Differentiating cases of aseptic loosening of total hip arthroplasty (THA) from loosening due to low-grade infection can often be difficult. It is possible that some cases of ‘aseptic’ loosening may be related to unidentified bacterial infection. Using Polymerase Chain Reaction (PCR), this study attempted to identify the frequency with which bacterial DNA could be observed at revision arthroplasty for what was considered ‘aseptic’ loosening. All revision cases had to fulfil strict criteria to be considered aseptically loose In all cases operative specimens from the synovial fluid, synovium, femoral and acetabular membranes where possible were sent for analysis by histology, bacteriology and by PCR to identify the presence of the 16S bacterial ribosomal fraction, an indicator of bacterial DNA. Ten bacteria per millilitre of tissue/fluid were the threshold for detection. As a control for environmental contamination, specimens from primary THA were also sent for analysis in the same manner as revisions. The identification of bacterial DNA in at least one sample from a patient was considered a positive case result. 45 revision THA were identified over a 3-year period (1998–2001). From those 45 revision cases, 163 specimens were sent for analysis by PCR. These specimens were compared to the control group of 34 primary THA from which 91 specimens were sent for analysis by PCR. When analysed by specimens positive by PCR, bacterial DNA was identified in 55 of 163 specimens sent from the 45 revision THA. This compared with 21 of 91 specimens positive by PCR sent from the 34 primary THA (p=0. 07). When analysed by cases positive by PCR, bacterial DNA was identified in 29 of 45 revision THA and in 8 of 34 primary THA (p<
0. 001). PCR is a sensitive test for detecting infection in revision THA. Results from the primary THA cases would suggest there is at least a 23% false positive rate even with negative bacterial culture. The increased frequency with which bacterial DNA has been identified in ‘aseptically’ loose revision THAs, however, is unlikely to be due solely to environmental contamination. These results may have relevance for our interpretation and understanding of aseptic loosening as well for the diagnosis of prosthetic infection.
Discussion: This study has shown a high dislocation rate for a COP bearing that was reduced to a low dislocation rate by changing the bearing surface to a MOM design. A potential mechanism for this may be the ‘suction fit’ from the surface tension of the low clearance, high tolerance that the metal-on-metal bearing possesses, requiring increased torque to dislocate during impingement.