Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

Tibial Preparation Remains the Achilles Heel of Total Knee Replacement

International Society for Technology in Arthroplasty (ISTA)



Abstract

Introduction:

Despite all the attention to new technologies and sophisticated implant designs, imperfect surgical technique remains a obstacle to improving the results of total knee replacement (TKR). On the tibial side, common errors which are known to contribute to post-operative instability and reduced function include internal rotation of the tibial tray, inadequate posterior slope, and excessive component varus or valgus. However, the prevalence of each error in surgeries performed by surgeons and trainees is unknown. The following study was undertaken to determine which of these errors occurs most frequently in trainees acquiring the surgical skills to perform TKR.

Materials and Methods:

A total of 43 knee replacement procedures were performed by 11 surgical trainees (surgical students, residents and fellows) in a computerized training center. After initial instruction, each trainee performed a series of four TKR procedures in cadavers (n = 2) and bone replicas (n = 2) using a contemporary TKR instrument set and the assistance of an experienced surgical instructor. Prior to each procedure, computer models of each cadaver and/or bone replica tibia were prepared by reconstructing CT scans of each specimen. All training procedures were performed in a navigated operating room using a 12 camera motion analysis system (Motion Analysis Inc.) with a spatial resolution in all three orthogonal directions of ± 0.15 mm.

The natural slope, varus/valgus alignment, and axial rotation of the proximal tibial surface were recorded prior to surgery and after placement of the tibial component. For evaluation of all data, acceptable limits for implantation were defined as: posterior slope: 0–10°; varus/valgus inclination of tibial resection: ± 3°; and external rotation: 0–10°.

Results:

The tibial component was implanted with an average posterior slope of 3.4° ± 3.4°. In 83% of trials, the trainees cut the tibia with less posterior slope than intended (average shortfall: 2.0° ± 4.0°). In 14% of cases the tibial resection sloped anteriorly, whereas in another 5% the posterior slope exceeded 10°.

The coronal alignment of the tibial osteotomy averaged 0.1° ± 2.9° of valgus, with 19% of components were implanted in more than 3° of valgus vs. 14% varus (>3°).

The average rotational orientation of the tibial component was 5.4° ± 5.3° of external rotation. Overall, 21% of components were placed in internal rotation, and a further 29% in more than 10° of external rotation. Rotational malalignment of the tibial component was the most common error in technique encountered in the study population.

Conclusion:

  1. 1.

    Tibial preparation still presents significant difficulty to many less experienced surgeons, despite the use of modern instrumentation and careful didactic instruction.

  2. 2.

    The most prevalent error in tibial preparation in TKR is malrotation of the tibial component, especially in internal rotation.

  3. 3.

    The errors measured in the computerized bioskills lab replicate clinical cases often presenting with symptoms necessitating early revision.

  4. 4.

    Greater attention is needed to training of surgical skills and intraoperative assessment of sources of technical error, such as component position to improve clinical outcomes of TKR.


*Email: