Abstract
Introduction
The complex cellular mechanisms of the aseptic loosening of total joint arthroplasties still remain not completely understood in detail. Especially the role of adherent endotoxins in this process remains unclear, as lipopolysaccharides (LPS) are known to be very potent modulators of the cell response on wear particle debris. Contributing factors on the LPS affinity of used orthopedic biomaterials as their surface roughness have to be investigated. The aim of this study was to evaluate the affinity of LPS on the surface roughness of different biomaterials in vitro. The hypothesis of the study was that rough surfaces bind more LPS than smooth surfaces.
Materials and methods
Cubes with a side length from ultra-high-molecular-weight-polyethylene (UHMWPE), crosslinked polytethylene (XPE), carbon fibre reinforced poly-ether-ether-ketone (CFR-PEEK), titanium, titanium alloy, Polymethyl methacrylate (PMMA), implant steel (CoCr) and instrument steel (BC) were produced (figure 1). Cubes of each material have been produced with a rough and a smooth surface. Before the testings, all cubes and used materials were treated with E-Toxa-Clean(®) to eliminate pre-existing LPS on the used surfaces. The cubes were then fixed on the cap of a glass that was filled with a LPS solution with a concentration of 5 IE/ml. After 30 minutes the cube was removed and the LPS concentration in the supernatant was measured. The endotoxin content of each sample was evaluated by a Limulus Amoebocyte Lysate (LAL) - Test (Lonza, Verviers, Belgium). The detection level of endotoxin was set at < 0.005 EU/ml diluted 1/10.
Results
All tested rough biomaterials showed a higher affinity to LPS compared to the smooth surfaces.
Conclusion
The initial hypothesis could be confirmed. The results prove that rough and therefore larger surfaces bind more LPS than smooth surfaces. A rough surfaces correlates with a larger total surface of the used biomaterial. In this context protheses should be avoided that show a large rough surface, as these endoprostheses might bind more LPS and trigger an enhanced inflammatory reaction that results in an early aseptic loosening.