The December 2024 Foot & Ankle Roundup360 looks at: Tibiotalar sector and lateral ankle instability; Isolated subtalar fusion and correction of progressive collapsing foot deformity; Diabetic control and postoperative complications following ankle fracture fixation; Are insoles of any benefit for plantar fasciitis?; Postoperative foot shape and patient-reported outcome following surgery for progressing collapsing foot deformity; Calcaneo-stop procedure for symptomatic flexible flatfoot in children.
The aim of this study was to evaluate the kinematics of the elbow following increasing length of the radius with implantation of radial head arthroplasties (RHAs) using dynamic radiostereometry (dRSA). Eight human donor arms were examined by dRSA during motor-controlled flexion and extension of the elbow with the forearm in an unloaded neutral position, and in pronation and supination with and without a 10 N valgus or varus load, respectively. The elbows were examined before and after RHA with stem lengths of anatomical size, + 2 mm, and + 4 mm. The ligaments were maintained intact by using a step-cut lateral humeral epicondylar osteotomy, allowing the RHAs to be repeatedly exchanged. Bone models were obtained from CT scans, and specialized software was used to match these models with the dRSA recordings. The flexion kinematics of the elbow were described using anatomical coordinate systems to define translations and rotations with six degrees of freedom.Aims
Methods
Instability is a common cause of failure after total hip arthroplasty. A novel reverse total hip has been developed, with a femoral cup and acetabular ball, creating enhanced mechanical stability. The purpose of this study was to assess the implant fixation using radiostereometric analysis (RSA), and the clinical safety and efficacy of this novel design. Patients with end-stage osteoarthritis were enrolled in a prospective cohort at a single centre. The cohort consisted of 11 females and 11 males with mean age of 70.6 years (SD 3.5) and BMI of 31.0 kg/m2 (SD 5.7). Implant fixation was evaluated using RSA as well as Western Ontario and McMaster Universities Osteoarthritis Index, Harris Hip Score, Oxford Hip Score, Hip disability and Osteoarthritis Outcome Score, 38-item Short Form survey, and EuroQol five-dimension health questionnaire scores at two-year follow-up. At least one acetabular screw was used in all cases. RSA markers were inserted into the innominate bone and proximal femur with imaging at six weeks (baseline) and six, 12, and 24 months. Independent-samples Aims
Methods
Aims. Due to their radiolucency and favourable mechanical properties,
The distal radius is a major site of osteoporotic bone loss resulting in a high risk of fragility fracture. This study evaluated the capability of a cortical index (CI) at the distal radius to predict the local bone mineral density (BMD). A total of 54 human cadaver forearms (ten singles, 22 pairs) (19 to 90 years) were systematically assessed by clinical radiograph (XR), dual-energy X-ray absorptiometry (DXA), CT, as well as high-resolution peripheral quantitative CT (HR-pQCT). Cortical bone thickness (CBT) of the distal radius was measured on XR and CT scans, and two cortical indices mean average (CBTavg) and gauge (CBTg) were determined. These cortical indices were compared to the BMD of the distal radius determined by DXA (areal BMD (aBMD)) and HR-pQCT (volumetric BMD (vBMD)). Pearson correlation coefficient (r) and intraclass correlation coefficient (ICC) were used to compare the results and degree of reliability.Aims
Methods
Introduction. Tomita En-bloc spondylectomy (TES) of L5 is one of the most challenging spinal surgical techniques. A 42-year-old female was referred with low back pain and L5 radiculopathy with background of right shoulder excision of liposarcoma. CT-PET confirmed a solitary L5 oligometastasis. MRI showed thecal sac indentation and therefore was not suitable for stereotactic ablative radiotherapy (SABR) alone. Planning Methodology. First Stage:
Background.
INTRODUCTION. Joint replacement is one of the most common orthopaedic procedures, with over 2 million surgeries performed each year across the globe. Loss of implant fixation, or aseptic loosening, is the leading cause of revision following primary joint replacement, accounting for ∼25% of all revision cases [1]. However, diagnosis of aseptic loosening and its underlying causes remain challenging due to the low sensitivity and specificity of plain radiographs. To address this, we propose a novel approach inspired by [2] involving the use of a self-sensing bone cement (by imparting strain-dependent electrical conductivity or piezoresistivity) combined with electrical impedance tomography (EIT). Piezoresistivity is imparted to cement via incorporation of micro/nanoscale conductive fillers. Therefore mechanical effects such as loosening and cracks will manifest as a conductivity change of the cement. This work explores if EIT is able to detect strains and cracks within the bone cement volume. METHODS. Experiments were designed to determine whether EIT combined with piezoresistive cement can be used to detect strains and cracks (Fig. 1). The setup consists of a tank filled with water, 16 electrodes, sample, a loading machine (MTS), and an EIT system. To develop the piezoresistive bone cement, microscale
Introduction. Total hip replacement with metal-on-polymer (MoP) hip prostheses is a successful treatment for late-stage osteoarthritis. However, the wear debris generated from the polymer acetabular liners remains a problem as it can be associated with osteolysis and aseptic loosening of the implant. This has led to the investigation of more wear resistant polymers in orthopaedics. Cross-linked polyethylene (XLPE) is now the gold-standard acetabular liner material. However, we asked if
Introduction. In total hip arthroplasty, press-fit anchorage is one of the most common fixation methods for acetabular cups and mostly ensures sufficient primary stability. Nevertheless, implants may fail due to aseptic loosening over time, especially when the surrounding bone is affected by stress-shielding. The use of acetabular cups made of isoelastic materials might help to avoid stress-shielding and osteolysis. The aim of the present numerical study was to determine whether a modular acetabular cup with a shell made of polyetheretherketone (PEEK) may be an alternative to conventional titanium shells (Ti6Al4V). For this purpose, a 3D finite element analysis was performed, in which the implantation of modular acetabular cups into an artificial bone stock using shells made of either PEEK or Ti6Al4V, was simulated with respect to stresses and deformations within the implants. Methods. The implantation of a modular cup, consisting of a shell made of PEEK or Ti6Al4V and an insert made of either ceramic or polyethylene (PE), into a bone cavity made of polyurethane foam (20 pcf), was analysed by 3D finite element simulation. A two-point clamping cavity was chosen to represent a worst-case situation in terms of shell deformation. Five materials were considered; with Ti6Al4V and ceramic being defined as linear elastic and PE and PEEK as plastic materials. The artificial bone stock was simulated as a crushable foam. Contacts were generated between the cavity and shell (μ = 0.5) and between the shell and insert (μ = 0.16). In total, the FE models consisted of 45,282 linear hexahedron elements and the implantation process was simulated in four steps: 1. Displacement driven insertion of the cup; 2. Relief of the cup; 3. Displacement driven placement of the insert; 4. Load driven insertion of the insert (maximum push-in force of 500 N). The FE model was evaluated with respect to the radial deformations of the shell and insert as well as the principal stresses in case of the ceramic inserts. The model was experimentally validated via comparison of nominal strains of the titanium shells. Results. The maximum radial deformation of the shell made of PEEK was 581 μm (insertion) and 470 μm (relief) and therefore multiple times higher compared to the Ti6Al4V shell (42 μm and 21 μm). As a result, larger deformations occurred at the PE and ceramic inserts in combination with the PEEK shell. Partially, the deformations were above an usual clearance of 100 μm. When the ceramic insert was combined with the shell made of PEEK, maximum principal stresses in the ceramic insert amounted to 30 MPa and were clearly lower than approved bending strength of the ceramic material (948 MPa). Conclusion. The examined acetabular shell made of PEEK was intensively deformed during insertion compared to the geometrically identical Ti6Al4V shell and is therefore not suitable for modular acetabular cups. In future studies it should be clarified to what extent acetabular cups with shells made of
External fixators are the traditional fixation method of choice for contaminated open fractures. However, patient acceptance is low due to the high profile and therefore physical burden of the constructs. An externalised locking compression plate is a low profile alternative. However, the biomechanical differences have not been assessed. The objective of this study was to evaluate the axial and torsional stiffness of the externalised titanium locking compression plate (ET-LCP), the externalised stainless steel locking compression plate (ESS-LCP) and the unilateral external fixator (UEF). A fracture gap model was created to simulate comminuted mid-shaft tibia fractures using synthetic composite bones. Fifteen constructs were stabilised with ET-LCP, ESS-LCP or UEF (five constructs each). The constructs were loaded under both axial and torsional directions to determine construct stiffness.Objectives
Methods
Knee arthroplasty with a rotating hinge knee (RHK) prosthesis has become an important clinical treatment option for knee revisions and primary patients with severe varus or valgus deformities and instable ligaments. The rotational axle constraints the anterior-posterior shear and varus-valgus moments, but currently used polyethylene bushings may fail in the mid-term due to insufficient creep and wear resistance of the material. Due to that carbon-fibre-reinforced (CFR) PEEK as an alternativ bushing material with enhanced creep, wear and fatigue behaviour has been introduced in a RHK design [Grupp 2011, Giurea 2014]. The objective of our study was to compare results from the pre-clinical biotribological characterisation to ex vivo findings on a series of retrieved implants. In vitro wear simulation according to ISO 14243-1 was performed on rotating hinge knee devices (EnduRo® Aesculap, Germany) made out of cobalt-chromium and of a ZrN multi-layer ceramic coating for 5 million cycles. The mobile gliding surfaces were made out of polyethylene (GUR 1020, β-irradiated 30 ± 2 kGy). For the bushings of the rotational and flexion axles and the flanges a new bearing material based on CFR-PEEK with 30% PAN fiber content was used. Analysis of 12 retrieved EnduRo® RHK systems in cobalt-chromium and ZrN multi-layer in regard to
loosening torques in comparison with initial fastening torques Optical, DSLR camera and stereo light microscope analysis distinction between different wear modes and classification with a modified HOOD-score SEM & EDX of representative samples surface roughness and depth profilometry with a focus on the four CFR-PEEK components integrated in the EnduRo® RHK design. For the rotating hinge knee design with flexion bushing and flanges out of CFR-PEEK the volumetric wear rates were 2.3 ± 0.48 mm3/million cycles (cobalt-chromium) and 0.21 ± 0.02 mm3/million cycles (ZrN multi-layer), a 10.9-fold reduction (p = 0.0016). The UHMWPE and CFR-PEEK particles were comparable in size and morphology and predominantly in submicron size [5]. The biological response to representative sub-micron sized CFR-PEEK particles has been demonstrated in vivo based on the leucoyte-endothelian-cell interactions in the synovia of a murine intra-articular knee model by Utzschneider 2010. Schwiesau 2013 extracted the frequency of daily activities in hip and knee replacement patients from literature and estimated an average of 1.76 million gait cycles per year. Thus, the 5 million cycles of in vitro wear testing reflect a mean in vivo service life of 2.9 years, which fits to the time in vivo of 12–60 months of the retrieved RHK devices. The in vitro surface articulation pattern of the wear simulation tests are comparable to findings on retrieved CFR-PEEK components for both types of articulations – cobalt-chromium and ZrN multi-layer coating. For the rotating hinge knee design the findings on retrieved implants demonstrate the high suitability of CFR-PEEK as a biomaterial for highly loaded bearings, such as RHK bushings and flanges in articulation to cobalt-chromium and to a ZrN multi-layer coating.
In case of spine tumors, when en bloc vertebral column resection (VCR) is indicated and feasible, the segmental defect should be reconstructed in order to obtain an immediate stability and stimulate a solid fusion. The aim of this study is to share our experience on patients who underwent spinal tumor en bloc VCR and reconstruction consecutively. En bloc VCR and reconstruction was performed in 138 patients. Oncological and surgical staging were performed for all patients using Enneking and Weinstein-Boriani-Biagini systems accordingly. Following en bloc VCR of one or more vertebral bodies, a 360° reconstruction was made by applying posterior instrumentation and anterior implant insertion. Modular
Injuries to the foot in athletes are often subtle
and can lead to a substantial loss of function if not diagnosed
and treated appropriately. For these injuries in general, even after
a diagnosis is made, treatment options are controversial and become
even more so in high level athletes where limiting the time away
from training and competition is a significant consideration. In this review, we cover some of the common and important sporting
injuries affecting the foot including updates on their management
and outcomes. Cite this article:
Introduction. The complex process of inflammation and osteolysis due to wear particles still is not understood in detail. So far, Ultra-high-molecular-weight-polyethylene (UHMWPE) is the bearing material of choice in knee arthroplasty and revision knee arthroplasty, but there is a growing demand for alternative bearing materials with improved wear properties. Lately, increasing interest developed in the use of natural and carbon-fiber-reinforced-poly-ether-ether-ketones (CFR-PEEK). While there is a lack of data concerning the effects of CFR-PEEK particles on human tissue, the effects of such wear debris in vitro and in animal studies is controversially discussed. The aim of this study was to analyze human tissue containing CFR-PEEK as well as UHMWPE wear debris. The authors hypothesized no difference between the used biomaterials because of similar size parameters of the wear particles in a prior knee simulator study of this implant. Methods and Materials. Synovial tissue samples of 10 patients while knee revision surgery of a rotating hinge knee implant design (Enduro®, Aesculap, Germany) were achieved. The tibial inserts of this design were made from UHMWPE (GUR 1020), whereas the bushings and flanges are made of CFR-PEEK containing 30% polyacrylonitrile (PAN) based
Introduction. The complex cellular mechanisms of the aseptic loosening of total joint arthroplasties still remain not completely understood in detail. Especially the role of adherent endotoxins in this process remains unclear, as lipopolysaccharides (LPS) are known to be very potent modulators of the cell response on wear particle debris. Contributing factors on the LPS affinity of used orthopedic biomaterials as their surface roughness have to be investigated. The aim of this study was to evaluate the affinity of LPS on the surface roughness of different biomaterials in vitro. The hypothesis of the study was that rough surfaces bind more LPS than smooth surfaces. Materials and methods. Cubes with a side length from ultra-high-molecular-weight-polyethylene (UHMWPE), crosslinked polytethylene (XPE),
Introduction. Hip replacements are falling short of matching the life expectancy of coxarthritis patients, due to implanting THR in younger patients and due to increasingly active patients. The most frequently implanted hip prostheses use cross linked (XL) polyethylene (PE) on metal bearings in the USA and most of the Western world. Concerns remain in the long term around the potential of wear debris-induced aseptic loosening. Thus exploring lower-wearing alternative bearings remains a major research goal. PEEK (poly-ether-ether-ketone) is a thermoplastic polymer with enhanced mechanical properties. This study compared the wear of PEEK to the wear of cross linked polyethylene, when sliding against cobalt chrome (CoCr) metallic counterfaces, and compared the wear of carbon-fibre reinforced (CFR)-PEEK to cross linked polyethylene when sliding against metallic and ceramic counterfaces under different contact stresses within the hip joint. Methods. The following materials were studied: unfilled PEEK (OPTIMA, Invibio) and CFR-PEEK (MOTIS, Invibio) against either high carbon (HC) CoCr or Biolox Delta ceramic plates. The comparative control material was a moderately cross-linked PE (Marathon, DePuy Synthes). A simple geometry wear study was undertaken. A rotational motion of ±30° across a sliding distance of ±28 mm (cross shear of 0.087), and contact pressures of 1.6 or 4 MPa were applied. The lubricant was 25% (v/v) bovine serum and the wear test was conducted for 1 million cycles at 1 Hz. Wear was assessed gravimetrically. A validated soak control method was used to adjust for serum absorption-induced mass changes during the wear test. Surface profilometry was assessed pre and post wear test. Results. Unfilled PEEK produced a six-fold higher wear factor than XL PE against HC Co Cr (p value <0.0001). CFR-PEEK vs. Biolox Delta produced a two-fold lower wear factor than XL PEvs. HC Co Cr (p value = 0.003). CFR-PEEK vs. Biolox Delta had the lowest wear factor among all studied combinations. The wear of CFR-PEEK vs. HC CoCr was higher than XL PEvs. HC CoCr (Figure 1). The counterface surfaces were scratched when articulating against CFR-PEEK. This was more evident on CoCr plates, with the average surface roughness increasing from 0.005 µm to 0.32 µm (p value = 0.0048). This might explain the accelerated wear in the CFR-PEEK vs. HC CoCr combinations. Higher contact pressures led to a 30 % reduction in the wear factor of CFR-PEEK vs. Biolox Delta combination (p value = 0.048), while no significant impact was noted against HC CoCr (Figure 2). Conclusions. The injection moulded
We reviewed the literature on the currently available
choices of bearing surface in total hip replacement (THR). We present
a detailed description of the properties of articulating surfaces
review the understanding of the advantages and disadvantages of
existing bearing couples. Recent technological developments in the
field of polyethylene and ceramics have altered the risk of fracture
and the rate of wear, although the use of metal-on-metal bearings has
largely fallen out of favour, owing to concerns about reactions
to metal debris. As expected, all bearing surface combinations have
advantages and disadvantages. A patient-based approach is recommended,
balancing the risks of different options against an individual’s
functional demands. Cite this article: