Previous studies have evidenced cement-in-cement techniques as reliable in revision arthroplasty. Commonly, the original cement mantle is reshaped, aiding accurate placement of the new stem. Ultrasonic devices selectively remove cement, preserve host bone, and have lower cortical perforation rates than other techniques. As far as the authors are aware, the impact of ultrasonic devices on final cement-in-cement bonds has not been investigated. This study assessed the impact of cement removal using the Orthosonics System for Cemented Arthroplasty Revision (OSCAR; Orthosonics) on final cement-in-cement bonds. A total of 24 specimens were manufactured by pouring cement (Simplex P Bone Cement; Stryker) into stainless steel moulds, with a central rod polished to Stryker Exeter V40 specifications. After cement curing, the rods were removed and eight specimens were allocated to each of three internal surface preparation groups: 1) burr; 2) OSCAR; and 3) no treatment. Internal holes were recemented, and each specimen was cut into 5 mm discs. Shear testing of discs was completed by a technician blinded to the original grouping, recording ultimate shear strengths. Scanning electron microscopy (SEM) was completed, inspecting surfaces of shear-tested specimens.Objectives
Methods
Numerous studies have evidenced cement-in-cement techniques as reliable in revision arthroplasty. The original cement mantle is commonly reshaped to aid accurate placement of the new stem. Ultrasonic devices selectively remove cement, preserve host bone and have lower cortical perforation rates than other techniques. As far as the authors are aware, their impact on final cement-cement bonds has not been investigated. This study assessed the impact of cement removal using OSCAR (Orthosonics System for Cemented Arthroplasty Revision, ORTHOSONICS) on final cement-cement bonds. Twenty-four specimens were manufactured by pouring cement (Simplex P Bone Cement, Stryker) into stainless-steel moulds with a central rod polished to Stryker Exeter V40 specifications. After cement curing, rods were removed and eight specimens allocated to each of three internal surface preparation groups: 1) burr; 2) OSCAR; or 3) no treatment. Internal holes were re-cemented, then each specimen was cut into 5mm discs. Shear testing of discs was completed by a technician blinded to original grouping (Instron 5567, UK), recording ultimate shear strengths. The mean shear strength for OSCAR-prepared specimens (17 MPa, 99% CI 14.9 to 18.6, SD=4.0) was significantly lower than that measured for the control (23 MPa, 99% CI 22.5 to 23.7, SD=1.4) and burr (23 MPa, 99% CI 22.1 to 23.7, SD=1.9) groups (P<0.001, one-way ANOVA with Tukey's post-hoc analysis). There was no significant difference between control and burr groups (P>0.05). Results show that cement removal technique impacts on final cement-cement bonds. This in vitro study shows a significantly weaker bond when using OSCAR prior to re-cementation into an old cement mantle, compared to cement prepared with a burr or no treatment. These results have implications for surgical practice and decision-making about specific cement removal techniques used during cement-in-cement revision arthroplasty, suggesting that the risks and benefits of ultrasonic cement removal need careful consideration.
Locking internal fixation through a relatively small surgical dissection presents an innovative technique for managing distal tibial extra-articular fractures. The aim of this study is to evaluate the biomechanical properties of one locking internal fixation plate used to treat these injuries. An AO/OTA43-A3 fracture was created in synthetic composite tibiae. Locking internal fixation was achieved with an anatomically pre-contoured medial distal tibial locking plate. Comparisons were made between different screw configurations in holes proximal to the fracture and monocortical versus bicortical fixation. Axial stiffness was measured using a universal materials testing machine. Finite element analysis (FEA) was used to model the elastic deformation of the constructs. Outcome measures were axial stiffness under physiological loading conditions and compression load to failure.Background
Method
The first metatarsophalangeal (MTP) joint is the key joint of the foot in terms of function during gait. Various replacement toe joint prostheses are commercially available but unlike other replacement joints such as the hip or knee, few simulator based studies have been conducted to evaluate the performance and reliability of these prostheses. Presented are results obtained using a newly developed and validated multi-station MTP joint test-rig that is able to simulate the natural biomechanics of the toe joint. The developed simulator is a multi-station computer controlled electro-pneumatic metataso-phalangeal joint simulator that applies dynamic loading and motions commensurate with the walking gait cycle. This involves the combination of plantar-dorsi flexion range of 32 degrees, 5 degrees of inversion/eversion and toe-off dynamic loading peaking at up to 820 N. Presented are the validation and in vitro test results of MTP joint simulations carried out on silastic and articulating metal and polymer designs of MTP prostheses. Despite being subjected to a reduced loading regime of 300 N peak force, the silastic prostheses were found to perform poorly in the simulator, ultimately failing due to a combination of fatigue crack growth and joint collapse. This behaviour and failure mode was consistent with that of ex vivo origin silastic MTP prostheses examined and provides confidence in the validity of the simulator.
The fractures were loaded using a Lloyd’s machine and a load displacement curve was plotted.
Non-osteoporotic model. The mean force requires to produce the same depression was 1878.2N with the 2-screw construct and 1938.2N with the 4 screw construct (p=0.42). An increased fragmentation of the synthetic bone fragments was noticed with the 2-screw construct but not with the 4-screw construct.
To identify mechanisms of failure in plate and nail fixation in proximal humerus fractures. 5% of the proximal humerus fractures need surgical fixation, which is carried out, principally, by open reduction and internal fixation or closed reduction and intramedullary nailing. Fixation failure remains a problem. This study answers the mode of failure of these implants regardless of the fracture personality. In-vitro testing of proximal humerus fixation devices was undertaken in 30 simulated osteoporotic bone models. Fracture-line was created at the surgical neck of humerus in all samples and fixed with five fixation devices; three plating and two nailing devices. The samples were subjected to failure under compression and torque. Failure was achieved in all models. Three failure patterns were observed in torque testing:
The two conventional plates Cloverleaf and T-plate behaved similarly, failing due to screw pull-out from both the proximal and distal fragment with a deformed plate. The PHILOS plate failed by avulsion of a wedge just distal to the fracture site with screws remaining embedded in the bone. Both the nailing systems, Polaris and European humeral nail, failed by a spiral fracture starting at the distal locking screw. In compression testing the modes of failure were: The Clover-leaf and T-plate failed by plastic deformation of plate, backing out of the screw in the proximal fragment followed by fracture of the distal fragment. The PHILOS failed by plastic deformation of plate and fracture of the distal fragment distal to the last locking screws. In both the nails, the proximal fragment screws failed. The failure mode is dependent on implant properties as well, independent of the fracture personality. It is important to recognise the potential points of failure (proximal or distal fragment) when making the choice of implant to avoid fixation failure.
Introduction and aims: There is a recent trend of using a raft of small diameter 3.5 mm cortical screws instead of the large diameter 6.5mm screws in depressed tibial plateau fractures (Schatzker type 3). Our aim was to compare the biomechanical properties of these two constructs in the normal and osteoporotic sawbone model.
The models were loaded to failure using a Lloyd’s machine. A displacement (depression) of 5mm was taken to be the point of failure. A load displacement curve was plotted using Nexygen software and the force needed to cause a depression of 5mm was calculated in each block. Mann Whitney U test was used for statistical analysis.
The mean force needed to produce a depression of 5mm was 700.8N with the 4-screw construct and 512.4N with the 2 screw construct. This difference was statistically significant (p=0.007). Non-osteoporotic model The mean force requires to produce the same depression was 1878.2N with the 2-screw construct and 1938.2N with the 4 screw construct. The difference was not statistically significant (p=0.42). An increased fragmentation of the sawbone fragments was noticed with the 2-screw construct but not with the 4-screw construct.
The aim of this study was to (I) determine the intra-operative temperature of the femoral cancellous bed prior to insertion of prosthesis, (II) to investigate whether the magnitude of the temperature gradient effects interface porosity (III) to develop clinically relevant recommendations.
The cement mantle was sectioned transversely, then longitudinally to expose the cement-prosthesis interface. This was stained with acrylic dye to facilitate image analysis. Three mantles for each temperature were produced.
The aim of this study was to improve data collection, audit and research data by integrating a comprehensive patient data collection database into the day to day running of an orthopaedic department. The day to day processes of the house surgeon and registrar junior staff were analysed and tasks identified that would allow accurate recording and recall of orthopaedic-specific patient data by automating and performing tasks that would improve junior staff efficiency. A database was then designed and implemented with a “front end” that performed such tasks as generating operating lists, tracking ward locations of patients, producing discharge summaries and auditing complications. This database was then introduced on the hospital intranet and the “back end” constructed to gather accurate patient and injury data to allow improved data collection and research. Information and data collected was a significant improvement on previous methods available to the department. Junior doctor compliance for data entry was high but the system needed monitoring and “cleaning” on a weekly basis to maintain its accuracy. This method of data collection was more accurate than anything available in the hospital and has been surprisingly useful in producing data to support concerns within the department regarding managerial changes in hospital systems. Use of a database collection system that gathers information by performing day to day tasks for junior staff has been an effective and reasonably accurate method of obtaining useful patient data. It requires regular monitoring to be most effective but has been easily integrated and accepted within the hospital system.
New generation alumina-on-alumina (A-A) prostheses have been introduced to try and overcome the problem of osteolysis often attributed to polyethylene wear particles liberated within conventional metal-on-ultra high molecular weight polyethylene (UHMWPE) joints. This study uses a hip simulator to compare the volumetric wear rates of five different radial clearances of A-A joints. Atomic force microscopy (AFM) provided topographic characterisation of the prosthesis surfaces throughout the wear test.
Polymerisation of PMMA results in a volume change resulting from molecular rearrangement. The calculated maximal volume reduction is approximately 7.6%; however, void growth reduces this to 3–6%. The significance of volume reduction is controversial, in particular with reference to void elimination techniques. Whilst the impact of mixing technique on overall volume change is known, little is understood about the dynamic volumetric changes occurring during the crucial time of cement-bone micro-interlock formation. This study aimed to investigate the volumetric behaviour of bone cement during polymerisation. Polyethylene tubes were modified to simulate the physical and dimensional constraints of the human femoral medullary canal. The tubes were filled with either hand or enhanced vacuum mixed cement and suspended in a water bath. The residual weight of the cement specimen in water was recorded at 60sec intervals for 30 minutes. The dry weight of the cement is known and the immersed weight can be calculated. Archimedes principal allows calculation of the density and thus the volume of the cement mass throughout polymerisation. The specimens were sectioned, stained and analysed to assess sectional porosity. In no specimen was it possible to demonstrate overall net expansion, however, hand mixed specimens demonstrated a temporary period of expansion during the early exothermic period. Vacuum mixed specimens demonstrated progressive contraction only. Overall volume change correlated closely with sectional porosity. The overall volume reduction is strongly influenced by porosity. The temporary expansion observed in porous cement specimens must result from temperature driven growth of voids. This expansion occurs during the crucial period of cement-bone micro-interlock formation, and may therefore enhance attempts at pressurisation. Conversely, progressive volume reduction, as seen with low porosity cement, may impede micro-interlock formation. Successful cementation using vacuum mixed cement may therefore be solely dependent on adequate cement pressurisation.
Cementation is an important part of arthroplasty operations. Recent publication of results of Charnley total hip replacement found a rate of early aseptic loosening of 2.3% at 5 years following surgery across a NHS region. There are possibly many reasons for early loosening but precise reasons are still not fully understood, however, it is felt that cementation technique is very important. There seems to be a number of factors involved such as cement mixing techniques and conditions, physical properties of the cement, cementation and surgical techniques, bone-cement interface as well as bone- prosthesis interface. The purpose of this study was to evaluate the effectiveness of the clinical environment in producing bone cement of predictable mechanical and physical properties, and how those properties compare with published data. The investigation compared samples of bone cement, taken from material prepared and used in surgery with cement samples prepared under controlled laboratory conditions and in accordance with ISO materials testing standards. During 2000–01, 10 total hip replacements were selected for study. All operations involved the use of CMW1 (DePuy) radio-opaque cement, which was mixed using the Vacumix system. In this cohort, all femoral cementations were performed using an 80g cement mix. After careful preparation of the femoral canal, the scrub nurse mixed the cement in accordance with the manufacturer’s instructions. The cement was introduced into the femoral canal, via a nozzle, using the cementation gun and a pressurizer. Following introduction of cement into the canal, the nozzle and cement contained within, was broken off the gun distal to the pressurizer. Once cured, the cement samples were removed from the nozzle, sectioned, and mechanically tested. Due to this novel sample preparation procedure, the tested cement was expected to exhibit mechanical and physical properties characteristic of the cement present in the femoral canal. Samples of CMW1 (Vacumixed) of similar mass and aspect ratio were produced within the laboratory, in accordance with the manufacturers mixing instructions. PMMA bone cement is a brittle, glassy polymer that is susceptible to stress raisers, such as pores, which can reduce the load carrying ability, which The surgical samples were found to be very consistent in compressive strength (121 ± 6 MPa), density (1.20 ± 0.02 gcm−3) and hardness (23.2 ± 1.6 VHN) and closely matched the mechanical properties of the cement mixed in the laboratory. This study suggests that for the studied cement and mixing regime, the clinical environment is capable of producing a well-controlled cement product that has reproducible and predictable mechanical properties. Further, the novel sample preparation procedure used suggests that the cement within the femoral cavity should demonstrate equally predictable, mechanical and physical properties.