Advertisement for orthosearch.org.uk
Results 1 - 20 of 2098
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 25 - 25
14 Nov 2024
Taylan O Louwagie T Bialy M Peersman G Scheys L
Full Access

Introduction. This study aimed to evaluate the effectiveness of a novel intraoperative navigation platform for total knee arthroplasty (TKA) in restoring native knee joint kinematics and strains in the medial collateral ligament (MCL) and lateral collateral ligament (LCL) during squatting motions. Method. Six cadaver lower limbs underwent computed tomography scans to design patient-specific guides. Using these scans, bony landmarks and virtual single-line collateral ligaments were identified to provide intraoperative real-time feedback, aided in bone resection, implant alignment, tibiofemoral kinematics, and collateral ligament elongations, using the navigation platform. The specimens were subjected to squatting (35°-100°) motions on a physiological ex vivo knee simulator, maintaining a constant 110N vertical ankle load regulated by active quadriceps and bilateral hamstring actuators. Subsequently, each knee underwent a medially-stabilized TKA using the mechanical alignment technique, followed by a retest under the same conditions used preoperatively. Using a dedicated wand, MCL and LCL insertions—anterior, middle, and posterior bundles—were identified in relation to bone-pin markers. The knee kinematics and collateral ligament strains were analyzed from 3D marker trajectories captured by a six-camera optical system. Result. Both native and TKA conditions demonstrated similar patterns in tibial valgus orientation (Root Mean Square Error (RMSE=1.7°), patellar flexion (RMSE=1.2°), abduction (RMSE=0.5°), and rotation (RMSE=0.4°) during squatting (p>0.13). However, a significant difference was found in tibial internal rotation between 35° and 61° (p<0.045, RMSE=3.3°). MCL strains in anterior (RMSE=1.5%), middle (RMSE=0.8%), and posterior (RMSE=0.8%) bundles closely matched in both conditions, showing no statistical differences (p>0.05). Conversely, LCL strain across all bundles (RMSE<4.6%) exhibited significant differences from mid to deep flexion (p<0.048). Conclusion. The novel intraoperative navigation platform not only aims to achieve planned knee alignment but also assists in restoring native knee kinematics and collateral ligament behavior through real-time feedback. Acknowledgment. This study was funded by Medacta International (Castel San Pietro, Switzerland)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 64 - 64
14 Nov 2024
Hudson P Federer S Dunne M Pring C Smith N
Full Access

Introduction. Weight is a modifiable risk factor for osteoarthritis (OA) progression. Despite the emphasis on weight loss, data quantifying the changes seen in joint biomechanics are limited. Bariatric surgery patients experience rapid weight loss. This provides a suitable population to study changes in joint forces and function as weight changes. Method. 10 female patients undergoing gastric bypass or sleeve gastrectomy completed 3D walking gait analysis at a self-selected pace, pre- and 6 months post-surgery. Lower limb and torso kinematic data for 10 walking trials were collected using a Vicon motion capture system and kinetics using a Kistler force plate. An inverse kinematic model in Visual 3D allowed for no translation of the hip joint centre. 6 degrees of freedom were allowed at other joints. Data were analysed using JASP with a paired samples t-test. Result. On average participants lost 28.8±7.60kg. No significant changes were observed in standing knee and hip joint angles. Walking velocity increased from 1.10±0.11 ms. -1. to 1.23±0.17 ms. -1. (t(9)=-3.060, p = 0.014) with no change in step time but a mean increase in stride length of 0.12m (SE: 0.026m; t(9)=-4.476, p = 0.002). A significant decrease of 21.5±4.2% in peak vertical ground reaction forces was observed (t(9)=12.863, p <0.001). Stride width significantly decreased by 0.04m (SE: 0.010m; t(9)=4.316, p = 0.002) along with a decrease in lateral impulse of 21.2Ns (SE: 6.977Ns; t(7), p = 0.019), but no significant difference in knee joint angles were observed. Double limb support time also significantly reduced by 0.02s (SE: 0.006s; t(9) = 3.639, p=0.005). Conclusion. The reduction in stance width and lateral impulse suggests a more sagittal compass-gait walk is being achieved. This would reduce valgus moments on the knee reducing loading in the medial compartment. The reduction in peak ground reaction force would reduce knee contact forces and again potentially slow OA progression


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 24 - 24
14 Nov 2024
Petersen ET Linde KN Burvil CCH Rytter S Koppens D Dalsgaard J Hansen TB Stilling M
Full Access

Introduction. Knee osteoarthritis often causes malalignment and altering bone load. This malalignment is corrected during total knee arthroplasty surgery, balancing the ligaments. Nonetheless, preoperative gait patterns may influence postoperative prosthesis load and bone support. Thus, the purpose is to investigate the impact of preoperative gait patterns on postoperative femoral and tibial component migration in total knee arthroplasty. Method. In a prospective cohort study, 66 patients with primary knee osteoarthritis undergoing cemented Persona total knee arthroplasty were assessed. Preoperative knee kinematics was analyzed through dynamic radiostereometry and motion capture, categorizing patients into four homogeneous gait patterns. The four subgroups were labeled as the flexion group (n=20), the abduction (valgus) group (n=17), the anterior drawer group (n=10), and the tibial external rotation group (n=19). The femoral and tibial component migration was measured using static radiostereometry taken supine on the postoperative day (baseline) and 3-, 12-, and 24- months after surgery. Migration was evaluated as maximum total point motion. Result. Of the preoperatively defined four subgroups, the abduction group with a valgus-characterized gait pattern exhibited the highest migration for both the femoral (1.64 mm (CI95% 1.25; 2.03)) and tibial (1.21 mm (CI95% 0.89; 1.53)) components at 24-month follow-up. For the femoral components, the abduction group migrated 0.6 mm (CI95% 0.08; 1.12) more than the external rotation group at 24 months. For the tibial components, the abduction group migrated 0.43 mm (CI95% 0.16; 0.70) more than the external rotation group at 3 months. Furthermore, at 12- and 24-months follow-up the abduction group migrated 0.39 mm (95%CI 0.04; 0.73) and 0.45 mm (95%CI 0.01; 0.89) more than the flexion group, respectively. Conclusion. A preoperative valgus-characterized gait pattern seems to increase femoral and tibial component migration until 2 years of follow-up. This suggests that the implant fixation depends on load distributions originating from specific preoperative gait patterns


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 13 - 13
14 Nov 2024
Mischler D Kessler F Zysset P Varga P
Full Access

Introduction. Pedicle screw loosening in posterior instrumentation of thoracolumbar spine occurs up to 60% in osteoporotic patients. These complications may be alleviated using more flexible implant materials and novel designs that could be optimized with reliable computational modeling. This study aimed to develop and validate non-linear homogenized finite element (hFE) simulations to predict pedicle screw toggling. Method. Ten cadaveric vertebral bodies (L1-L5) from two female and three male elderly donors were scanned with high-resolution peripheral quantitative computed tomography (HR-pQCT, Scanco Medical) and instrumented with pedicle screws made of carbon fiber-reinforced polyether-etherketone (CF/PEEK). Sample-specific 3D-printed guides ensured standardized instrumentation, embedding, and loading procedures. The samples were biomechanically tested to failure in a toggling setup using an electrodynamic testing machine (Acumen, MTS) applying a quasi-static cyclic testing protocol of three ramps with exponentially increasing peak (1, 2 and 4 mm) and constant valley displacements. Implant-bone kinematics were assessed with a stereographic 3D motion tracking camera system (Aramis SRX, GOM). hFE models with non-linear, homogenized bone material properties including a strain-based damage criterion were developed based on intact HR-pQCT and instrumented 3D C-arm scans. The experimental loading conditions were imposed, the maximum load per cycle was calculated and compared to the experimental results. HR-pQCT-based bone volume fraction (BV/TV) around the screws was correlated with the experimental peak forces at each displacement level. Result. The nonlinear hFE models accurately (slope = 1.07, intercept = 0.2 N) and precisely (R. 2. = 0.84) predicted the experimental peak forces at each displacement level. BV/TV alone was a weak predictor (R. 2. <0.31). Conclusion. The hFE models enable fast design iterations aiming to reduce the risk of screw loosening in low-density vertebrae. Improved flexible implant designs are expected to contribute to reduced complication rates in osteoporotic patients


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 2 - 2
14 Nov 2024
Tümer N Stok JVD Lima R Blom I Kraan G
Full Access

Introduction. Kienböck's disease is generally defined as the collapse of the lunate bone, and this may lead to early wrist osteoarthritis. Replacing the collapsed lunate with an implant has regained renewed interest with the advancing technology of additive manufacturing, enabling the design of patient-specific implants. The aims of this project are (1) to determine how accurate it is to use the contralateral lunate shape as a template for patient-specific lunate implants, and (2) to study the effects of shape variations wrist kinematics using 4D-computed tomography (CT) scanning. Methods. A 3D statistical shape model (SSM) of the lunate was built based on bilateral CT scans of 54 individuals. Using SMM, shape variations of the lunate were identified and the intra- and inter-subject shape variations were compared by performing an intraclass correlation analysis. A radiolucent motor-controlled wrist-holder was designed to guide flexion/extension and radial/ulnar deviation of ex vivo wrist specimens under 4D-CT scanning. In this pilot, three shape mode variations were tested per specimen in two specimens were. After post-processing each CT, the scapholunate angle (SLA) and capitolunate angle (CLA) were measured. Results. The shape of the lunate was not symmetrical, defined as exceeding the intra-subject variation in five different shape modes. The FE tests show a generalized increase in scapholunate and capitolunate angle when using lunate implants, and comparing variation of shape modes showed that shape mode 3 has a significant effect on the measured angles (p<0.05). Discussion. The design of patient-specific lunate implants may prove to be challenging using a ‘mirror’-design as it will lead to a degree of shape asymmetry. The pilot study, to determine the effects of those shape variations on wrist kinematics suggest that the degree of shape variation observed indeed may alter the wrist kinematics, although this needs to be further investigated in study using more specimens


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 51 - 51
14 Nov 2024
Shayestehpour H Shayestehpour MA Wong C Bencke J Rasmussen J
Full Access

Introduction. Adolescent Idiopathic Scoliosis (AIS) is a three-dimensional deformity of the spine with unclear etiology. Due to the asymmetry of lateral curves, there are differences in the muscle activation between the convex and concave sides. This study utilized a comprehensive thoracic spine and ribcage musculoskeletal model to improve the biomechanical understanding of the development of AIS deformity and approach an explanation of the condition. Methods. In this study, we implemented a motion capture model using a generic rigid-body thoracic spine and ribcage model, which is kinematically determinate and controlled by spine posture obtained, for instance, from radiographs. This model is publicly accessible via a GitHub repository. We simulated gait and standing models of two AIS (averaging 15 years old, both with left lumbar curve and right thoracic curve averaging 25 degrees) and one control subject. The marker set included extra markers on the sternum and the thoracic and lumbar spine. The study was approved by the regional Research Ethics Committee (Journal number: H17034237). Results. We investigated the difference between the muscle activation on the right and left sides including erector spinae (ES), psoas major (PS), and multifidus (MF). Results of the AIS simulations indicated that, on average throughout the gait cycle, the right ES, left PS and left MF had 46%, 44%, and 23% higher activities compared to the other side, respectively. In standing, the ratios were 28%, 40%, and 19%, respectively. However, for the control subject, the differences were under 7%, except ES throughout the gait, which was 17%. Conclusion. The musculoskeletal model revealed distinct differences in force patterns of the right and left sides of the spine, indicating an instability phenomenon, where larger curves lead to higher muscle activations for stabilization. Acknowledgement. The project is funded by the European Union's Horizon 2020 program through Marie Skłodowska-Curie grant No. [764644]


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 112 - 112
14 Nov 2024
Tsagkaris C Hamberg ME Villefort C Dreher T Krautwurst BK
Full Access

Introduction. Understanding the implications of decreased femoral torsion on gait and running in children and adolescents might help orthopaedic surgeons to optimize treatment decisions. To date, there is limited evidence regarding the kinematic gait deviations between children with decreased femoral torsion and typically developing children as well as regarding the implications of the same on the adaptation of walking to running. Method. A three dimensional gait analysis study was undertaken to compare gait deviations during running and walking among patients with decreased femoral torsion (n=15) and typically developing children (n=11). Linear mixed models were utilized to establish comparisons within and between the two groups and investigate the relation between clinical examination, spatial parameters and the difference in hip rotation between running and walking. Result. Patients exhibited increased external hip rotation during walking in comparison to controls accompanied by higher peaks for the same as well as for, knee valgus and external foot progression angle. A similar kinematic gait pattern was observed during running with significant differences noted in peak knee valgus. In terms of variations from running to walking, patients internally rotated their initially external rotated hip by 4°, whereas controls maintained the same internal hip rotation. Patients and controls displayed comparable kinematic gait deviations during running compared to walking. The passive hip range of motion, torsions and velocity did not notably influence the variation between mean hip rotation from running to walking. Conclusion. This study underlines the potential of 3D gait kinematics to elucidate the functional implications of decreased FT and hence may contribute to clinical decision making


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 38 - 38
14 Nov 2024
Federer S Dunne M Pring C Smith N Hudson P
Full Access

Introduction. Many patients with obesity experience knee pain. Excess body weight is a modifiable risk factor for osteoarthritis (OA) and weight loss is encouraged in patients with OA. Bariatric surgery could improve or limit the progression of these conditions through significant weight loss. The Oxford Knee Score (OKS) is a validated tool in the assessment of knee replacement surgery for OA. We present a novel application of the OKS to assess knee pain & function after weight loss surgery. The primary aim of this study was to assess whether there was a significant difference in mean OKS before and 24 months after weight loss surgery. Method. Eighteen female participants were included in this study. They underwent sleeve gastrectomy or Roux-en-Y gastric bypass. Patient demographics, body mass index (BMI) and OKS were collected pre- and 24 months post operatively. Result. There was an increase in the mean OKS from 31.8 (SD 11.8) pre surgery to 36.6 (SD 12.3) at 24 months. This was statistically significant (95% CI 0.99-10.5, p=0.02). Mean BMI reduced from 46.6 kg/m. 2. (SD 5.8) to 33.0 kg/m. 2. (SD 3.5). Conclusion. A significant improvement in mean OKS was seen after weight loss surgery. These findings demonstrate an improvement in knee pain & function with weight loss. This study contributes to a larger project evaluating the kinetic and kinematic changes to walking gait from weight loss


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 102 - 102
14 Nov 2024
Strack D Mesbah M Rayudu NM Baum T Kirschke J Subburaj K
Full Access

Introduction. Functional Spine Units (FSUs) play a vital role in understanding biomechanical characteristics of the spine, particularly bone fracture risk assessment. While established models focus on simulating axial compression of individual bones to assess fracture load, recent models underscore the importance of understanding fracture load within FSUs, offering a better representation of physiological conditions. Despite the limited number of FSU fracture studies, they predominantly rely on a linear material model with an annulus fibrosus Young's modulus set at 500 MPa, significantly higher than stiffness values (ca. 4 MPa) utilized in other FSU and spine section biomechanical models. Thus, this study aims to study the effect of varying annulus fibrosus stiffness on FSU fracture load, aiming to identify physiologically relevant biomechanical parameters. Method. Subject-specific geometry and material properties of bones were derived from computed tomography (CT) image data of five human cadaveric FSU specimens. The annulus fibrosus and nucleus pulposus were manually recreated and assigned linear elastic material properties. By subjecting the model to axial compression, the fracture load of the FSU was deduced from the peak of the force-displacement graph. To explore the effect of stiffness of the annulus fibrosus on simulated fracture load, we conducted a parameter study, varying stiffness values from the high 500 MPa to a more physiologically relevant 25 MPa, aiming to approximate values applied in FSU kinematic models while achieving bone fracture. Result. Significant reductions in fracture load were observed, ranging from 23% to 46%, as annulus stiffness decreased from 500MPa to 25MPa. Additionally, a discernible, gradual decline in fracture load was observed with a decrease in stiffness values. Conclusion. The stiffness of the annulus fibrosus significantly influences the simulated fracture load of an FSU. Future investigations should prioritize biomechanically accurate modeling of the intervertebral disc, ensuring alignment with experimental findings regarding FSU fracture load while maintaining biomechanical fidelity


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 125 - 125
14 Nov 2024
Mungalpara N Kim S Baker H Lee C Shakya A Chen K Athiviraham A Koh J Elhassan B Maassen NH Amirouche F
Full Access

Introduction. Treatment strategies for irreparable Massive Rotator Cuff Tears (MRCTs) are debatable, especially for younger, active patients. Superior Capsular Reconstruction (SCR) acts as a static stabilizer, while Lower Trapezius Transfer (LTT) serves as a dynamic stabilizer. This study compares the biomechanical effectiveness of SCR and LTT, hypothesizing that their combination will enhance shoulder kinematics. Methods. Eight human shoulders from donors aged 55-75 (mean = 63.75 years), balanced for gender, averaging 219.5 lbs, were used. Rotator cuff and deltoid tendons were connected to force sensors through a pulley system, with the deltoid linked to a servohydraulic motor for dynamic force measurement. Results. From intact to MRCT, deltoid force was reduced by 28% (p = 0.023). LTT increased deltoid force by 27.25 (p = 0.166). SCR decreased deltoid force by 34% (p = 0.208). Combining LTT with SCR increased deltoid force by 32.57% compared to SCR (p = 0.023) and decreased it by 13.6% compared to LTT alone (p = 0.017). Combined LTT and SCR reduced deltoid force by 20.9% from the control (p = 0.001). Subacromial contact pressure rose by 15% in MRCT over intact, but LTT decreased it by 7.6%, achieving nearly 50% correction. SCR increased subacromial space volume, raising pressure by 6.5%. The humeral head translation (HHT) increases with MRCT, reaching 3.33 mm (SD = 0.95) at 0 degrees, compared to 2.24 mm (SD = 0.78) in the intact. LTT and the combined LTT + SCR significantly reduce HHT, with combined LTT + SCR achieving HHT of 2.24 mm (SD = 0.63) at 0 degrees, comparable to the control. Conclusion. Notable changes in deltoid force were observed. LTT outperformed the combined SCR and LTT in reducing deltoid force and subacromial peak pressure. Both SCR and LTT corrected HTT, with LTT being more effective. However, combining SCR and LTT optimally corrected HHT


Bone & Joint Open
Vol. 5, Issue 11 | Pages 1013 - 1019
11 Nov 2024
Clark SC Pan X Saris DBF Taunton MJ Krych AJ Hevesi M

Aims

Distal femoral osteotomies (DFOs) are commonly used for the correction of valgus deformities and lateral compartment osteoarthritis. However, the impact of a DFO on subsequent total knee arthroplasty (TKA) function remains a subject of debate. Therefore, the purpose of this study was to determine the effect of a unilateral DFO on subsequent TKA function in patients with bilateral TKAs, using the contralateral knee as a self-matched control group.

Methods

The inclusion criteria consisted of patients who underwent simultaneous or staged bilateral TKA after prior unilateral DFO between 1972 and 2023. The type of osteotomy performed, osteotomy hardware fixation, implanted TKA components, and revision rates were recorded. Postoperative outcomes including the Forgotten Joint Score-12 (FJS-12), Tegner Activity Scale score, and subjective knee preference were also obtained at final follow-up.


Bone & Joint Open
Vol. 5, Issue 11 | Pages 992 - 998
6 Nov 2024
Wignadasan W Magan A Kayani B Fontalis A Chambers A Rajput V Haddad FS

Aims

While residual fixed flexion deformity (FFD) in unicompartmental knee arthroplasty (UKA) has been associated with worse functional outcomes, limited evidence exists regarding FFD changes. The objective of this study was to quantify FFD changes in patients with medial unicompartmental knee arthritis undergoing UKA, and investigate any correlation with clinical outcomes.

Methods

This study included 136 patients undergoing robotic arm-assisted medial UKA between January 2018 and December 2022. The study included 75 males (55.1%) and 61 (44.9%) females, with a mean age of 67.1 years (45 to 90). Patients were divided into three study groups based on the degree of preoperative FFD: ≤ 5°, 5° to ≤ 10°, and > 10°. Intraoperative optical motion capture technology was used to assess pre- and postoperative FFD. Clinical FFD was measured pre- and postoperatively at six weeks and one year following surgery. Preoperative and one-year postoperative Oxford Knee Scores (OKS) were collected.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1206 - 1215
1 Nov 2024
Fontalis A Buchalter D Mancino F Shen T Sculco PK Mayman D Haddad FS Vigdorchik J

Understanding spinopelvic mechanics is important for the success of total hip arthroplasty (THA). Despite significant advancements in appreciating spinopelvic balance, numerous challenges remain. It is crucial to recognize the individual variability and postoperative changes in spinopelvic parameters and their consequential impact on prosthetic component positioning to mitigate the risk of dislocation and enhance postoperative outcomes. This review describes the integration of advanced diagnostic approaches, enhanced technology, implant considerations, and surgical planning, all tailored to the unique anatomy and biomechanics of each patient. It underscores the importance of accurately predicting postoperative spinopelvic mechanics, selecting suitable imaging techniques, establishing a consistent nomenclature for spinopelvic stiffness, and considering implant-specific strategies. Furthermore, it highlights the potential of artificial intelligence to personalize care.

Cite this article: Bone Joint J 2024;106-B(11):1206–1215.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1284 - 1292
1 Nov 2024
Moroder P Poltaretskyi S Raiss P Denard PJ Werner BC Erickson BJ Griffin JW Metcalfe N Siegert P

Aims. The objective of this study was to compare simulated range of motion (ROM) for reverse total shoulder arthroplasty (rTSA) with and without adjustment for scapulothoracic orientation in a global reference system. We hypothesized that values for simulated ROM in preoperative planning software with and without adjustment for scapulothoracic orientation would be significantly different. Methods. A statistical shape model of the entire humerus and scapula was fitted into ten shoulder CT scans randomly selected from 162 patients who underwent rTSA. Six shoulder surgeons independently planned a rTSA in each model using prototype development software with the ability to adjust for scapulothoracic orientation, the starting position of the humerus, as well as kinematic planes in a global reference system simulating previously described posture types A, B, and C. ROM with and without posture adjustment was calculated and compared in all movement planes. Results. All movement planes showed significant differences when comparing protocols with and without adjustment for posture. The largest mean difference was seen in external rotation, being 62° (SD 16°) without adjustment compared to 25° (SD 9°) with posture adjustment (p < 0.001), with the highest mean difference being 49° (SD 15°) in type C. Mean extension was 57° (SD 18°) without adjustment versus 24° (SD 11°) with adjustment (p < 0.001) and the highest mean difference of 47° (SD 18°) in type C. Mean abducted internal rotation was 69° (SD 11°) without adjustment versus 31° (SD 6°) with posture adjustment (p < 0.001), showing the highest mean difference of 51° (SD 11°) in type C. Conclusion. The present study demonstrates that accounting for scapulothoracic orientation has a significant impact on simulated ROM for rTSA in all motion planes, specifically rendering vastly lower values for external rotation, extension, and high internal rotation. The substantial differences observed in this study warrant a critical re-evaluation of all previously published studies that examined component choice and placement for optimized ROM in rTSA using conventional preoperative planning software. Cite this article: Bone Joint J 2024;106-B(11):1284–1292


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1273 - 1283
1 Nov 2024
Mahmud H Wang D Topan-Rat A Bull AMJ Heinrichs CH Reilly P Emery R Amis AA Hansen UN

Aims

The survival of humeral hemiarthroplasties in patients with relatively intact glenoid cartilage could theoretically be extended by minimizing the associated postoperative glenoid erosion. Ceramic has gained attention as an alternative to metal as a material for hemiarthroplasties because of its superior tribological properties. The aim of this study was to assess the in vitro wear performance of ceramic and metal humeral hemiarthroplasties on natural glenoids.

Methods

Intact right cadaveric shoulders from donors aged between 50 and 65 years were assigned to a ceramic group (n = 8, four male cadavers) and a metal group (n = 9, four male cadavers). A dedicated shoulder wear simulator was used to simulate daily activity by replicating the relevant joint motion and loading profiles. During testing, the joint was kept lubricated with diluted calf serum at room temperature. Each test of wear was performed for 500,000 cycles at 1.2 Hz. At intervals of 125,000 cycles, micro-CT scans of each glenoid were taken to characterize and quantify glenoid wear by calculating the change in the thickness of its articular cartilage.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1231 - 1239
1 Nov 2024
Tzanetis P Fluit R de Souza K Robertson S Koopman B Verdonschot N

Aims. The surgical target for optimal implant positioning in robotic-assisted total knee arthroplasty remains the subject of ongoing discussion. One of the proposed targets is to recreate the knee’s functional behaviour as per its pre-diseased state. The aim of this study was to optimize implant positioning, starting from mechanical alignment (MA), toward restoring the pre-diseased status, including ligament strain and kinematic patterns, in a patient population. Methods. We used an active appearance model-based approach to segment the preoperative CT of 21 osteoarthritic patients, which identified the osteophyte-free surfaces and estimated cartilage from the segmented bones; these geometries were used to construct patient-specific musculoskeletal models of the pre-diseased knee. Subsequently, implantations were simulated using the MA method, and a previously developed optimization technique was employed to find the optimal implant position that minimized the root mean square deviation between pre-diseased and postoperative ligament strains and kinematics. Results. There were evident biomechanical differences between the simulated patient models, but also trends that appeared reproducible at the population level. Optimizing the implant position significantly reduced the maximum observed strain root mean square deviations within the cohort from 36.5% to below 5.3% for all but the anterolateral ligament; and concomitantly reduced the kinematic deviations from 3.8 mm (SD 1.7) and 4.7° (SD 1.9°) with MA to 2.7 mm (SD 1.4) and 3.7° (SD 1.9°) relative to the pre-diseased state. To achieve this, the femoral component consistently required translational adjustments in the anterior, lateral, and proximal directions, while the tibial component required a more posterior slope and varus rotation in most cases. Conclusion. These findings confirm that MA-induced biomechanical alterations relative to the pre-diseased state can be reduced by optimizing the implant position, and may have implications to further advance pre-planning in robotic-assisted surgery in order to restore pre-diseased knee function. Cite this article: Bone Joint J 2024;106-B(11):1231–1239


Bone & Joint Research
Vol. 13, Issue 10 | Pages 611 - 621
24 Oct 2024
Wan Q Han Q Liu Y Chen H Zhang A Zhao X Wang J

Aims

This study aimed to investigate the optimal sagittal positioning of the uncemented femoral component in total knee arthroplasty to minimize the risk of aseptic loosening and periprosthetic fracture.

Methods

Ten different sagittal placements of the femoral component, ranging from -5 mm (causing anterior notch) to +4 mm (causing anterior gap), were analyzed using finite element analysis. Both gait and squat loading conditions were simulated, and Von Mises stress and interface micromotion were evaluated to assess fracture and loosening risk.


Bone & Joint Open
Vol. 5, Issue 10 | Pages 879 - 885
14 Oct 2024
Moore J van de Graaf VA Wood JA Humburg P Colyn W Bellemans J Chen DB MacDessi SJ

Aims

This study examined windswept deformity (WSD) of the knee, comparing prevalence and contributing factors in healthy and osteoarthritic (OA) cohorts.

Methods

A case-control radiological study was undertaken comparing 500 healthy knees (250 adults) with a consecutive sample of 710 OA knees (355 adults) undergoing bilateral total knee arthroplasty. The mechanical hip-knee-ankle angle (mHKA), medial proximal tibial angle (MPTA), and lateral distal femoral angle (LDFA) were determined for each knee, and the arithmetic hip-knee-ankle angle (aHKA), joint line obliquity, and Coronal Plane Alignment of the Knee (CPAK) types were calculated. WSD was defined as a varus mHKA of < -2° in one limb and a valgus mHKA of > 2° in the contralateral limb. The primary outcome was the proportional difference in WSD prevalence between healthy and OA groups. Secondary outcomes were the proportional difference in WSD prevalence between constitutional varus and valgus CPAK types, and to explore associations between predefined variables and WSD within the OA group.


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1165 - 1175
1 Oct 2024
Frost Teilmann J Petersen ET Thillemann TM Hemmingsen CK Olsen Kipp J Falstie-Jensen T Stilling M

Aims. The aim of this study was to evaluate the kinematics of the elbow following increasing length of the radius with implantation of radial head arthroplasties (RHAs) using dynamic radiostereometry (dRSA). Methods. Eight human donor arms were examined by dRSA during motor-controlled flexion and extension of the elbow with the forearm in an unloaded neutral position, and in pronation and supination with and without a 10 N valgus or varus load, respectively. The elbows were examined before and after RHA with stem lengths of anatomical size, + 2 mm, and + 4 mm. The ligaments were maintained intact by using a step-cut lateral humeral epicondylar osteotomy, allowing the RHAs to be repeatedly exchanged. Bone models were obtained from CT scans, and specialized software was used to match these models with the dRSA recordings. The flexion kinematics of the elbow were described using anatomical coordinate systems to define translations and rotations with six degrees of freedom. Results. The greatest kinematic changes in the elbows were seen with the longest, + 4 mm, implant, which imposed a mean joint distraction of 2.8 mm in the radiohumeral joint and of 1.1 mm in the ulnohumeral joint, an increased mean varus angle of up to 2.4° for both the radius and the ulna, a mean shift of the radius of 2.0 mm in the ulnar direction, and a mean shift of the ulna of 1.0 mm posteriorly. Conclusion. The kinematics of the elbow deviated increasingly from those of the native joint with a 2 mm to a 4 mm lengthening of the radius. This confirms the importance of restoring the natural length of the radius when undertaking RHA. Cite this article: Bone Joint J 2024;106-B(10):1165–1175


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1100 - 1110
1 Oct 2024
Arenas-Miquelez A Barco R Cabo Cabo FJ Hachem A

Bone defects are frequently observed in anterior shoulder instability. Over the last decade, knowledge of the association of bone loss with increased failure rates of soft-tissue repair has shifted the surgical management of chronic shoulder instability. On the glenoid side, there is no controversy about the critical glenoid bone loss being 20%. However, poor outcomes have been described even with a subcritical glenoid bone defect as low as 13.5%. On the humeral side, the Hill-Sachs lesion should be evaluated concomitantly with the glenoid defect as the two sides of the same bipolar lesion which interact in the instability process, as described by the glenoid track concept. We advocate adding remplissage to every Bankart repair in patients with a Hill-Sachs lesion, regardless of the glenoid bone loss. When critical or subcritical glenoid bone loss occurs in active patients (> 15%) or bipolar off-track lesions, we should consider anterior glenoid bone reconstructions. The techniques have evolved significantly over the last two decades, moving from open procedures to arthroscopic, and from screw fixation to metal-free fixation. The new arthroscopic techniques of glenoid bone reconstruction procedures allow precise positioning of the graft, identification, and treatment of concomitant injuries with low morbidity and faster recovery. Given the problems associated with bone resorption and metal hardware protrusion, the new metal-free techniques for Latarjet or free bone block procedures seem a good solution to avoid these complications, although no long-term data are yet available.

Cite this article: Bone Joint J 2024;106-B(10):1100–1110.