In this in vitro study of the
hip joint we examined which soft tissues act as primary and secondary
passive rotational restraints when the hip joint is functionally
loaded. A total of nine cadaveric left hips were mounted in a testing
rig that allowed the application of forces, torques and rotations
in all six degrees of freedom. The hip was rotated throughout a
complete range of movement (ROM) and the contributions of the iliofemoral
(medial and lateral arms), pubofemoral and ischiofemoral ligaments
and the
As our understanding of hip function and disease improves, it is evident that the acetabular fossa has received little attention, despite it comprising over half of the acetabulum’s surface area and showing the first signs of degeneration. The fossa’s function is expected to be more than augmenting static stability with the
Objectives. An experimental piglet model induces avascular necrosis (AVN)
and deformation of the femoral head but its secondary effects on
the developing acetabulum have not been studied. The aim of this
study was to assess the development of secondary acetabular deformation
following femoral head ischemia. Methods. Intracapsular circumferential ligation at the base of the femoral
neck and sectioning of the
Research on hip biomechanics has analyzed femoroacetabular contact pressures and forces in distinct hip conditions, with different procedures, and used diverse loading and testing conditions. The aim of this scoping review was to identify and summarize the available evidence in the literature for hip contact pressures and force in cadaver and in vivo studies, and how joint loading, labral status, and femoral and acetabular morphology can affect these biomechanical parameters. We used the PRISMA extension for scoping reviews for this literature search in three databases. After screening, 16 studies were included for the final analysis.Aims
Methods
In the native hip, the hip capsular ligaments tighten at the limits of range of hip motion and may provide a passive stabilizing force to protect the hip against edge loading. In this study we quantified the stabilizing force vectors generated by capsular ligaments at extreme range of motion (ROM), and examined their ability to prevent edge loading. Torque-rotation curves were obtained from nine cadaveric hips to define the rotational restraint contributions of the capsular ligaments in 36 positions. A ligament model was developed to determine the line-of-action and effective moment arms of the medial/lateral iliofemoral, ischiofemoral, and pubofemoral ligaments in all positions. The functioning ligament forces and stiffness were determined at 5 Nm rotational restraint. In each position, the contribution of engaged capsular ligaments to the joint reaction force was used to evaluate the net force vector generated by the capsule.Aims
Methods
To determine the likelihood of achieving a successful closed reduction (CR) of a dislocated hip in developmental dysplasia of the hip (DDH) after failed Pavlik harness treatment We report the rate of avascular necrosis (AVN) and the need for further surgical procedures. Data was obtained from the Northern Ireland DDH database. All children who underwent an attempted closed reduction between 2011 and 2016 were identified. Children with a dislocated hip that failed Pavlik harness treatment were included in the study. Successful closed reduction was defined as a hip that reduced in theatre and remained reduced. Most recent imaging was assessed for the presence of AVN using the Kalamchi and MacEwen classification.Aims
Methods
When the present study was initiated, we changed the treatment for late-detected developmental dislocation of the hip (DDH) from several weeks of skin traction to markedly shorter traction time. The aim of this prospective study was to evaluate this change, with special emphasis on the rate of stable closed reduction according to patient age, the development of the acetabulum, and the outcome at skeletal maturity. From 1996 to 2005, 49 children (52 hips) were treated for late-detected DDH. Their mean age was 13.3 months (3 to 33) at reduction. Prereduction skin traction was used for a mean of 11 days (0 to 27). Gentle closed reduction under general anaesthesia was attempted in all the hips. Concurrent pelvic osteotomy was not performed. The hips were evaluated at one, three and five years after reduction, at age eight to ten years, and at skeletal maturity. Mean age at the last follow-up was 15.7 years (13 to 21).Aims
Methods
There are several reports clarifying successful results following
open reduction using Ludloff’s medial approach for congenital (CDH)
or developmental dislocation of the hip (DDH). This study aimed
to reveal the long-term post-operative course until the period of
hip-joint maturity after the conventional surgical treatments. A long-term follow-up beyond the age of hip-joint maturity was
performed for 115 hips in 103 patients who underwent open reduction
using Ludloff’s medial approach in our hospital. The mean age at
surgery was 8.5 months (2 to 26) and the mean follow-up was 20.3
years (15 to 28). The radiological condition at full growth of the hip
joint was evaluated by Severin’s classification.Objectives
Methods
Hip arthroscopy in the setting of hip dysplasia is controversial in the orthopaedic community, as the outcome literature has been variable and inconclusive. We hypothesise that outcomes of hip arthroscopy may be diminished in the setting of hip dysplasia, but outcomes may be acceptable in milder or borderline cases of hip dysplasia. A systematic search was performed in duplicate for studies investigating the outcome of hip arthroscopy in the setting of hip dysplasia up to July 2015. Study parameters including sample size, definition of dysplasia, outcomes measures, and re-operation rates were obtained. Furthermore, the levels of evidence of studies were collected and quality assessment was performed.Objective
Methods
The April 2012 Children’s orthopaedics Roundup360 looks at osteonecrosis of the femoral head and surgery for dysplasia, femoral head blood flow during surgery, femoroacetabular impingement and sport in adolescence, the Drehmann sign, a predictive algorithm for septic arthritis, ACL reconstruction and arthrofibrosis in children, spinal cord monitoring for those less than four years old, arthroereisis for the flexible flat foot, fixing the displaced lateral humeral fracture, and mobile phones and inclinometer applications