The implementation of knee arthrodesis has become synonymous with limb salvage in the presence of chronic sepsis and bone loss around the knee. This can be seen in failed trauma surgery or knee arthroplasty as an alternative to trans-femoral amputation. There is no prior literature assessing which factors affect knee arthrodesis using external fixation devices. Sixteen consecutive patients (four women and twelve men) made up of eleven infected knee implants, three internal fixations of the tibial following fractured tibial plateau as well as 2 infected native joints were identified. The mean age at initial surgery was 56 years (range 25 to 82 years). All procedures were performed under the direct supervision of the limb reconstruction teams using a standard protocol with either a Taylor spatial frame or Ilizarov frame. The patient records, microbiology results and radiographs of all patients who underwent knee arthrodesis at this institution between 1999 and 2010 were reviewed. Of the 16 patients in this study knee fusion occurred in eleven patients (69%). The five patients where arthrodesis failed all had significant bone loss on the pre-operative radiographs and confirmed at surgery. We found a relationship between a significant infection of the knee with MRSA and failure to fuse. Three of the five patients had MRSA isolated from inside the knee at some stage during their treatment. The five patients where fusion failed were on average older (mean age 63 years against 51 years) and had more extensive bone loss. Those who failed to fuse had more co-morbidities. We would conclude that where there is little or no bone loss, arthrodesis of the knee can be reliably achieved with the use of circular frame fixation. A greater number of negative factors also prolongs the amount of time spent in the external fixator. The presence of significant bone loss, infection, increased age and multiple co-morbidities requires careful evaluation and consideration of trans-femoral amputation as an alternative.
This review explores recent advances in fixator design and used in contemporary orthopaedic practice including the management of bone loss, complex deformity and severe isolated limb injury.
Percutaneous grafting of non-union using bone marrow concentrates has shown promising results, we present our experience and outcomes following the use of microdrilling and marrowstim in long bone non-unions. We retrospectively reviewed all patients undergoing a marrowstim procedure for non-union in 2011–12. Casenotes and radiographs were reviewed for all. Details of injury, previous surgery and non-union interventions together with additional procedures performed after marrowstim were recorded for all patients. The time to clinical and radiological union were noted. We identified 32 patients, in sixteen the tibia was involved in 15 the femur and in one the humerus. Ten of the 32 had undergone intervention for non-union prior to marrowstim including 4 exchange nailings, 2 nail dynamisations, 3 caption graftings, 2 compression in circular frame and 1 revision of internal fixation. Three underwent adjunctive procedures at the time of marroswstim. In 18 further procedures were required following marrowstim. In 4 this involved frame adjustment, 5 underwent exchange nailing, 4 revision internal fixation, 2 additional marrowstim, 2 autologous bone grafting and 3 a course of exogen treatment. In total 27 achieved radiological and clinical union at a mean of 9.6 months, of these ten achieved union without requiring additional intervention following marrowstim, at a mean of 5.4 months. There were no complications relating to marrowstim harvest or application. Marrowstim appears to be a safe and relatively cheap addition to the armamentarium for treatment of non-union. However many patients require further procedures in addition to marrowstim to achieve union. Furthermore given the range of procedures this cohort of patients have undergone before and after marrowstim intervention it is difficult to draw conclusions regarding it efficacy.
Lower limb mal-alignment due to deformity is a significant cause of early degenerative change and dysfunction. Standard techniques are available to determine the centre of rotation of angulation (CORA) and extent of the majority of deformities, however distal femoral deformity is difficult to assess because of the difference between anatomic and mechanical axes. We found the described technique involving constructing a line perpendicular to a line from the tip of the greater trochanter to the centre of the femoral head inaccurate, particularly if the trochanter is abnormal. We devised a novel technique which accurately determines the CORA and extent of distal femoral deformity, allowing accurate correction. Using standard leg alignment views of the normal femur, the distal femoral metaphysis and joint line are stylized as a block. A line bisecting the axis of the proximal femur is then extended distally to intersect the joint. The angle (θ) between the joint and the proximal femoral axis and the position (p) where the extended proximal femoral axis intersects the joint line are calculated. These measurements can then be reproduced on the abnormal distal femur in order to calculate the CORA and extent of the deformity, permitting accurate correction. We examined the utility and reproducibility of the new method using 100 normal femora. θ = 81 ± sd 2.5°. As expected, θ correlated with femoral length (r=0.74). P (expressed as the percentage of the distance from the lateral edge of the joint block to the intersection) = 61% ± sd 8%. P was not correlated with θ. Intra-and inter-observer errors for these measurements are within acceptable limits and observations of 30-paired normal femora demonstrate similar values for θ and p on the two sides. We have found this technique to be universally applicable and reliable in a variety of distal femoral deformities.
Persistent pain is a common cause of disability in patients after fractures of the calcaneum. Amongst the possible causes for post traumatic pain is the development of degenerative osteoarthritis of the posterior facet of the subtalar joint. However there are many other causes of post-traumatic hindfoot pain which require consideration prior to treatment. Knowledge of the patho-anatomy of calcaneal fractures is required to reach an accurate diagnosis. Significant symptoms and disability may be treated by arthrodesis of the subtalar joint. Post-traumatic arthritis in the non-operatively treated calcaneal fracture is however usually associated with deformity of the hindfoot, disordered hindfoot biomechanics, lateral wall fibular impingement and fibular tendon dysfunction. Fractures treated by primary open reduction and fixation should be well aligned but despite anatomic reduction may also develop posterior facet arthritis. Symptoms may also be caused by prominence or impingement of the implant, particularly of locked perimeter plates on the lateral wall. Patients therefore require careful assessment prior to surgery and any operative measures have to address these key features in order to produce a satisfactory clinical result. This lecture will address the potential problems of this type of surgery and key features in the clinical assessment and imaging of these patients. Subtalar arthrodesis in the presence of deformity is technically complex and requires careful planning in order to correct the deformity and to produce a well aligned hindfoot to allow corrected biomechanics without impingement and the fitment of suitable footwear. The surgical techniques and different types of surgery required to adequately manage the posterior facet and deformity will be covered and will include arthroscopically assisted in-situ fusion, the safe approaches for open surgery and techniques to reconstruct the lateral wall, fibular tendon function and osteotomies required to restore calcaneal height and alignment.
Lower limb mal-alignment due to deformity is a significant cause of early degenerative change and dysfunction. Standard techniques are available to determine the centre of rotation of angulation (CORA) and extent of the majority of deformities, however distal femoral deformity is difficult to assess because of the difference between anatomic and mechanical axes. We found the described technique involving constructing a line perpendicular to a line from the tip of the greater trochanter to the centre of the femoral head inaccurate, particularly if the trochanter is abnormal. We devised a novel technique which accurately determines the CORA and extent of distal femoral deformity, allowing accurate correction. Using standard leg alignment views of the normal femur, the distal femoral metaphysis and joint line are stylized as a block. A line bisecting the axis of the proximal femur is then extended distally to intersect the joint. The angle (Θ) between the joint and the proximal femoral axis and the position (p) where the extended proximal femoral axis intersects the joint line are calculated. These measurements can then be reproduced on the abnormal distal femur in order to calculate the CORA and extent of the deformity, permitting accurate correction. We examined the utility and reproducibility of the new method using 100 normal femora. Θ = 81 ± sd 2.5. As expected, Θ correlated with femoral length (r=0.74). P (expressed as the percentage of the distance from the lateral edge of the joint block to the intersection) = 61% ± sd 8%. P was not correlated with Θ. Intra-and inter-observer errors for these measurements are within acceptable limits and observations of 30-paired normal femora demonstrate similar values for Θ and p on the two sides. We have found this technique to be universally applicable and reliable in a variety of distal femoral deformities.
Treatment of syndesmotic injuries is a subject of ongoing controversy. Locking plates have been shown to provide both angular and axial stability and therefore could potentially control both shear forces and resist widening of the syndesmosis. The aim of this study is to determine whether a two-hole locking plate has biomechanical advantages over conventional screw stabilisation of the syndesmosis in this pattern of injury. Six pairs of fresh-frozen human cadaver lower legs were prepared to simulate an unstable Maisonneuve fracture. The limbs were then mounted on a servo-hydraulic testing rig and axially loaded to a peak load of 800N for 12000 cycles. Each limb was compared with its pair; one receiving stabilisation of the syndesmosis with two 4.5mm quadricortical cortical screws, the other a two-hole locking plate with 3.2mm locking screws (Smith and Nephew). Each limb was then externally rotated until failure occurred. Failure was defined as fracture of bone or metalwork, syndesmotic widening or axial migration >2mm. Both constructs effectively stabilised the syndesmosis during the cyclical loading within 1mm of movement. However the locking plate group demonstrated superior resistance to torque compared to quadricortical screw fixation (40.6Nm vs 21.2Nm respectively, p value <0.03). A 2 hole locking plate (3.2mm screws) provides significantly greater stability of the syndesmosis to torque when compared with 4.5mm quadricortical fixation.Conclusion
Lower limb mal-alignment due to deformity is a significant cause of early degenerative change and dysfunction. Standard techniques are available to determine the centre of rotation of angulation (CORA) and extent of the deformities. However, distal femoral deformity is difficult to assess because of the difference between anatomic and mechanical axes. We describe a novel technique which accurately determines the CORA and extent of distal femoral deformity. Using standard leg alignment views of the normal femur, the distal femoral metaphysis and joint line are stylised as a block. A line bisecting the anatomical axis of the proximal femur is then extended distally to intersect the joint. The angle (?) between the joint and the proximal femoral axis, and the position (p) where the extended proximal femoral axis intersects the joint line are calculated. These measurements can then be reproduced on the abnormal distal femur in order to calculate the CORA and extent of deformity, permitting accurate correction. We examined the utility and reproducibility of the new method using 100 normal femora. We found this technique to be universally robust in a variety of distal femoral deformities.
The optimal management of intra-articular tibial plateau fractures with metaphyseal-diaphyseal dissociation remains challenging and controversial. We report results using the technique of limited open reduction with external fixation using a fine wire circular frame. Between 1994 –2006, 83 eligible patients were identified. Case notes were reviewed; X-Rays and CT scans were examined and used to rank-order the severity of injury. ‘Musculoskeletal Functional Assessment’ (MFA) and ‘Knee Outcome Survey’ (KOS) questionnaires were completed and axial alignment X-Rays were taken to assess functional and radiological outcome.Introduction
Method
To compare a randomised group of patients undergoing UKA to investigate the advantages of the minimal invasive approach in the early post-operative stage. 100 patients on the waiting list for UKA were recruited into the trial. Patients were prospectively randomised into 2 groups: Group 1 – longitudinal skin incision with dislocation of the patella, Group 2 – the minimally invasive approach. Standard milestones were recorded post-operatively: time to achieve IRQ, independent stair climbing and to discharge. Additionally, patients were scored with the AKSS and Oxford knee questionnaire pre-operatively, at 6 weeks, 6 months and 1 year. No significant differences were found between the 2 groups in the measured parameters.Aims
Results
Lower limb mal-alignment due to deformity is a significant cause of early degenerative change and limb dysfunction. Standard techniques are available to determine the centre of rotation of angulation (CORA) and extent of the majority of deformities, however distal femoral deformity is difficult to assess because of the difference between the anatomic and mechanical axes. We have found the described technique involving constructing a line perpendicular to a line from the tip of the greater trochanter to the centre of the femoral head inaccurate, particularly if the trochanter is abnormal. We have devised a novel technique which accurately determines the CORA and extent of distal femoral deformity, allowing accurate correction. Using standard leg alignment views of the normal femur, the distal femoral metaphysis and joint line are stylised as a block. A line bisecting the axis of the proximal femur is then extended distally to intersect the joint. The angle (𝛉) between the joint and the proximal femoral axis and the position (p) where the extended proximal femoral axis intersects the joint line are calculated. These measurements can then be reproduced on the abnormal distal femur in order to calculate the CORA and extent of the deformity, permitting accurate correction. We have examined the utility and reproducibility of the new method using one hundred normal femurs. Θ=81+/− sd 2.5°. As expected, 𝛉 correlated with femoral length (r=0.74). P (expressed as the percentage of the distal from the medial edge of the joint block to the intersection) = 61% +/− sd 8%. P was not correlated with 𝛉. Intra-and inter-observer errors for these measurements are within acceptable limits and observations of twenty paired normal femora demonstrate similar values for 𝛉 and p on the two sides. We have employed this technique in a variety of distal femoral deformities, including vitamin D resistant rickets, growth arrest, fibula hemimelia, post-traumatic deformity and Ellis-van Creveld syndrome. We find the system universally applicable and reliable.
A series of 49 pilon fractures in a tertiary referral centre treated definitively with open reduction and internal fixation have been assessed examining the complications associated with such injuries. A retrospective analysis of casenotes, radiographs and computerised tomographs over a seven year period from 1999–2006 was performed. Infection was the most common post operative problem. There were 7 cases of superficial infection. There was a single case of deep infection requiring intravenous antibiotics and removal of metalwork. Other notable complications were those of secondary osteoarthritis (three cases) and malunion (one case). The key finding of this paper is the 2% incidence of deep infection following the direct operative approach to these fractures. The traditional operative approach to such injuries (initially advocated by Ruedi and All-gower) consisted of extensive soft tissue dissection to gain access to the distal tibia. Our preferred method is to gain access to via the “direct approach” which involves direct access to the fracture site with minimal disturbance of the soft tissue envelope. We therefore believe open reduction and internal fixation of pilon fractures via the direct approach to be an excellent technique in the treatment of such injuries.
A Ring Fixator (Taylor Spatial Frame (TSF); Smith &
Nephew, Memphis, TN), was used in the treatment of 5 patients (ages 11 to 16 years) with proximal tibial growth arrest following trauma. The mean corrections were 14.20 (max 280, min 00) in the saggital plane and 140 (max 380, min 20) in the coronal plane. Leg length discrepancy was also corrected (max 1 cm). The average time in frame was 17.8 weeks, with an average correction time of 29.8 days. Knee Society Clinical Rating System (KSCRS) scores post operatively ranged from 95 to 100. All patients returned to full activity, and would accept the same treatment if offered again. The circular fixator is an effective, minimally invasive method of treatment for post-traumatic proximal tibial deformity. Patients remain active during treatment encouraging a rapid return to school/work activities.
There is a relative risk of 3.0 of dislocation in cups with ≤15 degrees of anteversion compared with >
15 degrees of anteversion. This difference in dislocation is statistically significant (p<
0.01). Increased femoral offset compared with the normal contralateral hip is statistically significantly associated with an increased risk of dislocation (p=0.03). Change in leg length is not associated with dislocation risk.
The increase in femoral offset in the prosthetic hip compared with the normal contralateral hip and its association with dislocation may be due to intraoperative attempts to compensate for an unstable hip by increasing offset. These results indicate that a surgeon should be cautious when increasing femoral offset alone to try and compensate for a potentially unstable hip. Other factors, for example acetabular version should be addressed, with readjustment of cup position intra-operatively if required.
17 patients have undergone 20 microdrilling procedures to stimulate bone union in cases of established non-union. This occurred at the docking site following completion of bone transport using a stacked Taylor Spatial Frame, non-union following arthrodesis or non-union in long bone fracture. Additional bone grafting was performed in only one patient. Further stimulation of union via injection of Bone Morphogenetic Protein was undertaken with 3 microdrilling procedures. Of the 20 microdrilling procedures, 8 were considered fully successful in terms of stimulation of union, 7 were partially successful and 5 were not felt to have been successful. The mean time to fully successful union following microdrilling was 11.4 weeks, ranging from 6 to 19 weeks. There were 2 complications, both acute infections at the microdrilling site. Both of these were in patients with previous significant pin site infections. We present the use of a microdrilling technique as a safe and effective minimally invasive technique that promotes union in cases of refractory non-union, whilst avoiding the donor site morbidity associated with open bone grafting. We present, as a pilot study, our experience in the use of this technique in patients treated with circular frames for acute fractures, at the docking site in cases of bone transport and in cases of non-union following arthrodesis.