We present a review of 97 consecutive BioPro. ®.
Aim. To evaluate bacterial adhesion and biofilm formation to
Ultra-high molecular weight polyethylene (UHMWPE) is the sole polymeric material currently used for weight-bearing surfaces in total joint arthroplasty. However, the wear phenomenon of UHMWPE components in knee and hip prostheses after total joint arthroplasty is one of the major restriction factors on the longevity of these implants. In order to minimize the wear of UHMWPE and to improve the longevity of artificial joints, it is necessary to clarify the factors influencing the wear mechanism of UHMWPE. In the microscopic surface observation of the virgin knee prosthesis with anatomical design, various grades of microscopic surface scratches and defects caused by machining and surface finishing processes during manufacture of the component were observed on the surface of the
Introduction. The release of
Two fixation devices for rotator cuff repair were compared in a sheep model. Surgical transection of the supra-spinatus tendon insertion was repaired using
Introduction. Long-term success of the cementless acetabular component has been depends on amount of bone ingrowth around porous coated surface of the implant, which is mainly depends on primary stability, i.e. amount of micromotion at the implant-bone interface. The accurate positioning of the uncemented acetabular component and amount of interference fit (press-fit) at the rim of the acetabulum are necessary to reduce the implant-bone micromotion and that can be enhancing the bone ingrowth around the uncemented acetabular component. However, the effect of implant orientations and amount of press-fit on implant-bone micromotion around uncemented acetabular component has been relatively under investigated. The aim of the study is to identify the effect of acetabular component orientation on implant-bone relative micromotion around cementless
Testing wear durability of UHMWPE joint replacement bearings under abrasive conditions (mimicking in vivo conditions when
AM specifically allows for cost-efficient production of patient-specific Orthopaedic medical devices with unusual designs and properties. A porous design allows to adjust the stiffness of metallic implants to that of the host bone. Beyond traditional metals, like titanium alloys, this talk will review the present state-of-the-art of directly printed absorbable metal families. Physicochemical, mechanical and biological properties of standardized design prototypes from all currently available metal families will be compared and their clinical application potential discussed. The impact of
Purpose of the study: Long-term outcome of Charnley low-friction arthroplasty in young active patients is impaired worldwide due to wear of the polyethylene (PE) component and osteolysis. In the late eighties, reports of possible low wear with some former metal on metal total hip arthroplasties led to the reintroduction of
Aim: To evaluate the results of arthroscopic repair of anterior and superior glenoid labral tears in the shoulder with
Alloys of titanium, aluminium, vanadium, iron and other metals are traditional materials used in bone tissue surgery. The anchorage of the
Due to increased life expectancy of human population, the amount of total knee replacements (TKR) is expected to increase. TKR reached a high grade of quality and safety, but most often it fail because of aseptic implant loosening caused by polyethylene (PE) wear debris. Wear is generated at the articulating surfaces, e.g. caused by three body particles, like bone fragments or bone cement particles. The aim of this experimental study was to compare the wear of tibial PE inserts combined with
Introduction: The aim of this prospective, randomized, monocentric study was to compare wear of polyethylene when using a 28 mm diametre ceramic head versus a
Prosthetic joint infections represent complications connected to the implantation of biomedical devices, they have high incidence, interfere with osseointegration, and lead to a high societal burden. The microbial biofilm, which is a complex structure of microbial cells firmly attached to a surface, is one of the main issues causing infections. Biofilm- forming bacteria are acquiring more and more resistances to common clinical treatments due to the abuse of antibiotics administration. Therefore, there is increasing need to develop alternative methods exerting antibacterial activities against multidrug-resistant biofilm-forming bacteria. In this context, metal-based coatings with antimicrobial activities have been investigated and are currently used in the clinical practice. However, traditional coatings exhibit some drawbacks related to the insufficient adhesion to the substrate, scarce uniformity and scarce control over the toxic metal release reducing their efficacy. Here, we propose the use of antimicrobial silver-based nanostructured thin films to discourage bacterial infections. Coatings are obtained by Ionized Jet Deposition, a plasma-assisted technique that permits to manufacture films of submicrometric thickness having a nanostructured surface texture, allow tuning silver release, and avoid delamination. To mitigate interference with osseointegration, here silver composites with bone apatite and hydroxyapatite were explored. The antibacterial efficacy of silver films was tested
Impaction bone grafting has become an established technique in restoring acetabular and femoral bone stock loss during hip replacement surgery. This study presents our preliminary results using this technique to restore acetabular bone stock loss during cemented total hip replacement, with particular reference to the use of a preformed perforated
INTRODUCTION. A detailed clinical examination and investigations are required to evaluate the cause of persisting groin pain following a metal on metal (MoM) hip replacement. Adverse reaction to
Biodegradable metals as orthopaedic implant materials receive substantial scientific and clinical interest. Marketed cardiovascular products confirm good biocompatibility of iron. Solid iron biodegrades slowly in vivo and has got supra-physiological mechanical properties as compared to bone and porous implants can be optimized for specific orthopaedic applications. We used Direct Metal Printing (DMP)3 to additively manufacture (AM) scaffolds of pure iron with fine-tuned bone-mimetic mechanical properties and improved degradation behavior to characterize their biocompatibility under static and dynamic 3D culture conditions using a spectrum of different cell types. Atomized iron powder was used to manufacture scaffolds with a repetitive diamond unit cell design on a ProX DMP 320 (Layerwise/3D Systems, Belgium). Mechanical characterization (Instron machine with a 10kN load cell, ISO 13314: 2011), degradation behavior under static and dynamic conditions (37ºC, 5% CO2 and 20% O2) for up of 28 days, with μCT as well as SEM/energy-dispersive X-ray spectroscopy (EDS) (SEM, JSM-IT100, JEOL) monitoring under in vivo-like conditions. Biocompatibility was comprehensively evaluated using a broader spectrum of human cells according to ISO 10993 guidelines, with topographically identical titanium (Ti-6Al-4V, Ti64) specimen as reference. Cytotoxicity was analyzed by two-way ANOVA and post-hoc Tukey's multiple comparisons test (α = 0.05). By μCT, as-built strut size (420 ± 4 μm) and porosity of 64% ± 0.2% were compared to design values (400 μm and 67%, respectively). After 28 days of biodegradation scaffolds showed a 3.1% weight reduction after cleaning, while pH-values of simulated body fluids (r-SBF) increased from 7.4 to 7.8. Mechanical properties of scaffolds (E = 1600–1800 MPa) were still within the range for trabecular bone, then. At all tested time points, close to 100% biocompatibility was shown with identically designed titanium (Ti64) controls (level 0 cytotoxicity). Iron scaffolds revealed a similar cytotoxicity with L929 cells throughout the study, but MG-63 or HUVEC cells revealed a reduced viability of 75% and 60%, respectively, already after 24h and a further decreased survival rate of 50% and 35% after 72h. Static and dynamic cultures revealed different and cell type-specific cytotoxicity profiles. Quantitative assays were confirmed by semi-quantitative cell staining in direct contact to iron and morphological differences were evident in comparison to Ti64 controls. This first report confirms that DMP allows accurate control of interconnectivity and topology of iron scaffold structures. While microstructure and chemical composition influence degradation behavior - so does topology and environmental in vitro conditions during degradation. While porous magnesium corrodes too fast to keep pace with bone remodeling rates, our porous and micro-structured design just holds tremendous potential to optimize the degradation speed of iron for application-specific orthopaedic implants. Surprisingly, the biological evaluation of pure iron scaffolds appears to largely depend on the culture model and cell type. Pure iron may not yet be an ideal surface for osteoblast- or endothelial-like cells in static cultures. We are currently studying appropriate coatings and in vivo-like dynamic culture systems to better predict in vivo biocompatibility.
The long-term biological success of cementless orthopaedic prostheses is highly dependent on osteointegration. Pre-clinical testing of new cementless implant technology however, requires live animal testing, which has anatomical, loading, ethical and cost challenges. This proof-of-concept study aimed to develop an Fresh cancellous bone cylinders (n=8) were harvested from porcine femur and implanted with additive manufactured porous titanium implants (Ø4 × 15 mm). To simulate physiological conditions, n=3 bone cylinders were tested in a bioreactor system with a cyclic 30 µm displacement at 1Hz for 300 cycles every day for 15 days in a total of 21 days culture. The chamber was also perfused with culture medium using a peristaltic pump. Control bone cylinders were cultured under static conditions (n=5). Samples were calcein stained at day 7. Post-testing, bone cylinders were formalin fixed and bony ingrowth was measured via microscopy.Abstract
Introduction
Methods
Aim: Impaction bone grafting is an established technique for the restoration of bone loss at revision hip surgery. Preformed stainless steel meshes have been recently introduced to augment graft containment. We present our results of acetabular impaction grafting at a mean of 4 years, with particular reference to the use of preformed steel meshes. Methods: 72 consecutive total hip replacements (7 primary and 65 revision) in 69 patients underwent acetabular impaction grafting with morsellised fresh frozen allograft through a posterior approach. In 47 cases there were uncontained defects (46 segmental or combined deficiencies, one pelvic discontinuity) necessitating the use of a preformed steel mesh, secured with multiple small fragment screws to contain the impacted bone graft. All the operations were done by the senior author in a district general hospital. Results: At mean follow-up of 4 years (range 18 to 92 months), no case has been lost to follow up. The Merle d’Aubigne Postel hip scores averaged 5.3 (pain), 4.2 (walking ability), and 5.3 (range of movement). (Charnley group A -26 patients, group B -19, group C -24). There were no peri-operative deaths or deep infections. There have been no revisions for septic or aseptic loosening. There were 2 cases of early post operative dislocation which stabilised after closed reduction. One case of recurrent disclocation required cup revision. There was one case of radiographic loosening without cup migration. This patient remains pain free and there are no plans for revision. In all other cases, radiographs suggest graft incorporation, with no significant radiolucent lines, acetabular component or mesh migration. There have been no complications relating to the use of the preformed mesh. Conclusion: The results of this study are encouraging. By using preformed
The accumulation of proteins and bacteria on implant surfaces is a critical concern in the biomedical field, especially with respect to the potential of biofilm formation on implant surfaces. Material surface wettability is often used as a predictor of potential colonization of specific bacterial strains. Surface roughness has also been shown to have a strong relationship with biofilm formation, as rougher surfaces tend to have a stronger affinity to harbor bacterial colonies. The modification of implant surfaces to impart a biofilm resistant layer can come at the expense of increasing surface roughness however, and it is therefore important to determine how the variables of wettability and roughness are affected by any new surface coating technologies. In the current work, a novel CoBlast (C) process that impregnates alumina (A) at 50 μm grit (5) or 90 μm grit (9) sizes, with the possible addition of polytetrafluoroethylene (P) onto titanium surfaces, combined with a plasma coating process called BioDep, that coats the surface with chitosan (X) with the possible addition of vancomycin (V), were evaluated for wettability and surface roughness to determine their potential as biofilm resistant treatments on implants. N=65 titanium alloy samples (n=5 for 13 sample modification types as described above and in the figure legends below) were analyzed for surface roughness and wettability. Following cleaning in ethanol, roughness testing (Ra, Rq, Rt and Rz, Wyko NT-2000 optical profilometer @ 28.7× magnification, FOV of 164×215 μm) at 5 different surface locations per specimen, and contact angle analysis was performed (2 μL water drops, KRUSS EasyDrop). Statistical differences between groups was determined using ANOVA.Introduction
Materials and Methods