Advertisement for orthosearch.org.uk
Results 1 - 20 of 331
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 57 - 57
17 Apr 2023
Bae T Baek H Kwak D
Full Access

It is still difficult to determine an appropriate hinge position to prevent fracture in the lateral cortex of tibia in the process of making an open wedge during biplane open wedge high tibial osteotomy. The objective of this study was to present a biomechanical basis for determining the hinge position as varus deformity. T Three-dimensional lower extremity models were constructed using Mimics. The tibial wedge started at 40 mm distal to the medial tibial plateau, and osteotomy for three hinge positions was performed toward the head of the fibula, 5 mm proximal from the head of the fibula, and 5 mm distal from the head of the fibula. The three tibial models were made with varus deformity of 5, 10, 15 degrees with heterogeneous material properties. These properties were set to heterogeneous material properties which converted from Hounsfield's unit to Young's modulus by applying empirical equation in existing studies. For a loading condition, displacement at the posterior cut plane was applied referring to Hernigou's table considering varus deformity angle. All computational analyses were performed to calculate von-mises stresses on the tibial wedges. The maximum stress increased to an average of 213±9% when the varus angle was 10 degrees compared to 5 degrees and increased to an average of 154±8.9% when the varus angle was 15 degrees compared to 10 degrees. In addition, the maximum stress of the distal position was 19 times higher than that of the mid position and 5 times higher than that of the proximal position on average. Conclusion:. For varus deformity angles, the maximum stress of the tibial wedge tended to increase as the varus deformity angle increased. For hinge position of tibial wedge, maximum stress was the lowest in the mid position, while the highest in the distal position. *This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (NRF-2022R1A2C1009995)


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_10 | Pages 40 - 40
1 Jun 2023
Al-Omar H Patel K Lahoti O
Full Access

Introduction. Angular deformities of the distal femur can be corrected by opening, closing and neutral wedge techniques. Opening wedge (OW) and closing wedge (CW) are popular and well described in the literature. CW and OW techniques lead to leg length difference whereas the advantage of neutral wedge (NW) technique has several unique advantages. NW technique maintains limb length, wedge taken from the closing side is utilised on the opening side and since the angular correction is only half of the measured wedge on either side, translation of distal fragment is minimum. Leg lengths are not altered with this technique hence a useful technique in large deformities. We found no reports of clinical outcomes using NW technique. We present a technique of performing external fixator assisted NW correction of large valgus and varus deformities of distal femur and dual plating and discuss the results. Materials & Methods. We have treated 20 (22 limbs – 2 patients requiring staged bilateral corrections) patients for distal femoral varus and valgus deformities with CWDFO between 2019 and 2022. Out of these 4 patients (5 limbs) requiring large corrections of distal femoral angular deformities were treated with Neutral Wedge (NW) technique. 3 patients (four limbs) had distal femoral valgus deformity and one distal femoral varus deformity. Indication for NW technique is an angular deformity (varus or valgus of distal femur) requiring > 12 mm opening/closing wedge correction. We approached the closing side first and marked out the half of the calculated wedge with K – wires in a uniplanar fashion. Then an external fixator with two Schanz screws is applied on the opposite side, inserting the distal screw parallel to the articular surface and the proximal screw 6–7 cm proximal to the first pin and at right angles to the femoral shaft mechanical axis. Then the measured wedge is removed and carefully saved. External fixator is now used to close the wedge and over correct, creating an appropriate opening wedge on the opposite side. A Tomofix (Depuoy Synthes) plate is applied on the closing side with two screws proximal to osteotomy and two distally (to be completed later). Next the osteotomy on the opposite side is exposed, the graft is inserted. mLDFA is measured under image intensifier to confirm satisfactory correction. Closing wedge side fixation is then completed followed by fixation of opposite side with a Tomofix or a locking plate. Results. 3 patients (4 limbs) had genu valgum due to constitutional causes and one was a case of distal femoral varus from a fracture. Preoperative mLDFA ranged from 70–75° and in one case of varus deformity it was 103°. We achieved satisfactory correction of mLDFA in (85–90°) in 4 limbs and one measured 91°. Femoral length was not altered. JLCA was not affected post correction. Patients were allowed to weight bear for transfers for the first six weeks and full weight bearing was allowed at six weeks with crutches until healing of osteotomy. All osteotomies healed at 16–18 weeks (average 16.8 weeks). Patients regained full range of movement. We routinely recommend removal of metal work to facilitate future knee replacement if one is needed. Follow up ranged from 4 months to 2 yrs. Irritation from metal work was noted in 2 patients and resolved after removing the plates at 9 months post-surgery. Conclusions. NWDFO is a good option for large corrections. We describe a technique that facilitates accurate correction of deformity in these complex cases. Osteotomy heals predictably with uniplanar osteotomy and dual plate fixation. Metal work might cause irritation like other osteotomy and plating techniques in this location


Accurate evaluation of lower limb coronal alignment is essential for effective pre-operative planning of knee arthroplasty. Weightbearing hip-knee-ankle (HKA) radiographs are considered the gold standard. Mako SmartRobotics uses CT-based navigation to provide intra-operative data on lower limb coronal alignment during robotic assisted knee arthroplasty. This study aimed to compare the correlation between the two methods in assessing coronal plane alignment. Patients undergoing Mako partial (PKA) or total knee arthroplasty (TKA) were identified from our hospital database. The hospital PACS system was used to measure pre-operative coronal plane alignment on HKA radiographs. This data was correlated to the intraoperative deformity assessment during Mako PKA and TKA surgery. 443 consecutive Mako knee arthroplasties were performed between November 2019 and December 2021. Weightbearing HKA radiographs were done in 56% of cases. Data for intraoperative coronal plane alignment was available for 414 patients. 378 knees were aligned in varus, and 36 in valgus. Mean varus deformity was 7.46° (SD 3.89) on HKA vs 7.13° (SD 3.56) on Mako intraoperative assessment, with a moderate correlation (R= 0.50, p<0.0001). Intraoperative varus deformity of 0-4° correlated to HKA measured varus (within 3°) in 60% of cases, compared to 28% for 5-9°, 17% for 10-14°, and in no cases with >15° deformity. Mean valgus deformity was 6.44° (SD 4.68) on HKA vs 4.75° (SD 3.79) for Mako, with poor correlation (R=0.18, p=0.38). In this series, the correlation between weightbearing HKA radiographs and intraoperative alignment assessment using Mako SmartRobotics appears to be poor, with greater deformities having poorer correlation


Bone & Joint Open
Vol. 5, Issue 11 | Pages 1037 - 1040
15 Nov 2024
Wu DY Lam EKF

Aims. The first metatarsal pronation deformity of hallux valgus feet is widely recognized. However, its assessment relies mostly on 3D standing CT scans. Two radiological signs, the first metatarsal round head (RH) and inferior tuberosity position (ITP), have been described, but are seldom used to aid in diagnosis. This study was undertaken to determine the reliability and validity of these two signs for a more convenient and affordable preoperative assessment and postoperative comparison. Methods. A total of 200 feet were randomly selected from the radiograph archives of a foot and ankle clinic. An anteroposterior view of both feet was taken while standing on the same x-ray platform. The intermetatarsal angle (IMA), metatarsophalangeal angle (MPA), medial sesamoid position, RH, and ITP signs were assessed for statistical analysis. Results. There were 127 feet with an IMA > 9°. Both RH and ITP severities correlated significantly with IMA severity. RH and ITP were also significantly associated with each other, and the pronation deformities of these feet are probably related to extrinsic factors. There were also feet with discrepancies between their RH and ITP severities, possibly due to intrinsic torsion of the first metatarsal. Conclusion. Both RH and ITP are reliable first metatarsal pronation signs correlating to the metatarsus primus varus deformity of hallux valgus feet. They should be used more for preoperative and postoperative assessment. Cite this article: Bone Jt Open 2024;5(11):1037–1040


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 63 - 63
17 Apr 2023
MacLeod A Dal Fabbro G Grassi A Belvedere C Nervuti G Casonato A Leardini A Gil H Zaffagnini S
Full Access

High tibial osteotomy (HTO) is a joint preserving alternative to knee replacement for medial tibiofemoral osteoarthritis in younger, more active patients. The procedure is technically challenging and limited also by ‘one size fits all’ plates which can result in patient discomfort necessitating plate removal. This clinical trial evaluated A novel custom-made HTO system – TOKA (3D Metal Printing LTD, Bath, UK) for accuracy of osteotomy correction and improvements in clinical outcome scores. The investigation was a single-arm single-centre prospective clinical trial (IRCCS Istituto Ortopedico Rizzoli; ClinicalTrials.gov NCT04574570), with recruitment of 25 patients (19M/6F; average age: 54.4 years; average BMI: 26.8), all of whom received the TOKA HTO 3D planning and surgery. All patients were predominantly diagnosed with isolated medial knee osteoarthritis and with a varus deformity under 20°. Patients were CT scanned pre- and post-operatively for 3D virtual planning and correctional assessment. All surgeries were performed by the lead clinical investigator – a consultant knee surgeon with a specialist interest in and clinical experience of HTO. On average, Knee Society Scores (KSS) improved significantly (p<0.001) by 27.6, 31.2 and 37.2 percentage points respectively by 3-, 6- and 12-months post-surgery respectively. Other measures assessed during the study (KOOS, EQ5D) produced similar increases. Our early experience using custom implants is extremely promising. We believe the reduced profile of the plate, as well as the reduced invasiveness and ease of surgery contributed to faster patient recovery, and improved outcome scores compared to conventional techniques. These clinical outcome results compare very favourably other case-series with published KOOS scores using different devices


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 22 - 22
17 Apr 2023
Murugesu K Decruz J Jayakumar R
Full Access

Standard fixation for intra-articular distal humerus fracture is open reduction and internal fixation (ORIF). However, high energy fractures of the distal humerus are often accompanied with soft tissue injuries and or vascular injuries which limits the use of internal fixation. In our report, we describe a highly complex distal humerus fracture that showed promising healing via a ring external fixator. A 26-year-old man sustained a Gustillo Anderson Grade IIIB intra-articular distal humerus fracture of the non-dominant limb with bone loss at the lateral column. The injury was managed with aggressive wound debridement and cross elbow stabilization via a hinged ring external fixator. Post operative wound managed with foam dressing. Post-operatively, early controlled mobilization of elbow commenced. Fracture union achieved by 9 weeks and frame removed once fracture united. No surgical site infection or non-union observed throughout follow up. At 2 years follow up, flexion - extension of elbow is 20°- 100°, forearm supination 65°, forearm pronation 60° with no significant valgus or varus deformity. The extent of normal anatomic restoration in elbow fracture fixation determines the quality of elbow function with most common complication being elbow stiffness. Ring fixator is a non-invasive external device which provides firm stabilization of fracture while allowing for adequate soft tissue management. It provides continuous axial micro-movements in the frame which promotes callus formation while avoiding translation or angulation between the fragments. In appropriate frame design, they allow for early rehabilitation of joint where normal range of motion can be allowed in controlled manner immediately post-fixation. Functional outcome of elbow fracture from ring external fixation is comparable to ORIF due to better rehabilitation and lower complications. Ring external fixator in our patient achieved acceptable functional outcome and fracture alignment meanwhile the fracture was not complicated with common complications seen in ORIF. In conclusion, ring external fixator is as effective as ORIF in treating complex distal humeral fractures and should be considered for definitive fixation in such fractures


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 24 - 24
19 Aug 2024
Dagneaux L Abdel MP Sierra RJ Lewallen DG Trousdale RT Berry DJ
Full Access

Angular proximal femoral deformities increase the technical complexity of primary total hip arthroplasties (THAs). The goals were to determine the long-term implant survivorship, risk factors, complications, and clinical outcomes of contemporary primary THAs in this difficult cohort. Our institutional total joint registry was used to identify 119 primary THAs performed in 109 patients with an angular proximal femoral deformity between 1997 and 2017. The deformity was related to previous femoral osteotomy in 85%, and developmental or metabolic disorders in 15%. 53% had a predominantly varus angular deformity. The mean age was 44 years, mean BMI was 29 kg/m. 2. , and 59% were female. An uncemented metaphyseal fixation stem was used in 30%, an uncemented diaphyseal fixation stem in 28%, an uncemented modular body stem with metaphyseal fixation sleeve in 24%, and a cemented stem in 18%. Simultaneous corrective femoral osteotomy was performed in 18%. Kaplan-Meier survivorships and Harris hip scores were reported. Mean follow-up was 8 years. The 10-year survivorships free of femoral loosening, aseptic femoral revision, any revision, and any reoperation were 95%, 93%, 90% and 88%, respectively. Revisions occurred in 13 hips for: aseptic femoral component loosening (3), stem fracture (2), dislocation (2), aseptic acetabular loosening (2), polyethylene liner exchange (2), and infection (2). Preoperative varus angular deformities were associated with a higher risk of any revision (HR 10, p=0.03), and simultaneous osteotomies with a higher risk of any reoperation (HR 3.6, p=0.02). Mean Harris hip scores improved from 52 preoperatively to 82 at 10 years (p<0.001). In the largest series to date of primary THAs in patients with angular proximal femoral deformities, we found a good 10-year survivorship free from any revision. Varus angular deformities, particularly those treated with a simultaneous osteotomy due to the magnitude or location of the deformity, had a higher reoperation rate. Keywords: Proximal femoral deformity; dysplasia; femoral osteotomy; survivorship; revision. Level of evidence: Level III, comparative retrospective cohort


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 52 - 52
1 Feb 2021
De Grave PW Luyckx T Claeys K Gunst P
Full Access

Purpose. Various alignment philosophies for total knee arthroplasty (TKA) have been described, all striving to achieve excellent long-term implant survival and good functional outcomes. In recent years, in search of higher functionality and patient satisfaction, a shift towards more patient-specific alignment is seen. Robotics is the perfect technology to tailor alignment. The purpose of this study was to describe ‘inverse kinematic alignment’ (iKA) technique, and to compare clinical outcomes of patients that underwent robotic-assisted TKA performed by iKA versus adjusted mechanical alignment (aMA). Methods. The authors analysed the records of a consecutive series of patients that received robotic assisted TKA with iKA (n=40) and with aMA (n=40). Oxford Knee Score (OKS) and satisfaction on a visual analogue scale (VAS) were collected at a follow-up of 12 months. Clinical outcomes were assessed according to patient acceptable symptom state (PASS) thresholds, and uni- and multivariable linear regression analyses were performed to determine associations of OKS and satisfaction with 6 variables (age, sex, body mass index (BMI), preoperative hip knee ankle (HKA) angle, preoperative OKS, alignment technique). Results. The iKA and aMA techniques yielded comparable outcome scores (p=0.069), with OKS respectively 44.6±3.5 and 42.2±6.3. VAS Satisfaction was better (p=0.012) with iKA (9.2±0.8) compared to aMA (8.5±1.3). The number of patients that achieved OKS and satisfaction PASS thresholds was significantly higher (p=0.049 and p=0.003, respectively) using iKA (98% and 80%) compared to aMA (85% and 48%). Knees with preoperative varus deformity, achieved significantly (p=0.025) better OKS using iKA (45.4±2.0) compared to aMA (41.4±6.8). Multivariable analyses confirmed better OKS (β=3.1; p=0.007) and satisfaction (β=0.73; p=0.005) with iKA. Conclusions. The results of this study suggest that iKA and aMA grant comparable clinical outcomes at 12-months follow-up, though a greater proportion of knees operated by iKA achieved the PASS thresholds for OKS and satisfaction. Notably. in knees with preoperative varus deformity, iKA yielded significantly better OKS and satisfaction than aMA


Aims. The purpose of this study was to compare the clinical and radiographic outcomes of total ankle arthroplasty (TAA) in patients with pre-operatively moderate and severe arthritic varus ankles to those achieved for patients with neutral ankles. Patients and Methods. A total of 105 patients (105 ankles), matched for age, gender, body mass index, and follow-up duration, were divided into three groups by pre-operative coronal plane tibiotalar angle; neutral (< 5°), moderate (5° to 15°) and severe (> 15°) varus deformity. American Orthopaedic Foot and Ankle Society (AOFAS) ankle-hindfoot score, a visual analogue scale (VAS), and Short Form (SF)-36 score were used to compare the clinical outcomes after a mean follow-up period of 51 months (24 to 147). Results. The post-operative AOFAS, VAS scores, range of movement and complication rates did not significantly differ among three groups. However, there was less improvement in the SF-36 score of the severe varus group (p = 0.008). The mean post-operative tibiotalar alignment was 2.6° (0.1° to 8.9°), 3.1° (0.1° to 6.5°) and 4.6° (1.0° to 10.6°) in the neutral, moderate and severe groups respectively. Although the severe varus group showed less corrected alignment than the neutral group, the mean tibiotalar angles of the three groups were within neutral alignment. Conclusion. TAA for moderate and severe varus arthritic deformity showed similar satisfactory clinical and radiographic outcomes as those obtained by patients in the neutral group when post-operative neutral alignment was achieved. Cite this article: Bone Joint J 2017;99-B:1335–42


Bone & Joint Open
Vol. 2, Issue 3 | Pages 174 - 180
17 Mar 2021
Wu DY Lam EKF

Aims. The purpose of this study is to examine the adductus impact on the second metatarsal by the nonosteotomy nonarthrodesis syndesmosis procedure for the hallux valgus deformity correction, and how it would affect the mechanical function of the forefoot in walking. For correcting the metatarsus primus varus deformity of hallux valgus feet, the syndesmosis procedure binds first metatarsal to the second metatarsal with intermetatarsal cerclage sutures. Methods. We reviewed clinical records of a single surgical practice from its entire 2014 calendar year. In total, 71 patients (121 surgical feet) qualified for the study with a mean follow-up of 20.3 months (SD 6.2). We measured their metatarsus adductus angle with the Sgarlato’s method (SMAA), and the intermetatarsal angle (IMA) and metatarsophalangeal angle (MPA) with Hardy’s mid axial method. We also assessed their American Orthopaedic Foot & Ankle Society (AOFAS) clinical scale score, and photographic and pedobarographic images for clinical function results. Results. SMAA increased from preoperative 15.9° (SD 4.9°) to 17.2° (5.0°) (p < 0.001). IMA and MPA corrected from 14.6° (SD 3.3°) and 31.9° (SD 8.0°) to 7.2° (SD 2.2°) and 18.8° (SD 6.4°) (p < 0.001), respectively. AOFAS score improved from 66.8 (SD 12.0) to 96.1 (SD 8.0) points (p < 0.001). Overall, 98% (119/121) of feet with preoperative plantar calluses had them disappeared or noticeably subsided, and 93% (113/121) of feet demonstrated pedobarographic medialization of forefoot force in walking. We reported all complications. Conclusion. This study, for the first time, reported the previously unknown metatarsus adductus side-effect of the syndesmosis procedure. However, it did not compromise function restoration of the forefoot by evidence of our patients' plantar callus and pedobarographic findings. Level of Clinical Evidence: III. Cite this article: Bone Jt Open 2021;2(3):174–180


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_5 | Pages 45 - 45
1 Apr 2022
Chaudhary M Sagade B Ankleshwaria T Lakhani P Chaudhary S Chaudhary J
Full Access

Introduction. We assessed the role of four different High Tibial osteotomies (HTOs) for medial compartment osteoarthritis of knee (MCOA): Medial Opening Wedge High Tibial Osteotomy (MOWHTO), Focal Dome Osteotomy with Ilizarov Fixator (FDO-I), intra-articular, Tibial Condylar Valgus Osteotomy with plating (TCVO-P) and intra-articular plus extra-articular osteotomy with Ilizarov(TCVO-I); in correcting three deformity categories: primary coronal plane varus measured by Mechanical Axis deviation (MAD), secondary intra-articular deformities measured by Condylar Plateau Angle (CPA) and Joint Line Convergence Angle (JLCA), and tertiary sagittal, rotational and axial plane deformities in choosing them. Materials and Methods. We retrospectively studied HTOs in 141 knees (126 patients). There were 58, 40, 26, and 17 knees respectively in MOWHTO, FDO-I, TCVO-P and TCVO-I. We measured preoperative (bo) And postoperative (po) deformity parameters. Results. Average age was 56.1, average follow-up was 44.6 months. Mean bo-MAD in MOWHTO, FDO-I, TCVO-P, and TCVO-I were 8.8, −14.7, −11.5, −30.8% respectively. po-MAD was close to Fujisawa point in all except TCVO-P (45.2%). CPA corrected from −4.9° to −1.4° (p=0.02)and JLCA from 5.6° to 3.2° (p=0.001); CPA was better corrected by Intra-articular osteotomies (p=0.01). Conclusions. MOWHTO corrects isolated mild primary varus deformities (bo-MAD≥ 0%). Primary varus (bo-MAD= −25% −0%) with associated tertiary sagittal, rotational, or axial deformities, without secondary intra-articular deformities needed FDO-I. Primary varus (bo-MAD= −25% −0%) with secondary intra-articular deformities, without tertiary deformities, corrected well with TCVO-P. TCVO-I corrects severe primary varus (bo-MAD< −25%) with large deformities in secondary and tertiary categories


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_29 | Pages 26 - 26
1 Aug 2013
Hobbs H Magnussen R Demey G Lustig S Servien E Neyret P
Full Access

Background:. Appropriate positioning of total knee arthroplasty (TKA) components is a key concern of surgeons. Post-operative varus alignment has been associated with poorer clinical outcome scores and increased failure rates. However, obtaining neutral alignment can be challenging in cases with significant pre-operative varus deformity. Questions:. 1) In patients with pre-operative varus deformities, does residual post-operative varus limb alignment lead to increased revision rates or poorer outcome scores compared to correction to neutral alignment? 2) Does placing the tibial component in varus alignment lead to increased revision rates and poorer outcome scores? 3) Does femoral component alignment affect revision rates and outcome scores? 4) Do these findings change in patients with at least 10 degrees of varus alignment pre-operatively?. Patients and Methods:. 553 patients undergoing TKA for varus osteoarthritis were identified from a prospective database. Patients were divided into those with residual post-operative varus and those with neutral post-operative alignment. Revision rates and clinical outcome scores were compared between the two groups. Revision rates and outcome scores were also assessed based on post-operative component alignment. The analysis was repeated in a subgroup of patients with at least 10 degrees of pre-operative varus. Results:. At a mean follow-up of 5.7 years (range: 2 to 19.8 years), residual varus deformity did not yield significantly increased revision rates or poorer outcome scores. Varus tibial component alignment and valgus femoral component alignment were associated with poorer outcome scores. Results were similar in the significant varus subgroup. Conclusions:. Residual post-operative varus deformity after TKA does not yield poorer clinical results in patients with pre-operative varus deformities, providing tibial component varus is avoided


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 127 - 127
1 Nov 2021
Batailler C Lording T Naaim A Servien E Cheze L Lustig S
Full Access

Introduction and Objective. In recent studies, robotic-assisted surgical techniques for unicompartmental knee arthroplasty (UKA) have demonstrated superior implant positioning and limb alignment compared to a conventional technique. However, the impact of the robotic-assisted technique on clinical and functional outcomes is less clear. The aim of this study was to compare the gait parameters of UKA performed with conventional and image-free robotic-assisted techniques. Materials and Methods. This prospective, single center study included 66 medial UKA, randomized to a robotic-assisted (n=33) or conventional technique (n=33). Gait analysis was performed on a treadmill at 6 months to identify changes in gait characteristics (walking speed, each degree-of-freedom: flexion–extension, abduction–adduction, internal-external rotation and anterior-posterior displacement). Clinical results were assessed at 6 months using the IKS score and the Forgotten Joint Score. Implants position was assessed on post-operative radiographs. Results. Post-operatively, the whole gait cycle was not significantly different between groups. In both groups there was a significant improvement in varus deformity between the pre- and post-operative gait cycle. There was no significant difference between the two groups in clinical scores, implant position, revision and complication rates. Conclusions. No difference of gait parameters could be identified between medial UKA performed with image-free robotic-assisted technique or with conventional technique


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 562 - 562
1 Dec 2013
Tsujimoto T Kadoya Y
Full Access

INTRODUCTION:. It has been reported that rotational deformity is present in varus osteoarthritis (OA) of the knee and the tibia rotates externally as the varus deformity progresses. Although many studies addressed the rotational alignment of the femoral and tibial component in total knee arthroplasty (TKA), the pre-and postoperative changes of the rotational alignment in varus OA knee has not been evaluated. The purpose of this study was to quantitatively analyze the alteration of rotational deformity after TKA for the varus OA knee. METHODS:. Between July 2011 and December 2012, 157 patients (159 knees) with primary varus OA knee undergoing TKA were included. A mobile-bearing, posterior stabilized knee prosthesis was implanted with cement in all patients. Rotational deformities were evaluated with computed tomography (CT) before and after the operation. On the selected CT slices, the relative rotational position of the femur and tibia was quantified as an angle between the line perpendicular to the surgical epicondylar axis of the femur and the line connecting the tibial tubercle tip and the geometric center of the tibia. The knees were divided into three groups according to the preoperative varus deformity (Group I; 0–8° varus, n = 78, Group II; 9–17 ° varus, n = 71 and Group III; 18 ° or greater varus, n = 10) and the difference among the groups were statistically analyzed. RESULTS:. Preoperatively, the average rotational deformity was 6.4 ± 0.9 ° (mean ± SE) external rotation of the tibia relative to the femur. This was significantly corrected to 0.9 ± 0.6 ° external rotation of tibia postoperatively (p < 0.05). The amount of preoperative rotational deformities were not significantly different among the groups (Group I; 6.6 ± 0.9 ° e.r.(external rotation of tibia), Group II; 4.3 ± 1.8 ° e.r., Group III; 5.7 ± 4.1 ° e.r.). Although the rotational deformity wasã��corrected to almost neutral in Group I and II (1.1 ± 0.4 ° e.r. and 1.4 ± 0.9 ° e.r. respectively), there was a tendency with postoperative internal rotation of tibia in Group III (4.2 ± 2.4 ° internal rotation of tibia, p = 0.10). DISCUSSION AND CONCLUSION:. This study has demonstrated that rotational deformity in varus OA knee is significantly corrected after TKA. The knees with less preoperative varus deformity are more likely to be corrected to neutral but substantial rotational mismatch (internal rotation of the tibia) remains in the knees with severe varus deformity. This might be related to the amount of the medial soft tissue release required to obtain correct limb alignment. The surgeons who perform TKA should be aware of the information and carefully check the relative position of the tibial and femoral components especially in the knees with severe varus deformity


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 9 - 9
1 Mar 2017
Sim J Lee B
Full Access

Introduction. The acquisition of proper soft tissue balance is one of the crucial factors for preventing long-term failure and obtaining successful treatment outcomes of total knee arthroplasty (TKA). Medial collateral ligament (MCL) release is essential for encountering severe varus deformity. However, conventional subperiosteal MCL release for severe varus deformity can cause the complete detachment of MCL. This study compared retrospectively the results of complete distal release of the MCL with those of medial epicondylar osteotomy during ligament balancing in varus knee TKA. Methods. This study retrospectively reviewed 9 cases of complete distal release of the MCL (group 1) and 11 cases of medial epicondylar osteotomy (group 2) which were used to correct severe medial contracture. The clinical assessment was based on the American Knee Society knee score (KS), function score (FS), and the ROM preoperatively and at the final follow-up. For the radiological assessment, the femorotibial angle was measured based on the whole lower extremity radiograph preoperatively and at the final follow-up. Three months after surgery and at the final follow-up, medial instability was assessed using the valgus stress radiographs, in which the contralateral side was compared using Telos (Telos, Weterstadt, Germany). Results. The mean follow-up periods were 46.5 months (range, 36 to 78 months) and 39.8 months (range, 32 to 65 months), respectively. There were no significant differences in the clinical results between the two groups. However, the valgus stress radiograph revealed significant differences in medial instability. (Figure 1) In complete distal release of the MCL, some stability was obtained by repair and bracing but the medial instability could not be removed completely. (Figure 1). Conclusions. This study showed that medial instability could not be removed completely in the complete MCL distal release group. Medial epicondylar osteotomy for a varus deformity in TKA could provide constant medial stability and be a useful ligament balancing technique. For any figures or tables, please contact authors directly (see Info & Metrics tab above).


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 36 - 36
1 Dec 2021
Hussain A Rohra S Hariharan K
Full Access

Abstract. Background. Tibiotalocalcaneal (TTC) fusion is indicated for severe arthritis, failed ankle arthroplasty, avascular necrosis of talus and as a salvage after failed ankle fixation. Patients in our study had complex deformities with 25 ankles having valgus deformities (range 50–8 degrees mean 27 degrees). 12 had varus deformities (range 50–10 degrees mean 26 degrees) 5 ankles an accurate measurement was not possible on retrospective images. 10 out of 42 procedures were done after failed previous surgeries and 8 out of 42 had talus AVN. Methods. Retrospective case series of patients with hindfoot nails performed in our centre identified using NHS codes. Total of 41 patients with 42 nails identified with mean age of 64 years. Time to union noted from X-rays and any complications noted from the follow-up letters. Patients contacted via telephone to complete MOXFQ and VAS scores and asked if they would recommend the procedure to patients suffering similar conditions. 17 patients unable to fill scores (5 deceased, 4 nails removed, 2 cognitive impairment and 6 uncontactable). Results. In our cohort 33/38 of hindfoot nails achieved both subtalar and ankle fusion in a mean time of 7 months. 25 patients with 26 nails had mean follow up with post op scores of 4 years. Their Mean MOXFQ scores were (Pain: 12.8 Walking: 12 Social: 8) and visual analogue pain score was 3. 85% of patients wound recommend this surgery for a similar condition. 20 complications with 15 requiring surgery(5 screw removals, 1 percutaneous drilling, 1 fusion site injection, 8 nail revisions). Conclusion. In our experience hindfoot nail TTC fusion reliably improves the function of patients with severe symptoms in a variety of pathophysiological conditions and complex deformities. Most of our patients would recommend this procedure. There is a lack of studies with long-term follow-up


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 68 - 68
1 Dec 2021
Bowd J Williams D de Vecchis M Wilson C Elson D Whatling G Holt C
Full Access

Abstract. Objectives. Principal Component Analysis (PCA) is a useful method for analysing human motion data. The objective of this study was to use PCA to quantify the biggest variance in knee kinematics waveforms between a Non-Pathological (NP) group and individuals awaiting High Tibial Osteotomy (HTO) surgery. Methods. Thirty knees (29 participants) who were scheduled for HTO surgery were included in this study. Twenty-eight NP volunteers were recruited into the study. Human motion analysis was performed during level gait using a modified Cleveland marker set. Subjects walked at their self-selected speed for a minimum of 6 successful trials. Knee kinematics were calculated within Visual3D (C-Motion). The first three Principal Components (PCs) of each input variable were selected. Single-component reconstruction was performed alongside representative extremes of each PC to aid interpretation of the biomechanical feature reconstructed by each component. Results. Pre-operatively patient demographics included (age: 50.70 (8.71) years; height: 1.75 (.11) m; body mass: 90.57 (20.17) kg; mTFA: 7.75 (3.72) degrees varus; gait speed: 1.06 (0.23) m/s). The HTO cohort was significantly older and had a higher mass than the NP control participants. For knee kinematics the first three PCs explained 88%, 95% and 89% of the sagittal, frontal, and transverse planes, respectively. The main variances can be explained by sagittal plane magnitude differences, peak swing is associated with toe-off, a reduced knee flexion angle is associated with a longer time spent in stance, pre-HTO remain adducted during stance and pre-HTO patients remain more externally rotated during stance and latter part of swing. Conclusions. This study has introduced PCA in trying to better understand the biomechanical differences between a control group and a cohort with medial knee osteoarthritis varus deformity awaiting HTO. Further analysis will be undertaken using PCA comparing pre- and post-surgery which will be of importance in clinical decision making


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 454 - 455
1 Nov 2011
Kim R Scuderi G Dennis D
Full Access

Introduction: Total knee arthroplasty (TKA) in patients with skeletal dysplasia is challenging due to the anatomic variances and deformities. The purpose of this review is to understand the technical issues involved in treating these patients. Methods: Clinical notes, operative reports, and radiographs were retrospectively reviewed of 12 knees in 8 patients: 3 achondroplasia patients (one with bilateral 10° varus deformities, one with a 30° varus deformity in one knee and 25° varus deformity in the other knee, one with a 14° varus deformity); 3 multiple hereditary exostosis patients (one with bilateral 45° valgus deformities, one with a 45° valgus deformity in one knee and 15° valgus deformity in the other, one with a 11° valgus deformity); and 2 osteogenesis imperfecta patients (one with a 25° varus deformity, one with a 17° valgus deformity). Results: Surgical exposure required preoperative placement of soft-tissue expanders to avoid wound complications (1 knee), quadriceps snip (2 knees), and hardware removal (1 knee). Intraoperative balancing of the knee was more complex requiring a lateral epicondylar osteotomy (3 knees), medial release (6 knees), lateral retinacular release (6 knees), and proximal realignment to improve patellar tracking (1 knee). 5 knees required a constrained insert, 2 required tibial augments, one required use of cement and screw technique, and one required modification of an all-polyethylene tibia to accommodate the deformed tibial anatomy. 2 knees required custom tibial components. Complications included 2 peroneal nerve palsies which resolved 3 months postoperatively. Range of motion preoperatively averaged 103° (range 45 to 130°) and 100° postoperatively (range 85 to 120°). All patients were pain-free at their last followup (average follow-up 3.9 years). Conclusion: Special considerations must be made regarding surgical exposure, ligament balancing, implant selection, and anticipation of complications due to the unusual deformities when performing TKA in skeletal dysplasia patients


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 41 - 41
1 May 2016
Sim J Lee B
Full Access

Severely varus deformed knees are common in Asian countries due to lifestyles such as sitting on the floor. MCL release is essential for encountering severe varus deformity. However, conventional subperiosteal MCL release for severe varus deformity can cause the complete detachment of MCL and it can induce mid-flexion instability. We performed medial epicondylar osteotomy when conventional subperiosteal MCL release couldn't resolve tight medial gap of severely varus deformity. The epicondyle is reattached with #5 nonabsorbable sutures or screws (figure 1). This study evaluated the clinical and radiologic results of medial epicondylar osteotomy for severe varus TKA. From 2004 to 2012, 63 cases (of total 909 cases of primary TKA, 6.9%) with a minimum follow-up of 2 years (24 to 116 months) were included in this study. Two cases of 63 cases were excluded due to the loss of follow up. Intraoperative medial and lateral gap difference in flexion and extension was accepted at less than 2 mm. Average follow up was 50.6±29.8 months (24–116 months). Average clinical knee score was 35.5±17.1 preoperatively and 89.1±8.4 postoperatively. Average function score improved from 48.7±16.0 preoperatively to 88.6±8.0 postoperatively. Average flexion contracture was reduced from 8.5±9.8° preoperatively to 1.0±2.3° postoperatively and range of motion improved from 112.0±21.8° preoperatively to 118.9±13.3° postoperatively. Preoperative femorotibial angle was average varus 10.4±5.7° and mechanical axis was average varus 16.7±5.6°. Postoperative femorotibial angle was average valgus 5.5±3.4° and mechanical axis was average varus 1.0±4.1° (figure 2). Valgus stress radiographs showed average 1.6±0.7 mm gap (femoral implant to liner) and varus stress radiographs revealed average 2.7±1.5 mm gap. The difference with medial and lateral gaps was average 1.2±1.1 mm (figure 2). Unions of bony wafer were 39 bony and 22 fibrotic unions (figure 3). According to the difference with medial and lateral gaps, bony union was average 1.2±1.2 mm and fibrotic union was average 1.2±0.9 mm. There were no significant differences between bony and fibrotic union groups. The clinical and radiological results of medial epicondylar osteotomy are satisfactory in severe varus TKA. The stability with bony and fibrotic unions is not different


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 63 - 63
1 Nov 2021
Visscher L White J Tetsworth K McCarthy C
Full Access

Introduction and Objective. Malunion after trauma can lead to coronal plane malalignment in the lower limb. The mechanical hypothesis suggests that this alters the load distribution in the knee joint and that that this increased load may predispose to compartmental arthritis. This is generally accepted in the orthopaedic community and serves as the basis guiding deformity correction after malunion as well as congenital or insidious onset malalignment. Much of the literature surrounding the contribution of lower limb alignment to arthritis comes from cohort studies of incident osteoarthritis. There has been a causation dilemma perpetuated in a number of studies - suggesting malalignment does not contribute to, but is instead a consequence of, compartmental arthritis. In this investigation the relationship between compartmental (medial or lateral) arthritis and coronal plane malalignment (varus or valgus) in patients with post traumatic unilateral limb deformity was examined. This represents a specific niche cohort of patients in which worsened compartmental knee arthritis after extra-articular injury must rationally be attributed to malalignment. Materials and Methods. The picture archiving system was searched to identify all 1160 long leg x ray films available at a major metropolitan trauma center over a 12-year period. Images were screened for inclusion and exclusion criteria, namely patients >10 years after traumatic long bone fracture without contralateral injury or arthroplasty to give 39 cases. Alignment was measured according to established surgical standards on long leg films by 3 independent reviewers, and arthritis scores Osteoarthritis Research Society International (OARSI) and Kellegren-Lawrence (KL) were recorded independently for each compartment of both knees. Malalignment was defined conservatively as mechanical axis deviation outside of 0–20 mm medial from centre of the knee, to give 27 patients. Comparison of mean compartmental arthritis score was performed for patients with varus and valgus malalignment, using Analysis of Variance and linear regression. Results. In knees with varus malalignment there was a greater mean arthritis score in the medial compartment compared to the contralateral knee, with OARSI scores 5.69 vs 3.86 (0.32, 3.35 95% CI; p<0.05) and KL 2.92 vs 1.92 (0.38, 1.62; p<0.005). There was a similar trend in valgus knees for the lateral compartment OARSI 2.98 vs 1.84 (CI −0.16, 2.42; p=0.1) and KL 1.76 vs 1.31 (CI −0.12, 1.01; p=0.17), but the evidence was not conclusive. OARSI arthritis score was significantly associated with absolute MAD (0.7/10mm MAD, p<0.0005) and Time (0.6/decade, p=0.01) in a linear regression model. Conclusions. Malalignment in the coronal plane is correlated with worsened arthritis scores in the medial compartment for varus deformity and may similarly result in worsened lateral compartment arthritis in valgus knees. These findings support the mechanical hypothesis that arthritis may be related to altered stress distribution at the knee, larger studies may provide further conclusive evidence