Results. Modeling showed that l. MTU. of spastic ST during gait is shorter on average by 14.1% compared to TD. The ST active force at the shortest gait-relevant l. MTU. was 68.6 (20.6)% (39.9–99.2%) of the peak force. Simultaneous activation of other muscles caused substantial increases in force (minimally by 11.1%, up to several folds, with an exception for one limb). Therefore, only the first and third hypotheses were confirmed. Conclusion. The modeling showed in concert with the clinical considerations that spastic ST may be a shortened muscle that produces high force in short muscle lengths. However, this contrasts intraoperative data, which shows only low forces in flexed knee positions. Note that, the model does not distinguish the muscle-belly and tendon lengths. Therefore, it cannot isolate shorter muscle length and how this compares to the data of TD children remains unknown. Yet, the effects of co-activation of other muscles shown intraoperatively to cause an increase of the spastic ST's force are observed also in muscle force - l. MTU. data characterizing gait. Therefore, if indeed spastic ST produces high forces in short muscle-belly lengths alone, elevated forces due to co-activation of other muscles may be considered as a contributor to the patients’ pathological gait. Otherwise, such EMFT effect may be the main determinant of the pathological condition


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 7 - 7
1 Dec 2022
Bruschi A Donati DM Choong P Lucarelli E Wallace G
Full Access

The inability to replace human muscle in surgical practice is a significant challenge. An artificial muscle controlled by the nervous system is considered a potential solution for this. We defined it as neuromuscular prosthesis. Muscle loss and dysfunction related to musculoskeletal oncological impairments, neuromuscular diseases, trauma or spinal cord injuries can be treated through artificial muscle implantation. At present, the use of dielectric elastomer actuators working as capacitors appears a promising option. Acrylic or silicone elastomers with carbon nanotubes functioning as the electrode achieve mechanical performances similar to human muscle in vitro. However, mechanical, electrical, and biological issues have prevented clinical application to date. In this study, materials and mechatronic solutions are presented which can tackle current clinical problems associated with implanting an artificial muscle controlled by the nervous system. Progress depends on the improvement of the actuation properties of the elastomer, seamless or wireless integration between the nervous system and the artificial muscle, and on reducing the foreign body response. It is believed that by combining the mechanical, electrical, and biological solutions proposed here, an artificial neuromuscular prosthesis may be a reality in surgical practice in the near future


The Bone & Joint Journal
Vol. 104-B, Issue 3 | Pages 321 - 330
1 Mar 2022
Brzeszczynski F Brzeszczynska J Duckworth AD Murray IR Simpson AHRW Hamilton DF

Aims. Sarcopenia is characterized by a generalized progressive loss of skeletal muscle mass, strength, and physical performance. This systematic review primarily evaluated the effects of sarcopenia on postoperative functional recovery and mortality in patients undergoing orthopaedic surgery, and secondarily assessed the methods used to diagnose and define sarcopenia in the orthopaedic literature. Methods. A systematic search was conducted in MEDLINE, EMBASE, and Google Scholar databases according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. Studies involving sarcopenic patients who underwent defined orthopaedic surgery and recorded postoperative outcomes were included. The quality of the criteria by which a diagnosis of sarcopenia was made was evaluated. The quality of the publication was assessed using Newcastle-Ottawa Scale. Results. A total of 365 studies were identified and screened, 26 full-texts were reviewed, and 19 studies were included in the review. A total of 3,009 patients were included, of whom 2,146 (71%) were female and 863 (29%) were male. The mean age of the patients was 75.1 years (SD 7.1). Five studies included patients who underwent spinal surgery, 13 included hip or knee surgery, and one involved patients who underwent fixation of a distal radial fixation. The mean follow-up was 1.9 years (SD 1.9; 5 days to 5.6 years). There was wide heterogeneity in the measurement tools which were used and the parameters for the diagnosis of sarcopenia in the studies. Sarcopenia was associated with at least one deleterious effect on surgical outcomes in all 19 studies. The postoperative rate of mortality was reported in 11 studies (57.9%) and sarcopenia was associated with poorer survival in 73% (8/11) of these. The outcome was most commonly assessed using the Barthel Index (4/19), and sarcopenic patients recorded lower scores in 75% (3/4) of these. Sarcopenia was defined using the gold-standard three parameters (muscle strength, muscle quantity or quality, and muscle function) in four studies (21%), using two parameters in another four (21%) and one in the remaining 11 (58%). The methodological quality of the studies was moderate to high. Conclusion. There is much heterogeneity in the reporting of the parameters which are used for the diagnosis of sarcopenia, and evaluating the outcome of orthopaedic surgery in sarcopenic patients. However, what data exist suggest that sarcopenia impairs recovery and increases postoperative mortality, especially in patients undergoing emergency surgery. Further research is required to develop processes that allow the accurate diagnosis of sarcopenia in orthopaedics, which may facilitate targeted pre- and postoperative interventions that would improve outcomes. Cite this article: Bone Joint J 2022;104-B(3):321–330


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 57 - 57
1 Jul 2014
Kishimoto K Itoi E
Full Access

Summary Statement. Paraspinal muscle contain higher proportion of slow-twich fibers. The fixation of the rat tail induced transition of muscle fiber types in the paravertebral muscles characterised by the decrease in the proportion of the slow type myosin heavy chain. Introduction. Lumbar degenerative kyphosis often accompanies back pain, easy fatigability, fatty degeneration and atrophy of back muscles. There are two types of skeletal muscle fibers according to oxidative activities: slow-twich (Type 1) and fast-twitch (Type 2) fibers. Type 2 fibers were subdivided into three types: Type 2A, 2B and 2D/X. Each fiber type primarily expresses a specific isoform of myosin heavy chain (MHC). It has been known that back muscles contain higher proportion of MHC type 1. However, the impact of kyphosis on the proportion of fiber types in the paravertebral muscles has not been fully understood. The aim of this study is to analyze the transition of muscle fiber types after kyophotic or straight fixation using a rat tail model. Methods. A rat tail was fixed in straight or kyphotic position (straight or kyphosis group) by a custom-made external fixator and wires. A group of animals which underwent only pierced wounds in their tails served as control. The gene expression profiles of isoforms of MHCs in dorsal coccygeal muscles were analyzed by quantitative RT-PCR. The fiber types of muscles were assessed using SDS-PAGE. Band densities of silver-stained gel were quantified. Results. At first, the gene expression profiles of MHCs and protein expression in the dorsal coccygeal muscles were compared with tibilis anterior and gastrocunemius muscles. Higher proportion of MHC type 1 gene and protein expression were confirmed in the dorsal coccygeal muscles than tibialis anterior and gastrocuneimus muscles. MHC type 2B protein expression was not detected in dorsal coccygeal muscles. Next, coccygeal muscles after straight or kyphotic fixation were analyzed and compared with control. Gene expression of MHC type 1 was decreased at 7 and 28 days after fixation in straight and kyphosis group. The significant difference was seen at 28 days in kyphosis group. The band densities of MHC protein type 1 and 2A plus 2D/X were decreased in both straight and kyophosis groups at 28 days after fixation while sample volume was adjusted by wet wight of dissected coccygeal muscles. The mean proportion of MHC protein type 1 separated by SDS-PAGE were decreased in straight and kyphosis group. The difference was significant in straight group. Discussion. Our results demonstrated that the fixation of the rat tail induced transition of muscle fiber types in the paravertebral muscles characterized by the decrease in the proportion of the MHC type 1. Back muscles are required to contract continuously to keep posture. Slow-twitch fibers in back muscle contribute for continuous contraction. Slow-twitch fibers utilise energy efficiently by oxidative process while fast-twitch fibers mainly consume glucose through glycolysis producing lactate acid. Not only decreased amount of MHC but also decreased proportion of MHC type 1 might be the reason of easy fatigability in lumbar degenerative kyphosis. The limitations of this study is the difference between human paravertebral and rat coccygeal muscles and short duration of observation


The Bone & Joint Journal
Vol. 105-B, Issue 3 | Pages 323 - 330
1 Mar 2023
Dunbar NJ Zhu YM Madewell JE Penny AN Fregly BJ Lewis VO

Aims. Internal hemipelvectomy without reconstruction of the pelvis is a viable treatment for pelvic sarcoma; however, the time it takes to return to excellent function is quite variable. Some patients require greater time and rehabilitation than others. To determine if psoas muscle recovery is associated with changes in ambulatory function, we retrospectively evaluated psoas muscle size and limb-length discrepancy (LLD) before and after treatment and their correlation with objective functional outcomes. Methods. T1-weighted MR images were evaluated at three intervals for 12 pelvic sarcoma patients following interval hemipelvectomy without reconstruction. Correlations between the measured changes and improvements in Timed Up and Go test (TUG) and gait speed outcomes were assessed both independently and using a stepwise multivariate regression model. Results. Increased ipsilesional psoas muscle size from three months postoperatively to latest follow-up was positively correlated with gait speed improvement (r = 0.66). LLD at three months postoperatively was negatively correlated with both TUG (r = -0.71) and gait speed (r = -0.61). Conclusion. This study suggests that psoas muscle strengthening and minimizing initial LLD will achieve the greatest improvements in ambulatory function. LLD and change in hip musculature remain substantial prognostic factors for achieving the best clinical outcomes after internal hemipelvectomy. Changes in psoas size were correlated with the amount of functional improvement. Several patients in this study did not return to their preoperative ipsilateral psoas size, indicating that monitoring changes in psoas size could be a beneficial rehabilitation strategy. Cite this article: Bone Joint J 2023;105-B(3):323–330


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 64 - 64
1 Apr 2018
Jacobsen JS Hölmich P Thorborg K Bolvig L Jakobsen SS Søballe K Mechlenburg I
Full Access

Introduction. Intra-articular injury has been described as primary cause of pain in hip dysplasia. At this point it is unknown whether external muscle-tendon related pain coexists with intra-articular pathology. The primary aim was to identify muscle-tendon related pain in 100 dysplasia patients. The secondary aim was to test if muscle-tendon related pain is linearly associated to self-reported hip disability and muscle strength in patient with hip dysplasia. Materials and methods. One hundred patients (17 men) with a mean age of 29 years (SD 9) were included. Clinical entity approach was carried out to identify muscle-tendon related pain. Muscle strength was assessed with a handheld dynamometer and self-reported hip disability was recorded with the Copenhagen Hip and Groin Outcome Score (HAGOS). Results. Iliopsoas- and abductor-related pain were most prevalent with prevalences of 56% (CI 46; 66) and 42% (CI 32; 52), respectively. Adductor-, hamstrings- and rectus abdominis-related pain were less common. There was a significant inverse linear association between muscle-tendon related pain and self-reported hip disability ranging from −3.35 to −7.51 points in the adjusted analysis (p<0.05). Likewise an inverse linear association between muscle-tendon related pain and muscle strength was found ranging from −0.11 Nm/kg to −0.12 Nm/kg in the adjusted analysis (p<0.05). Conclusion. Muscle-tendon related pain seem to exist in about half of patients with hip dysplasia with a high prevalence of muscle-tendon related pain in the iliopsoas and the hip abductors and affects patients” self-reported hip disability and muscle strength negatively


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_9 | Pages 31 - 31
1 Oct 2022
Alharthi S Meakin J Fulford J
Full Access

Purpose of study and background. Spinal muscle area (SMA) is often employed to assess muscle functionality and is important for understanding the risk individuals may have of developing back pain or the risk of postural instability and falls.. However, handgrip strength (HGS) has also been utilized as a measure of general muscle capacity. This study aimed to examine the relationship between SMA and HGS to assess whether the latter could be used as an accurate indicator of the former. Methods. 150 participants (75 males and 75 females, aged 47–70 years) were selected from the UK Biobank dataset. Handgrip strength values were extracted and averaged over left and right values. Abdominal MRI images were examined and cross-sectional area of the erector spinae and multifidus determined at the L3/4 level and summed to provide a total muscle area. Results. HGS and SMA (mean±sd) were 39.6 ± 7.4 kg and 4664 ± 868 mm. 2. for males and 24.7 ± 5.9 kg, and 3822 ± 579 mm. 2. for females. Pearson correlation between HGS and SMA was r = 0.41 for males (p = <0.001), r = 0.40 for females (p = <0.001), and r = 0.61 for the combined groups (p<0.001). Conclusion. Significant correlations were found between HGS and SMA for individual sexes and combined groups. However, although HGS may be a useful measure for predicting modifications in group responses in spinal muscle function, for example, following an intervention, it does not have the power to confidently predict muscle values at an individual participant level. Conflicts of interest: No conflicts of interest. Sources of funding: Prince Sattam University, KSA, provided a PhD scholarship for Salman Alharthi


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 82 - 82
23 Jun 2023
Halvorson RT Khattab K Ngwe H Ornowski J Akkaya Z Matthew RP Souza R Bird A Lotz J Vail TP Bailey JF
Full Access

Patients demonstrate distinct trajectories of recovery after THA. The purpose of this study was to assess the impact of adjacent muscle quality on postoperative hip kinematics. We hypothesized that patients with better adjacent muscle quality (less fatty infiltration) would have greater early biomechanical improvement. Adults undergoing primary THA were recruited. Preoperative MRI was obtained and evaluated via Scoring Hip Osteoarthritis with MRI Scores (SHOMRI, Lee, 2015). Muscle quality was assessed by measuring fat fraction [FF] from water-fat sequences. Biomechanics were assessed preoperatively and six weeks postoperatively during a staggered stance sit-to-stand using the Kinematic Deviation Index (KDI, Halvorson, 2022). Spearman's rho was used to assess correlations between muscle quality and function. Ten adults (5M, 5F) were recruited (average age: 60.1, BMI: 23.79, SHOMRI: 40.6, KDI: 2.96). Nine underwent a direct anterior approach and one a posterior approach. Preoperatively, better biomechanical function was very strongly correlated with lower medius FF (rho=0.89), strongly correlated with lower FF in the minimus (rho=0.75) and tensor fascia lata (TFL) FF (rho=0.70), and weakly correlated with SHOMRI (rho=0.29). At six weeks, greater biomechanical improvement was strongly correlated with lower minimus FF (rho=0.63), moderately correlated with medius FF (rho=0.59), and weakly correlated with TFL FF (rho=0.26) and SHOMRI (rho=0.39). Lastly, medius FF was moderately correlated with SHOMRI (rho=0.42) with negligible correlations between SHOMRI and FF in the minimus and TFL. These findings suggest adjacent muscle quality may be related to postoperative function following THA, explaining some of the variability and supporting specialized muscle rehabilitation or regeneration therapy to improve outcomes


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 6 | Pages 894 - 899
1 Jun 2010
Khattak MJ Ahmad T Rehman R Umer M Hasan SH Ahmed M

The nervous system is known to be involved in inflammation and repair. We aimed to determine the effect of physical activity on the healing of a muscle injury and to examine the pattern of innervation. Using a drop-ball technique, a contusion was produced in the gastrocnemius in 20 rats. In ten the limb was immobilised in a plaster cast and the remaining ten had mobilisation on a running wheel. The muscle and the corresponding dorsal-root ganglia were studied by histological and immunohistochemical methods. In the mobilisation group, there was a significant reduction in lymphocytes (p = 0.016), macrophages (p = 0.008) and myotubules (p = 0.008) between three and 21 days. The formation of myotubules and the density of nerve fibres was significantly higher (both p = 0.016) compared with those in the immobilisation group at three days, while the density of CGRP-positive fibres was significantly lower (p = 0.016) after 21 days. Mobilisation after contusional injury to the muscle resulted in early and increased formation of myotubules, early nerve regeneration and progressive reduction in inflammation, suggesting that it promoted a better healing response


Bone & Joint Open
Vol. 2, Issue 7 | Pages 552 - 561
28 Jul 2021
Werthel J Boux de Casson F Burdin V Athwal GS Favard L Chaoui J Walch G

Aims. The aim of this study was to describe a quantitative 3D CT method to measure rotator cuff muscle volume, atrophy, and balance in healthy controls and in three pathological shoulder cohorts. Methods. In all, 102 CT scans were included in the analysis: 46 healthy, 21 cuff tear arthropathy (CTA), 18 irreparable rotator cuff tear (IRCT), and 17 primary osteoarthritis (OA). The four rotator cuff muscles were manually segmented and their volume, including intramuscular fat, was calculated. The normalized volume (NV) of each muscle was calculated by dividing muscle volume to the patient’s scapular bone volume. Muscle volume and percentage of muscle atrophy were compared between muscles and between cohorts. Results. Rotator cuff muscle volume was significantly decreased in patients with OA, CTA, and IRCT compared to healthy patients (p < 0.0001). Atrophy was comparable for all muscles between CTA, IRCT, and OA patients, except for the supraspinatus, which was significantly more atrophied in CTA and IRCT (p = 0.002). In healthy shoulders, the anterior cuff represented 45% of the entire cuff, while the posterior cuff represented 40%. A similar partition between anterior and posterior cuff was also found in both CTA and IRCT patients. However, in OA patients, the relative volume of the anterior (42%) and posterior cuff (45%) were similar. Conclusion. This study shows that rotator cuff muscle volume is significantly decreased in patients with OA, CTA, or IRCT compared to healthy patients, but that only minimal differences can be observed between the different pathological groups. This suggests that the influence of rotator cuff muscle volume and atrophy (including intramuscular fat) as an independent factor of outcome may be overestimated. Cite this article: Bone Jt Open 2021;2(7):552–561


Bone & Joint Research
Vol. 13, Issue 4 | Pages 169 - 183
15 Apr 2024
Gil-Melgosa L Llombart-Blanco R Extramiana L Lacave I Abizanda G Miranda E Agirre X Prósper F Pineda-Lucena A Pons-Villanueva J Pérez-Ruiz A

Aims. Rotator cuff (RC) injuries are characterized by tendon rupture, muscle atrophy, retraction, and fatty infiltration, which increase injury severity and jeopardize adequate tendon repair. Epigenetic drugs, such as histone deacetylase inhibitors (HDACis), possess the capacity to redefine the molecular signature of cells, and they may have the potential to inhibit the transformation of the fibro-adipogenic progenitors (FAPs) within the skeletal muscle into adipocyte-like cells, concurrently enhancing the myogenic potential of the satellite cells. Methods. HDACis were added to FAPs and satellite cell cultures isolated from mice. The HDACi vorinostat was additionally administered into a RC injury animal model. Histological analysis was carried out on the isolated supra- and infraspinatus muscles to assess vorinostat anti-muscle degeneration potential. Results. Vorinostat, a HDACi compound, blocked the adipogenic transformation of muscle-associated FAPs in culture, promoting myogenic progression of the satellite cells. Furthermore, it protected muscle from degeneration after acute RC in mice in the earlier muscle degenerative stage after tenotomy. Conclusion. The HDACi vorinostat may be a candidate to prevent early muscular degeneration after RC injury. Cite this article: Bone Joint Res 2024;13(4):169–183


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_11 | Pages 6 - 6
7 Jun 2023
Declercq J Vandeputte F Corten K
Full Access

Tenotomy of the iliopsoas tendon has been described as an effective procedure to treat refractive groin pain induced by iliopsoas tendinitis. However, the procedure forces the rectus femoris to act as the primary hip flexor and little is known about the long-term effects of this procedure on the peri-articular muscle envelope (PAME). Studies suggest that iliopsoas tenotomy results in atrophy of the iliopsoas and decreased hip flexion strength with poorer outcomes, increasing the susceptibility for secondary tendinopathy. The aim of this study is to describe changes in the PAME following psoas release. All patients who presented for clinical examination at our hospital between 2016 and 2021 were retrospectively reviewed. Patients who presented after psoas tenotomy with groin pain and who were unable to actively lift the leg against gravity, were included. Pelvic MRI was taken. Qualitative muscle evaluation was done with the Quartile classification system. Quantitative muscle evaluation was done by establishing the cross-sectional area (CSA). Two independent observers evaluated the ipsi- and contralateral PAME twice. The muscles were evaluated on the level: iliacus, psoas, gluteus minimus-medius-maximus, rectus femoris, tensor fasciae lata, piriformis, obturator externus and internus. For the qualitative evaluation, the intra- and inter-observer reliability was calculated by using kappastatistics. A Bland-Altman analysis was used to evaluate the intra- and inter-observer reliability for the quantitative evaluation. The Wilcoxon test was used to evaluate the changes between the ipsi- and contra-lateral side. 17 patients were included in the study. Following psoas tenotomy, CSA reduced in the ipsilateral gluteus maximus, if compared with the contralateral side. Fatty degeneration occurred in the tensor fascia latae. Both CSA reduction and fatty degeneration was seen for psoas, iliacus, gluteus minimus, piriformis, obturator externus and internus. No CSA reduction and fatty degeneration was seen for gluteus medius and rectus femoris. Conclusions/Discussion. Following psoas tenotomy, the PAME of the hip shows atrophy and fatty degeneration. These changes can lead to detrimental functional problems and may be associated with debilitating rectus femoris tendinopathy. In patients with psoas tendinopathy, some caution is advised when considering an iliopsoas tenotomy


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_1 | Pages 85 - 85
1 Jan 2013
Salman A Singh H Dias J
Full Access

Both intrinsic and extrinsic hand muscles contribute to finger flexion; however there are different ways in which individuals can flex their fingers. Due to different muscle insertions, it is possible to distinguish the mechanical effect of intrinsic muscles from extrinsic muscles. The aim of this observational study was to investigate the degree to which individuals in the population rely on either their intrinsic or extrinsic hand muscles. A high frequency camera was used to record the hands of 31 healthy participants, aged between 18 to 40, while they made a fist repeatedly. The hands were placed on a horizontal plane and the video was taken from the ulnar side, aligned horizontally with the hand. The maximum vertical distance between the fingertip and the distal palmer creases (XY) was recorded using WIN analyze 3D software. Three examiners independently analysed the videos and classified them into intrinsic dominant, extrinsic dominant or a mixed pattern. A t-test was performed on the XY values for the three different categories. The XY height difference between the intrinsic and extrinsic groups were statistically significant (P=0.001). The XY of mixed and intrinsic was also statistically significant (p=0.012) but not for mixed and extrinsic (p=0.46). Assessment of time when movement starts at each individual joint showed significant difference with intrinsic predominant moving the MCPJ before IPJ and extrinsic dominant individual moving their IPJ before MCPJ. This study shows that there is a difference in hand muscle dominance between individuals. More importantly it shows that there are individuals who rely on their intrinsic hand muscles more than their extrinsic muscles


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 133 - 133
11 Apr 2023
Namayeshi T Lee P
Full Access

Falls in adults are a major problem and can lead to injuries and death. In order to better understand falls and successful recoveries, identifying kinematics, kinetics, and muscle forces during recovery from loss of balance is crucial. To obtain reactive gait patterns, participants must be subjected to unexpected perturbations such as trips and slips. Previous researchers have reported kinetics recovery data following stumbling; however, the muscle force recovery patterns remain unknown. To better target exercises to reduce the risk of falls, we must first understand which muscles, their magnitude, and their coordination patterns, play a role in a successful recovery from a trip and a slip. Additionally, knowing the successful patterns of lower limb function can help with the diagnosis of faulty movements. A total of 20 healthy adults in their twenties with similar athletic backgrounds were perturbed on a split-belt treadmill using Computer-Assisted Rehabilitation Environment (Motkforce Link) at a preset speed of 1.1m/s. Two kinds of perturbations were administered: slip and trip. Slips were simulated by accelerating one belt, whereas trips were simulated by decelerating one belt. Both perturbations had similar intensity and only differed in the direction. Computational modeling was used to obtain lower-limb function during the compensatory step. SPM paired t-test was used to compare differences in recovery strategies between slip and trip through magnitude and patterns of joints. There were no significant differences in joint angles post tripping vs post-slipping. Results of net joint moments showed that compensating for the loss of balance due to tripping required a higher ankle plantarflexion moment than slipping (at 22-52%; 1.2± 0.3vs0.4±0.2, p<0.001). Additionally, larger gluteus maximus (at 40-50%;8.7±3.8vs2.7±1.1N/kg, p=0.001), gluteus medius (at23~33%; 22.6±5.7vs6.8±3.6N/kg, p<0.001) were generated than post-slipping, respectively. These findings suggested that greater GMAX and GMED forces are required post-trip recovery than slip. Future analysis of trip recovery showed the importance of ankle joint in recovering from forward and backward fall. These results can be used as references in remote diagnosis of joint and muscle weakness and assessment of the risk of falls with the use of accelerometers


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 28 - 28
19 Aug 2024
Bell L Stephan A Pfirrmann CWA Stadelmann V Schwitter L Rüdiger HA Leunig M
Full Access

The direct anterior approach (DAA) is a popular minimally invasive approach for total hip arthroplasty (THA). It usually involves ligation of the lateral femoral circumflex artery's ascending branch (a-LFCA), which contributes to the perfusion of the tensor fasciae latae (TFL) muscle. Periarticular muscle status and clinical outcome were assessed after DAA-THA after a-LFCA preservation versus ligation. We evaluated surgical records of 161 patients undergoing DAA-THA with tentative preservation of the a-LFCA by the senior author between May and November 2021. Among 92 eligible patients, 33 (35 hips) featured successful preservation, of which 20 (22 hips, 13 female) participated in the study. From 59 patients with ligated a-LFCA, 26 (27 hips, 15 female) were enrolled, constituting the control group. MRI and clinical examinations were performed at 17–26 months to analyze volume and fatty infiltration of the TFL, gluteus medius and gluteus minimus muscles relative to the contralateral non-THA hip (15 preserved, 18 ligated). Clinical and radiographic data was retrospectively extracted from patient files. Patient-reported outcomes (PROMs) were added from the THA registry. There was a relative difference in TFL muscle volume of -6.27 cm. 3. (−9.89%, p=0.018) after a-LFCA preservation versus -8.6 cm. 3. (=11.62%, p=0.002) after ligation, without group differences (p>0.340). a-LFCA preservation showed lower relative TFL fatty infiltration (p=0.10). Gluteal muscle status was similar between sides and groups. Coxa valga morphology was more frequent in a-LFCA preservation (83%) than ligation (17%). Clinical outcomes showed high patient satisfaction in both groups, without difference in PROMs, but less anterolateral soft-tissue swelling after a-LFCA preservation (p<0.001). Despite excellent clinical results in both groups, preservation of the a-LFCA was associated with less TFL fatty infiltration and soft tissue swelling. Provided there is no compromise of intraoperative access we recommend a-LFCA preservation for DAA-THA


Bone & Joint Research
Vol. 9, Issue 11 | Pages 742 - 750
1 Nov 2020
Li L Xiang S Wang B Lin H Cao G Alexander PG Tuan RS

Aims. Dystrophic calcification (DC) is the abnormal appearance of calcified deposits in degenerating tissue, often associated with injury. Extensive DC can lead to heterotopic ossification (HO), a pathological condition of ectopic bone formation. The highest rate of HO was found in combat-related blast injuries, a polytrauma condition with severe muscle injury. It has been noted that the incidence of HO significantly increased in the residual limbs of combat-injured patients if the final amputation was performed within the zone of injury compared to that which was proximal to the zone of injury. While aggressive limb salvage strategies may maximize the function of the residual limb, they may increase the possibility of retaining non-viable muscle tissue inside the body. In this study, we hypothesized that residual dead muscle tissue at the zone of injury could promote HO formation. Methods. We tested the hypothesis by investigating the cellular and molecular consequences of implanting devitalized muscle tissue into mouse muscle pouch in the presence of muscle injury induced by cardiotoxin. Results. Our findings showed that the presence of devitalized muscle tissue could cause a systemic decrease in circulating transforming growth factor-beta 1 (TGF-β1), which promoted DC formation following muscle injury. We further demonstrated that suppression of TGF-β signalling promoted DC in vivo, and potentiated osteogenic differentiation of muscle-derived stromal cells in vitro. Conclusion. Taken together, these findings suggest that TGF-β1 may play a protective role in dead muscle tissue-induced DC, which is relevant to understanding the pathogenesis of post-traumatic HO. Cite this article: Bone Joint Res 2020;9(11):742–750