Advertisement for orthosearch.org.uk
Results 1 - 20 of 4393
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 8 - 8
14 Nov 2024
Bhat SS Mathai NJ Raghavendra R Hodgson P
Full Access

Introduction

As per national guidelines for Ankle fractures in the United Kingdom, fractures considered stable can be treated with analgesia, splinting and allowed to weight bear as tolerated. The guidelines also suggest further follow-up not mandatory. This study was aimed at evaluating the current clinical practice of managing stable ankle fractures at a university hospital against national guidelines.

Method

The study was undertaken using retrospectively collected data, the inclusion criteria being all adults with stable ankle fracture pattern treated non-operatively between December 2022 and April 2023. Collected data included age of patient, date of injury, type of immobilization, number of clinical visits and any complications.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 113 - 113
14 Nov 2024
Giger N Schröder M Arens D Gens L Zeiter S Stoddart M Wehrle E
Full Access

Background. The molecular mechanisms underlying non-union bone fractures largely remain elusive. Recently, spatial transcriptomics approaches for musculoskeletal tissue samples have been developed requiring direct placement of histology sections on barcoded slides. However, Formalin-Fixed-Paraffin-Embedded (FFPE) bone sections have been associated with limited RNA quality and read depth compared to soft tissue. Here, we test spatial transcriptomics workflows based on transcriptomic probe transfer to characterize molecular features discriminating non-union and union bone fractures in mice. Method. Histological sections (n=8) used for spatial transcriptomics (Visium CytAssist FFPE; 10x Genomics, n=4 on glass slides, n=4 on hydrogel-coated slides) were obtained from a fracture healing study in female 20-week-old C57BL/6J mice receiving either a femur osteotomy (0.7mm) or a segmental defect (2.4mm) (license 22/2022, Grisons CH). Sequence alignment and manual segmentation of different tissues (bone, defect region/callus, bone marrow, muscle) were performed using SpaceRanger and LoupeBrowser (10x Genomics). Differential gene expression was performed using DESeq2 (Seurat) followed by Gene-Set-Enrichment-Analysis (GSEA) of Gene Ontology (ClusterProfiler). Group comparison of quality measures was done using a Welch's t-test. Results are given as mean±standard deviation. Result. The quality measures, mean counts, and genes per spot, were significantly ~10× higher for sections on hydrogel slides (counts: 4700±1796, genes: 2389±1170) compared to glass slides (counts: 463±415, genes: 250±223). In challenging tissues like cortical bone, we reached high counts+genes in comparison to published data. Direct comparison of a non-union and union section showed a total of 432 differentially regulated genes, 538 in the defect region/callus. GSEA revealed differential regulation of pathways involved in muscle organ morphogenesis, cartilage development and endochondral ossification. Conclusions. Optimized spatial transcriptomics workflows based on transcriptomic probe transfer enable for improved read depth in musculoskeletal tissue enabling the characterization of molecular features discriminating non-union and union bone fractures. Acknowledgements. AO Foundation (AOTRAUMA), SNSF (PhD salary)


Introduction

This study aims to investigate the relationship between ulnar fixation and postoperative satisfaction among patients with distal radius fractures accompanied by ulna styloid fractures, with a particular focus on how sociodemographic factors influence outcomes.

Method

A retrospective cohort study was conducted involving 120 patients aged 26-53 who underwent surgical treatment for distal radius fractures with concomitant ulna styloid fractures between January 2018 and December 2022. Patients were divided into two groups based on whether ulnar fixation was performed. Sociodemographic data, including age, gender, socioeconomic status, education level, and occupation, were collected. All patients underwent similar physical therapy protocols in the postoperative period, and no complications were observed in any patient. Postoperative satisfaction was assessed using the Patient-Rated Wrist Evaluation (PRWE) and the Disabilities of the Arm, Shoulder, and Hand (DASH) scores at 6 and 12 months post-surgery. Statistical analysis was conducted to evaluate the influence of ulnar fixation and sociodemographic factors on patient satisfaction.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 118 - 118
14 Nov 2024
Schlauch A Shah I Crawford B Martin A Denisov A Tamer P Farrell B
Full Access

Introduction

Distal femur fractures around a total knee arthroplasty (TKA) are a growing problem for orthopaedic surgeons. The purpose of this study was to identify risks of reoperation for nonunion following open reduction and internal fixation of TKA periprosthetic distal femur fractures (PDFF).

Method

Patients with PDFF (AO 33A-C[VB1, C1, D1], Su types 1-3) managed operatively with open reduction and internal fixation (ORIF) were retrospectively reviewed. Exclusion criteria were acute management with a distal femur replacement, less than 6 months of follow-up, and lack of injury or follow-up radiographs. The primary outcome measure was reoperation to achieve bony union. Comparisons were made between cases that did and did not require a reoperation to achieve union. Univariate analysis was used to identify factors to be analyzed in multivariate analysis to determine independent risk factors for the primary outcome.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 59 - 59
14 Nov 2024
Cristofolini L bròdano BB Dall’Ara E Ferenc R Ferguson SJ García-Aznar JM Lazary A Vajkoczy P Verlaan J Vidacs L
Full Access

Introduction. Patients (2.7M in EU) with positive cancer prognosis frequently develop metastases (≈1M) in their remaining lifetime. In 30-70% cases, metastases affect the spine, reducing the strength of the affected vertebrae. Fractures occur in ≈30% patients. Clinicians must choose between leaving the patient exposed to a high fracture risk (with dramatic consequences) and operating to stabilise the spine (exposing patients to unnecessary surgeries). Currently, surgeons rely on their sole experience. This often results in to under- or over-treatment. The standard-of-care are scoring systems (e.g. Spine Instability Neoplastic Score) based on medical images, with little consideration of the spine biomechanics, and of the structure of the vertebrae involved. Such scoring systems fail to provide clear indications in ≈60% patients. Method. The HEU-funded METASTRA project is implemented by biomechanicians, modellers, clinicians, experts in verification, validation, uncertainty quantification and certification from 15 partners across Europe. METASTRA aims to improve the stratification of patients with vertebral metastases evaluating their risk of fracture by developing dedicated reliable computational models based on Explainable Artificial Intelligence (AI) and on personalised Physiology-based biomechanical (VPH) models. Result. The METASTRA-AI model is expected to be able to stratify most patients with limited effort end cost, based on parameters extracted semi-automatically from the medical files and images. The cases which are not reliably stratified through the AI model, are examined through a more detailed and personalised biomechanical VPH model. These METASTRA numerical tools are trained through an unprecedentedly large multicentric retrospective study (2000 cases) and validated against biomechanical ex vivo experiments (120 specimens). Conclusion. The METASTRA decision support system is tested in a multicentric prospective observational study (200 patients). The METASTRA approach is expected to cut down the indeterminate diagnoses from the current 60% down to 20% of cases. METASTRA project funded by the European Union, HEU topic HLTH-2022-12-01, grant 101080135


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 28 - 28
14 Nov 2024
Heumann M Jacob A Gueorguiev B Richards G Benneker L
Full Access

Introduction

Transosseous flexion-distraction injuries of the spine typically require surgical intervention by stabilizing the fractured vertebra during healing with a pedicle-screw-rod constructs. As healing is taking place the load shifts from the implant back to the spine. Monitoring the load-induced deflection of the rods over time would allow quantifiable postoperative assessment of healing progress without the need for radiation exposure or frequent hospital visits. This approach, previously demonstrated to be effective in assessing fracture healing in long bones and monitoring posterolateral spinal fusion in sheep, is now being investigated for its potential in evaluating lumbar vertebra transosseous fracture healing.

Method

Six human cadaveric spines were instrumented with pedicle-screws and rods spanning L3 vertebra. The spine was loaded in Flexion-Extension (FE), Lateral-Bending (LB) and Axial-Rotation (AR) with an intact L3 vertebra (representing a healed vertebra) and after transosseous disruption, creating an AO type B1 fracture. The implant load on the rod was measured using an implantable strain sensor (Monitor) on one rod and on the contralateral rod by a strain gauge to validate the Monitor's measurements. In parallel the range of motion (ROM) was assessed.


Full Access

Introduction

A long nail is often recommended for treatment of complex trochanteric fractures but requires longer surgical and fluoroscopy times. A possible solution could be a nail with an appropriate length which can be locked in a minimally invasive manner by the main aiming device. We aimed to determine if such a nail model* offers similar structural stability on biomechanical testing on artificial bone as a standard long nail when used to treat complex trochanteric fractures.

Method

An artificial osteoporotic bone model was chosen. As osteosynthesis material two cephalomedullary nails (CMN) were chosen: a superior locking nail (SL-Nail) which can be implanted with a singular targeting device, and a long nail (long-nail) with distal locking using free-hand technique. AO31-A2.2 fractures were simulated in a standardized manner. The insertion of the nail was strictly in accordance with the IFU and surgical manual of the manufacturer. The nail was locked dynamically proximally and statically distally. Axial height of the construct, varus collapse, and rotational deformity directly after nail insertion were simulated. A Universal Testing Machine was used. Measurements were made with a stereo-optic tracking system. Reactive movements were recorded and evaluated in all six degrees of freedom. A comparative analysis provided information about the stability and deformation of the assemblies to be compared.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 18 - 18
14 Nov 2024
Rau Y Amtsfeld J Reimers N Behrends L Hinz N Schulz AP
Full Access

Introduction

Hip fractures, with a global age-standardised incidence rate (per 100,000 population) of 187.2 (2019), are a major public health problem. With a 7.71 billion population worldwide in 2019, hip fractures, in general, are affecting around 14.43 million people per year globally.

We aim to provide a nationwide epidemiological analysis of trochanteric fractures and their respective surgical treatments. In this study we research the epidemiology of trochanteric and subtrochanteric fractures, as well as their most common kinds of osteosynthesis, on a nationwide scale in Germany.

Method

Data was retrieved from the national database of the German Ministry of Interior. ICD-10-GM and OPS-data from the period of 2006-2020 were analyzed, all patients with trochanteric/subtrochanteric fractures were included. Patients were grouped by age/gender and linear-regression was performed to calculate statistically significant correlations between variables/incidences.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 1 - 1
14 Nov 2024
Hansen EC Christensen S Simony A Damborg F Andersen S
Full Access

Introduction

Most western countries have implemented fast-track hip fracture aiming at surgery within 24 hours, since the mortality rate hereafter rises markedly.

In Greenland, it is not achievable to operate within 24 hours. Arctic people live in sparsely populated areas and Greenland's population is scattered along the vast coastline. All patients must be chartered to Nuuk by airplane which can take up till several days to weeks, due to logistics and the Arctic weather. This presents a challenge regarding adhering to western guidelines. The operative delay may be acceptable though, as it is the impression that the Greenlandic population survives and endures better than patients of western populations.

However, as data are lacking, we aimed to describe mortality among hip fracture patients in Greenland taking frailty and comorbidities into account.

Method

All patients with ICD-10 codes DS720, DS721 and DS722 from 2018-2022 were identified as 261 patients diagnosed with hip fractures. Variables including time of diagnosis, time to operation, reasons for delay, ASA-score, Charlson Comorbidity index, time of death, and other possible confounding variables were analyzed. Primary outcome was mortality rates at 30-day post-OP and 1-year post-OP.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 102 - 102
14 Nov 2024
Strack D Mesbah M Rayudu NM Baum T Kirschke J Subburaj K
Full Access

Introduction. Functional Spine Units (FSUs) play a vital role in understanding biomechanical characteristics of the spine, particularly bone fracture risk assessment. While established models focus on simulating axial compression of individual bones to assess fracture load, recent models underscore the importance of understanding fracture load within FSUs, offering a better representation of physiological conditions. Despite the limited number of FSU fracture studies, they predominantly rely on a linear material model with an annulus fibrosus Young's modulus set at 500 MPa, significantly higher than stiffness values (ca. 4 MPa) utilized in other FSU and spine section biomechanical models. Thus, this study aims to study the effect of varying annulus fibrosus stiffness on FSU fracture load, aiming to identify physiologically relevant biomechanical parameters. Method. Subject-specific geometry and material properties of bones were derived from computed tomography (CT) image data of five human cadaveric FSU specimens. The annulus fibrosus and nucleus pulposus were manually recreated and assigned linear elastic material properties. By subjecting the model to axial compression, the fracture load of the FSU was deduced from the peak of the force-displacement graph. To explore the effect of stiffness of the annulus fibrosus on simulated fracture load, we conducted a parameter study, varying stiffness values from the high 500 MPa to a more physiologically relevant 25 MPa, aiming to approximate values applied in FSU kinematic models while achieving bone fracture. Result. Significant reductions in fracture load were observed, ranging from 23% to 46%, as annulus stiffness decreased from 500MPa to 25MPa. Additionally, a discernible, gradual decline in fracture load was observed with a decrease in stiffness values. Conclusion. The stiffness of the annulus fibrosus significantly influences the simulated fracture load of an FSU. Future investigations should prioritize biomechanically accurate modeling of the intervertebral disc, ensuring alignment with experimental findings regarding FSU fracture load while maintaining biomechanical fidelity


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 121 - 121
14 Nov 2024
Lähdesmäki M Ylitalo A Liukkonen R Suominen V Karjalainen L Mattila VM Repo J
Full Access

Introduction

We aimed to study the rates of both surgical and medical complications associated with femoral diaphysis fracture fixation with intramedullary nailing including all fracture mechanisms. Additionally, we investigated whether the trauma energy has an impact on the complication risk.

Method

In this retrospective cohort study, the health records of 491 patients with 503 femoral fractures, who underwent surgery between May 2007 and May 2022 in Tampere University Hospital, were reviewed. Patients who underwent a primary operation with a reamed rigid intramedullary nail for a diaphyseal femoral fracture and whose follow-ups were organized at the same hospital district, were included. Based on those criteria, 57.5% were included for analysis (279 patients with 289 fractures). The complications were then recorded by chart review. To investigate the impact of trauma energy on complication risk, we compared complication proportions in high- and low-energy groups and calculated odds ratios.


Bone & Joint Research
Vol. 13, Issue 11 | Pages 647 - 658
12 Nov 2024
Li K Zhang Q

Aims

The incidence of limb fractures in patients living with HIV (PLWH) is increasing. However, due to their immunodeficiency status, the operation and rehabilitation of these patients present unique challenges. Currently, it is urgent to establish a standardized perioperative rehabilitation plan based on the concept of enhanced recovery after surgery (ERAS). This study aimed to validate the effectiveness of ERAS in the perioperative period of PLWH with limb fractures.

Methods

A total of 120 PLWH with limb fractures, between January 2015 and December 2023, were included in this study. We established a multidisciplinary team to design and implement a standardized ERAS protocol. The demographic, surgical, clinical, and follow-up information of the patients were collected and analyzed retrospectively.


Bone & Joint Open
Vol. 5, Issue 11 | Pages 962 - 970
4 Nov 2024
Suter C Mattila H Ibounig T Sumrein BO Launonen A Järvinen TLN Lähdeoja T Rämö L

Aims. Though most humeral shaft fractures heal nonoperatively, up to one-third may lead to nonunion with inferior outcomes. The Radiographic Union Score for HUmeral Fractures (RUSHU) was created to identify high-risk patients for nonunion. Our study evaluated the RUSHU’s prognostic performance at six and 12 weeks in discriminating nonunion within a significantly larger cohort than before. Methods. Our study included 226 nonoperatively treated humeral shaft fractures. We evaluated the interobserver reliability and intraobserver reproducibility of RUSHU scoring using intraclass correlation coefficients (ICCs). Additionally, we determined the optimal cut-off thresholds for predicting nonunion using the receiver operating characteristic (ROC) method. Results. The RUSHU demonstrated good interobserver reliability with an ICC of 0.78 (95% CI 0.72 to 0.83) at six weeks and 0.77 (95% CI 0.71 to 0.82) at 12 weeks. Intraobserver reproducibility was good or excellent for all analyses. Area under the curve in the ROC analysis was 0.83 (95% CI 0.77 to 0.88) at six weeks and 0.89 (95% CI 0.84 to 0.93) at 12 weeks, indicating excellent discrimination. The optimal cut-off values for predicting nonunion were ≤ eight points at six weeks and ≤ nine points at 12 weeks, providing the best specificity-sensitivity trade-off. Conclusion. The RUSHU proves to be a reliable and reproducible radiological scoring system that aids in identifying patients at risk of nonunion at both six and 12 weeks post-injury during non-surgical treatment of humeral shaft fractures. The statistically optimal cut-off values for predicting nonunion are ≤ eight at six weeks and ≤ nine points at 12 weeks post-injury


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1348 - 1360
1 Nov 2024
Spek RWA Smith WJ Sverdlov M Broos S Zhao Y Liao Z Verjans JW Prijs J To M Åberg H Chiri W IJpma FFA Jadav B White J Bain GI Jutte PC van den Bekerom MPJ Jaarsma RL Doornberg JN

Aims

The purpose of this study was to develop a convolutional neural network (CNN) for fracture detection, classification, and identification of greater tuberosity displacement ≥ 1 cm, neck-shaft angle (NSA) ≤ 100°, shaft translation, and articular fracture involvement, on plain radiographs.

Methods

The CNN was trained and tested on radiographs sourced from 11 hospitals in Australia and externally validated on radiographs from the Netherlands. Each radiograph was paired with corresponding CT scans to serve as the reference standard based on dual independent evaluation by trained researchers and attending orthopaedic surgeons. Presence of a fracture, classification (non- to minimally displaced; two-part, multipart, and glenohumeral dislocation), and four characteristics were determined on 2D and 3D CT scans and subsequently allocated to each series of radiographs. Fracture characteristics included greater tuberosity displacement ≥ 1 cm, NSA ≤ 100°, shaft translation (0% to < 75%, 75% to 95%, > 95%), and the extent of articular involvement (0% to < 15%, 15% to 35%, or > 35%).


Bone & Joint Research
Vol. 13, Issue 10 | Pages 611 - 621
24 Oct 2024
Wan Q Han Q Liu Y Chen H Zhang A Zhao X Wang J

Aims

This study aimed to investigate the optimal sagittal positioning of the uncemented femoral component in total knee arthroplasty to minimize the risk of aseptic loosening and periprosthetic fracture.

Methods

Ten different sagittal placements of the femoral component, ranging from -5 mm (causing anterior notch) to +4 mm (causing anterior gap), were analyzed using finite element analysis. Both gait and squat loading conditions were simulated, and Von Mises stress and interface micromotion were evaluated to assess fracture and loosening risk.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_17 | Pages 1 - 1
11 Oct 2024
Gardner WT Davies P Campbell D Reidy M
Full Access

Lateral-entry wiring (LEW) for displaced supracondylar humeral fractures (SHFs) has been popularised internationally. BOAST guidance suggests either LEW or crossed wires; the latter has reported lower risk of loss of fracture reduction –we explore technical reasons why.

We reviewed 8 years of displaced SHFs in two regional centres. Injuries were grouped using the Gartland Classification, with posterolateral or posteromedial displacement assessment for Gartland 3 injuries. We identified any loss of fracture reduction, and reviewed intra-operative imaging to identify learning points that may contribute to early rotational displacement (ERD).

345 SHFs were included, between 2012 and 2020. Gartland 2 (n=117) injuries had a 3.42% risk. ERD. Gartland 3 crossed wirings (n=114) had a 6.14% risk of ERD, with those moving all being posterolaterally displaced. Gartland 3, posterolaterally displaced LEW (n=56) had a 35.7% risk of ERD. Gartland 3, posteromedially displaced LEW (n=58) had a 22.4% risk of ERD. All injuries with ERD except 3 had identifiable learning points, the commonest being non-divergence of wires, or wires not passing through both fracture fragments.

LEW requires divergent spread and bicolumnar fixation. Achieving a solid construct through this method appears more challenging than crossed wiring, with rates of ERD 3–5× higher. Low-volume surgeons should adhere to BOAST guidelines and choose a wiring construct that works best in their hands. They can also be reassured that should a loss of position occur, the risk of requirement for revision surgery is extremely low in our study (0.3%), and it is unlikely to affect long term outcomes.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_17 | Pages 10 - 10
11 Oct 2024
Heinz N Fredrick S Amin A Duckworth A White T
Full Access

The aim of this study was to evaluate the long-term outcomes of patients who had sustained an unstable ankle fracture with a posterior malleolus fracture (PMF) and without (N-PMF).

Adult patients presenting to a single academic trauma centre in Edinburgh, UK, between 2009 and 2012 with an unstable ankle fracture requiring surgery were identified. The primary outcome measure was the Olerud Molander Ankle Score (OMAS). Secondary measures included Euroqol-5D-3L Index (Eq5D3L), Euroqol-5D-VAS and Manchester Oxford Foot Questionnaire (MOXFQ).

There were 304 patients in the study cohort. The mean age was 49.6 years (16.3–78.3) and 33% (n=100) male and 67% (n=204) female. Of these, 67% (n=204) had a PMF and 33% did not (n=100). No patient received a computed tomography (CT) scan pre-operatively. Only 10% of PMFs (22/204) were managed with internal fixation. At a mean of 13.8 years (11.3 – 15.3) the median OMAS score was 85 (Interquartile Range 60 – 100). There was no difference in OMAS between the N-PMF and PMF groups (85 [56.25 – 100] vs 85 [61.25 – 100]; p = 0.580). There was also no difference for MOXFQ (N-PMF 7 [0 – 36.75] vs PMF 8 [0–38.75]; p = 0.643), the EQ5D Index (N-PMF 0.8 [0.7 – 1] vs PMF 0.8 [0.7 – 1]; p = 0.720) and EQ5D VAS (N-PMF 80 [70 – 90] vs PMF 80 [60 – 90]; p = 0.224).

The presence of a PMF does not affect the long-term patient reported outcomes in patients with a surgically managed unstable ankle fracture.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_17 | Pages 7 - 7
11 Oct 2024
Bell K Yapp L White T Molyneux S Clement N Duckworth A
Full Access

The aim was to predict the number and incidence of distal radius fractures in Scotland over the next two decades according to age group, categorised into under 65yrs(65) and 65yrs and older (65), and estimate the potential increased operative burden.

The number of distal radius fractures in Scotland was isolated from the Global Burden of Disease database and this was used, in addition to historic population data and published population estimates, to create a multivariable model allowing incorporation of age group, sex and time. A Negative Binomial distribution was used to predict incidence in 2030 and 2040 and calculate projected number of fractures. A 20.4% operative intervention rate was assumed (local data).

In terms of number of fractures, there was a projected 61% rise in the 65 group with an overall increase of 2099 fractures per year from 3417 in 2020 (95% confidence interval (CI) 2960 – 3463) to 5516 in 2040 (95% CI 4155 – 5675). This was associated with 428 additional operative interventions per year for those 65yrs. The projected increase between 2020 and 2040 was similar in both sexes (60% in females, 63% in males), however the absolute increase in fracture number was higher in females. There was a 4% projected fall in the number of fractures in those 65.

Incidence of distal radius fractures is expected to considerably increase over the next two decades due to a projected increase in the number of fractures in the elderly. This has implications for associated morbidity and healthcare resource use.


Bone & Joint Research
Vol. 13, Issue 10 | Pages 559 - 572
8 Oct 2024
Wu W Zhao Z Wang Y Liu M Zhu G Li L

Aims

This study aimed to demonstrate the promoting effect of elastic fixation on fracture, and further explore its mechanism at the gene and protein expression levels.

Methods

A closed tibial fracture model was established using 12 male Japanese white rabbits, and divided into elastic and stiff fixation groups based on different fixation methods. Two weeks after the operation, a radiograph and pathological examination of callus tissue were used to evaluate fracture healing. Then, the differentially expressed proteins (DEPs) were examined in the callus using proteomics. Finally, in vitro cell experiments were conducted to investigate hub proteins involved in this process.


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1158 - 1164
1 Oct 2024
Jakobi T Krieg I Gramlich Y Sauter M Schnetz M Hoffmann R Klug A

Aims

The aim of this study was to evaluate the outcome of complex radial head fractures at mid-term follow-up, and determine whether open reduction and internal fixation (ORIF) or radial head arthroplasty (RHA) should be recommended for surgical treatment.

Methods

Patients who underwent surgery for complex radial head fractures (Mason type III, ≥ three fragments) were divided into two groups (ORIF and RHA) and propensity score matching was used to individually match patients based on patient characteristics. Ultimately, 84 patients were included in this study. After a mean follow-up of 4.1 years (2.0 to 9.5), patients were invited for clinical and radiological assessment. The Mayo Elbow Performance Score (MEPS), Oxford Elbow Score (OES), and Disabilities of the Arm, Shoulder, and Hand (DASH) questionnaire score were evaluated.