Advertisement for orthosearch.org.uk
Results 1 - 10 of 10
Results per page:
Bone & Joint Research
Vol. 13, Issue 8 | Pages 411 - 426
28 Aug 2024
Liu D Wang K Wang J Cao F Tao L

Aims. This study explored the shared genetic traits and molecular interactions between postmenopausal osteoporosis (POMP) and sarcopenia, both of which substantially degrade elderly health and quality of life. We hypothesized that these motor system diseases overlap in pathophysiology and regulatory mechanisms. Methods. We analyzed microarray data from the Gene Expression Omnibus (GEO) database using weighted gene co-expression network analysis (WGCNA), machine learning, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to identify common genetic factors between POMP and sarcopenia. Further validation was done via differential gene expression in a new cohort. Single-cell analysis identified high expression cell subsets, with mononuclear macrophages in osteoporosis and muscle stem cells in sarcopenia, among others. A competitive endogenous RNA network suggested regulatory elements for these genes. Results. Signal transducer and activator of transcription 3 (STAT3) was notably expressed in both conditions. Single-cell analysis pinpointed specific cells with high STAT3 expression, and microRNA (miRNA)-125a-5p emerged as a potential regulator. Experiments confirmed the crucial role of STAT3 in osteoclast differentiation and muscle proliferation. Conclusion. STAT3 has emerged as a key gene in both POMP and sarcopenia. This insight positions STAT3 as a potential common therapeutic target, possibly improving management strategies for these age-related diseases. Cite this article: Bone Joint Res 2024;13(8):411–426


Bone & Joint Open
Vol. 4, Issue 4 | Pages 250 - 261
7 Apr 2023
Sharma VJ Adegoke JA Afara IO Stok K Poon E Gordon CL Wood BR Raman J

Aims

Disorders of bone integrity carry a high global disease burden, frequently requiring intervention, but there is a paucity of methods capable of noninvasive real-time assessment. Here we show that miniaturized handheld near-infrared spectroscopy (NIRS) scans, operated via a smartphone, can assess structural human bone properties in under three seconds.

Methods

A hand-held NIR spectrometer was used to scan bone samples from 20 patients and predict: bone volume fraction (BV/TV); and trabecular (Tb) and cortical (Ct) thickness (Th), porosity (Po), and spacing (Sp).


Bone & Joint Open
Vol. 1, Issue 10 | Pages 628 - 638
6 Oct 2020
Mott A Mitchell A McDaid C Harden M Grupping R Dean A Byrne A Doherty L Sharma H

Aims

Bone demonstrates good healing capacity, with a variety of strategies being utilized to enhance this healing. One potential strategy that has been suggested is the use of stem cells to accelerate healing.

Methods

The following databases were searched: MEDLINE, CENTRAL, EMBASE, Cochrane Database of Systematic Reviews, WHO-ICTRP, ClinicalTrials.gov, as well as reference checking of included studies. The inclusion criteria for the study were: population (any adults who have sustained a fracture, not including those with pre-existing bone defects); intervention (use of stem cells from any source in the fracture site by any mechanism); and control (fracture healing without the use of stem cells). Studies without a comparator were also included. The outcome was any reported outcomes. The study design was randomized controlled trials, non-randomized or observational studies, and case series.


Bone & Joint Open
Vol. 1, Issue 6 | Pages 229 - 235
9 Jun 2020
Lazizi M Marusza CJ Sexton SA Middleton RG

Aims

Elective surgery has been severely curtailed as a result of the COVID-19 pandemic. There is little evidence to guide surgeons in assessing what processes should be put in place to restart elective surgery safely in a time of endemic COVID-19 in the community.

Methods

We used data from a stand-alone hospital admitting and operating on 91 trauma patients. All patients were screened on admission and 100% of patients have been followed-up after discharge to assess outcome.


Bone & Joint Open
Vol. 1, Issue 6 | Pages 175 - 181
2 Jun 2020
Musowoya RM Kaonga P Bwanga A Chunda-Lyoka C Lavy C Munthali J

Aims

Sickle cell disease (SCD) is an autosomal recessive inherited condition that presents with a number of clinical manifestations that include musculoskeletal manifestations (MM). MM may present differently in different individuals and settings and the predictors are not well known. Herein, we aimed at determining the predictors of MM in patients with SCD at the University Teaching Hospital, Lusaka, Zambia.

Methods

An unmatched case-control study was conducted between January and May 2019 in children below the age of 16 years. In all, 57 cases and 114 controls were obtained by systematic sampling method. A structured questionnaire was used to collect data. The different MM were identified, staged, and classified according to the Standard Orthopaedic Classification Systems using radiological and laboratory investigations. The data was entered in Epidata version 3.1 and exported to STATA 15 for analysis. Multiple logistic regression was used to determine predictors and predictive margins were used to determine the probability of MM.


Bone & Joint Open
Vol. 1, Issue 6 | Pages 182 - 189
2 Jun 2020
Scott CEH Holland G Powell-Bowns MFR Brennan CM Gillespie M Mackenzie SP Clement ND Amin AK White TO Duckworth AD

Aims

This study aims to define the epidemiology of trauma presenting to a single centre providing all orthopaedic trauma care for a population of ∼ 900,000 over the first 40 days of the COVID-19 pandemic compared to that presenting over the same period one year earlier. The secondary aim was to compare this with population mobility data obtained from Google.

Methods

A cross-sectional study of consecutive adult (> 13 years) patients with musculoskeletal trauma referred as either in-patients or out-patients over a 40-day period beginning on 5 March 2020, the date of the first reported UK COVID-19 death, was performed. This time period encompassed social distancing measures. This group was compared to a group of patients referred over the same calendar period in 2019 and to publicly available mobility data from Google.


Bone & Joint Research
Vol. 4, Issue 5 | Pages 84 - 92
1 May 2015
Hamamura K Nishimura A Iino T Takigawa S Sudo A Yokota H

Objectives

Salubrinal is a synthetic agent that elevates phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α) and alleviates stress to the endoplasmic reticulum. Previously, we reported that in chondrocytes, Salubrinal attenuates expression and activity of matrix metalloproteinase 13 (MMP13) through downregulating nuclear factor kappa B (NFκB) signalling. We herein examine whether Salubrinal prevents the degradation of articular cartilage in a mouse model of osteoarthritis (OA).

Methods

OA was surgically induced in the left knee of female mice. Animal groups included age-matched sham control, OA placebo, and OA treated with Salubrinal or Guanabenz. Three weeks after the induction of OA, immunoblotting was performed for NFκB p65 and p-NFκB p65. At three and six weeks, the femora and tibiae were isolated and the sagittal sections were stained with Safranin O.


Bone & Joint 360
Vol. 5, Issue 1 | Pages 26 - 28
1 Feb 2016


Bone & Joint Research
Vol. 4, Issue 6 | Pages 99 - 104
1 Jun 2015
Savaridas T Wallace RJ Dawson S Simpson AHRW

Objectives

There remains conflicting evidence regarding cortical bone strength following bisphosphonate therapy. As part of a study to assess the effects of bisphosphonate treatment on the healing of rat tibial fractures, the mechanical properties and radiological density of the uninjured contralateral tibia was assessed.

Methods

Skeletally mature aged rats were used. A total of 14 rats received 1µg/kg ibandronate (iban) daily and 17 rats received 1 ml 0.9% sodium chloride (control) daily. Stress at failure and toughness of the tibial diaphysis were calculated following four-point bending tests.


Bone & Joint Research
Vol. 4, Issue 7 | Pages 105 - 116
1 Jul 2015
Shea CA Rolfe RA Murphy P

Construction of a functional skeleton is accomplished through co-ordination of the developmental processes of chondrogenesis, osteogenesis, and synovial joint formation. Infants whose movement in utero is reduced or restricted and who subsequently suffer from joint dysplasia (including joint contractures) and thin hypo-mineralised bones, demonstrate that embryonic movement is crucial for appropriate skeletogenesis. This has been confirmed in mouse, chick, and zebrafish animal models, where reduced or eliminated movement consistently yields similar malformations and which provide the possibility of experimentation to uncover the precise disturbances and the mechanisms by which movement impacts molecular regulation. Molecular genetic studies have shown the important roles played by cell communication signalling pathways, namely Wnt, Hedgehog, and transforming growth factor-beta/bone morphogenetic protein. These pathways regulate cell behaviours such as proliferation and differentiation to control maturation of the skeletal elements, and are affected when movement is altered. Cell contacts to the extra-cellular matrix as well as the cytoskeleton offer a means of mechanotransduction which could integrate mechanical cues with genetic regulation. Indeed, expression of cytoskeletal genes has been shown to be affected by immobilisation. In addition to furthering our understanding of a fundamental aspect of cell control and differentiation during development, research in this area is applicable to the engineering of stable skeletal tissues from stem cells, which relies on an understanding of developmental mechanisms including genetic and physical criteria. A deeper understanding of how movement affects skeletogenesis therefore has broader implications for regenerative therapeutics for injury or disease, as well as for optimisation of physical therapy regimes for individuals affected by skeletal abnormalities.

Cite this article: Bone Joint Res 2015;4:105–116