Abstract
Background
Spastic muscles of patients with cerebral palsy (CP) are considered structurally as shortened muscles, that produce high force in short muscle lengths. Yet, previous intraoperative studies in which muscles’ forces are measured directly as a function of joint angle showed consistently that spastic knee flexor muscles produce a low percentage of their maximum force in flexed knee positions. They also showed effects of epimuscular myofascial force transmission (EMFT): simultaneous activation of different muscles elevated target muscle's force. However, quantification of spastic muscle's force - muscle-tendon unit length (lMTU) data during gait is lacking.
Aim
Combining intraoperative experiments with participants’ musculoskeletal models developed based on their gait analyses, we aimed to test the following hypotheses: activated spastic semitendinosus (ST) muscle (1) operates at short lMTU's during gait, forces are (2) low at short lMTU's and (3) increase by co-activating other muscles.
Methods
Ten limbs of seven children with CP (GMFCS-II) were tested. Pre-surgery, gait analyses were conducted. Intraoperatively, isometric spastic ST distal forces were measured in ten hip-knee joint angle combinations, in two conditions: (i) activation of the ST individually and (ii) simultaneously with the gracilis, biceps femoris, and rectus femoris muscles endorsing EMFT. In OpenSim, gait_2392 model was used for each limb to (a) calculate lMTU per each hip and knee angle combination and the gait relevant lMTU range, and (b) analyze gait relevant spastic muscle force - lMTU data. Two-way ANOVA was used to compare the patients’ lMTU to those of the seven age-matched typically developing (TD) children. lMTU values were normalized for the participants’ thigh length. (a) was used to test hypothesis (1) and (b) to test hypotheses (2) and (3): in condition (i), the percent of peak force exerted at the shortest lMTU calculated per limb was used as a metric for (2). In condition (ii), mean percent change in muscle force calculated within gait-relevant lMTU range was used as a metric for (3).
Results
Modeling showed that lMTU of spastic ST during gait is shorter on average by 14.1% compared to TD. The ST active force at the shortest gait-relevant lMTU was 68.6 (20.6)% (39.9–99.2%) of the peak force. Simultaneous activation of other muscles caused substantial increases in force (minimally by 11.1%, up to several folds, with an exception for one limb). Therefore, only the first and third hypotheses were confirmed.
Conclusion
The modeling showed in concert with the clinical considerations that spastic ST may be a shortened muscle that produces high force in short muscle lengths. However, this contrasts intraoperative data, which shows only low forces in flexed knee positions. Note that, the model does not distinguish the muscle-belly and tendon lengths. Therefore, it cannot isolate shorter muscle length and how this compares to the data of TD children remains unknown. Yet, the effects of co-activation of other muscles shown intraoperatively to cause an increase of the spastic ST's force are observed also in muscle force - lMTU data characterizing gait. Therefore, if indeed spastic ST produces high forces in short muscle-belly lengths alone, elevated forces due to co-activation of other muscles may be considered as a contributor to the patients’ pathological gait. Otherwise, such EMFT effect may be the main determinant of the pathological condition.