The extensive variation in axial rotation of tibial components can lead to coronal plane malalignment. We analyzed the change in coronal alignment induced by tray malrotation. We constructed a computer model of knee arthroplasty and used a virtual cutting guide to cut the tibia at 90° to the coronal plane. The virtual guide was rotated axially (15° medial to 15° lateral) and with posterior slopes (0° to 7°). To assess the effect of axial malrotation, we measured the coronal plane alignment of a tibial tray that was axially rotated (25° internal to 15° external), as viewed on a standard anteroposterior (AP) radiograph.Aims
Methods
Introduction. The Rotational alignment is an important factor for survival total knee Arthroplasty.
Objectives. Initial stability of tibial trays is crucial for long-term success of total knee arthroplasty (TKA) in both primary and revision settings. Rotating platform (RP) designs reduce torque transfer at the tibiofemoral interface. We asked if this reduced torque transfer in RP designs resulted in subsequently reduced micromotion at the cemented fixation interface between the prosthesis component and the adjacent bone. Methods. Composite tibias were implanted with fixed and RP primary and revision tibial trays and biomechanically tested under up to 2.5 kN of axial compression and 10° of external femoral component rotation. Relative micromotion between the implanted tibial tray and the neighbouring bone was quantified using high-precision digital image correlation techniques. Results.
Objective.
Introduction:. Despite all the attention to new technologies and sophisticated implant designs, imperfect surgical technique remains a obstacle to improving the results of total knee replacement (TKR). On the tibial side, common errors which are known to contribute to post-operative instability and reduced function include internal rotation of the tibial tray, inadequate posterior slope, and excessive component varus or valgus. However, the prevalence of each error in surgeries performed by surgeons and trainees is unknown. The following study was undertaken to determine which of these errors occurs most frequently in trainees acquiring the surgical skills to perform TKR. Materials and Methods:. A total of 43 knee replacement procedures were performed by 11 surgical trainees (surgical students, residents and fellows) in a computerized training center. After initial instruction, each trainee performed a series of four TKR procedures in cadavers (n = 2) and bone replicas (n = 2) using a contemporary TKR instrument set and the assistance of an experienced surgical instructor. Prior to each procedure, computer models of each cadaver and/or bone replica tibia were prepared by reconstructing CT scans of each specimen. All training procedures were performed in a navigated operating room using a 12 camera motion analysis system (Motion Analysis Inc.) with a spatial resolution in all three orthogonal directions of ± 0.15 mm. The natural slope, varus/valgus alignment, and axial rotation of the proximal tibial surface were recorded prior to surgery and after placement of the tibial component. For evaluation of all data, acceptable limits for implantation were defined as: posterior slope: 0–10°; varus/valgus inclination of tibial resection: ± 3°; and external rotation: 0–10°. Results:. The tibial component was implanted with an average posterior slope of 3.4° ± 3.4°. In 83% of trials, the trainees cut the tibia with less posterior slope than intended (average shortfall: 2.0° ± 4.0°). In 14% of cases the tibial resection sloped anteriorly, whereas in another 5% the posterior slope exceeded 10°. The coronal alignment of the tibial osteotomy averaged 0.1° ± 2.9° of valgus, with 19% of components were implanted in more than 3° of valgus vs. 14% varus (>3°). The average rotational orientation of the tibial component was 5.4° ± 5.3° of external rotation. Overall, 21% of components were placed in internal rotation, and a further 29% in more than 10° of external rotation.
The lateral compartment is predominantly affected
in approximately 10% of patients with osteoarthritis of the knee. The
anatomy, kinematics and loading during movement differ considerably
between medial and lateral compartments of the knee. This in the
main explains the relative protection of the lateral compartment
compared with the medial compartment in the development of osteoarthritis.
The aetiology of lateral compartment osteoarthritis can be idiopathic,
usually affecting the femur, or secondary to trauma commonly affecting
the tibia. Surgical management of lateral compartment osteoarthritis
can include osteotomy, unicompartmental knee replacement and total
knee replacement. This review discusses the biomechanics, pathogenesis
and development of lateral compartment osteoarthritis and its management. Cite this article:
INTRODUCTION.
We studied the intra- and interobserver reliability of measurements of the position of the components after total knee replacement (TKR) using a combination of radiographs and axial two-dimensional (2D) and three-dimensional (3D) reconstructed CT images to identify which method is best for this purpose. A total of 30 knees after primary TKR were assessed by two independent observers (an orthopaedic surgeon and a radiologist) using radiographs and CT scans. Plain radiographs were highly reliable at measuring the tibial slope, but showed wide variability for all other measurements; 2D-CT also showed wide variability. 3D-CT was highly reliable, even when measuring rotation of the femoral components, and significantly better than 2D-CT. Interobserver variability in the measurements on radiographs were good (intraclass correlation coefficient (ICC) 0.65 to 0.82), but rotational measurements on 2D-CT were poor (ICC 0.29). On 3D-CT they were near perfect (ICC 0.89 to 0.99), and significantly more reliable than 2D-CT (p <
0.001). 3D-reconstructed images are sufficiently reliable to enable reporting of the position and orientation of the components. Rotational measurements in particular should be performed on 3D-reconstructed CT images. When faced with a poorly functioning TKR with concerns over component positioning, we recommend 3D-CT as the investigation of choice.
Patellofemoral complications are among the important reasons for revision knee arthroplasty. Femoral component malposition has been implicated in patellofemoral maltracking, which is associated with anterior knee pain, subluxation, fracture, wear, and aseptic loosening. Rotating-platform mobile bearings compensate for malrotation between the tibial and femoral components. It has been suggested that rotating bearings may also reduce the patellofemoral maltracking resulting from femoral component malposition. We constructed a dynamic musculoskeletal model of weight-bearing knee flexion in a knee implanted with posterior cruciate-retaining arthroplasty components (LifeMOD/KneeSIM, LifeModeler Inc). The model was validated using tibiofemoral and patellofemoral kinematics and forces measured in cadaver knees on an Oxford knee rig. Knee kinematics and patellofemoral forces were measured after simulating axial malrotation of the femoral component (±3° of the transepicondylar reference line). Differences in patellofemoral kinematics and forces between the fixed- and rotating-bearing conditions were analysed.
We prospectively assessed the benefits of using either a range-of-movement technique or an anatomical landmark method to determine the rotational alignment of the tibial component during total knee replacement. We analysed the cut proximal tibia intraoperatively, determining anteroposterior axes by the range-of-movement technique and comparing them with the anatomical anteroposterior axis. We found that the range-of-movement technique tended to leave the tibial component more internally rotated than when anatomical landmarks were used. In addition, it gave widely variable results (mean 7.5°; 2° to 17°), determined to some extent by which posterior reference point was used. Because of the wide variability and the possibilities for error, we consider that it is inappropriate to use the range-of-movement technique as the sole method of determining alignment of the tibial component during total knee replacement.
The appearance of the ‘grand-piano sign’ on the anterior resected surface of the femur has been considered to be a marker for correct femoral rotational alignment during total knee replacement. Our study was undertaken to assess quantitatively the morphological patterns on the resected surface after anterior femoral resection with various angles of external rotation, using a computer-simulation technique. A total of 50 right distal femora with varus osteoarthritis in 50 Korean patients were scanned using computerised tomography. Computer image software was used to simulate the anterior femoral cut, which was applied at an external rotation of 0°, 3° and 6° relative to the posterior condylar axis, and parallel to the surgical and clinical epicondylar axes in each case. The morphological patterns on the resected surface were quantified and classified as the ‘grand-piano sign’, ‘the boot sign’ and the ‘butterfly sign’. The surgeon can use the analogy of these quantified sign patterns to ensure that a correct rotational alignment has been obtained intra-operatively.
Introduction and Aims: