Aims. Highly cross-linked polyethylene (HXLPE) greatly reduces wear in total hip arthroplasty, compared to conventional polyethylene (CPE). Cross-linking is commonly achieved by irradiation. This study aimed to compare the degree of cross-linking and in vitro wear rates across a cohort of retrieved and unused polyethylene cups/liners from various brands. Methods. Polyethylene
Aims. Isolated
Dislocation is one of the most common and disturbing complications after total hip arthroplasty (THA). This is a challenging situation, especially in patients with a high risk of dislocation. Constrict
There are several clinical scenarios to consider cementing an
There are several clinical scenarios to consider cementing an
The protective effect of lipped polyethylene uncemented
HXLPE
Introduction. HXLPE
Aims. The primary outcome was investigating differences in wear, as measured by femoral head penetration, between cross-linked vitamin E-diffused polyethylene (vE-PE) and cross-linked polyethylene (XLPE)
Introduction. Retrieval investigations have shown that cracking or rim failure of polyethylene hip liners may occur at the superior aspect of the liner, in the area that engages the locking ring of the shell. 1. Failure could occur due to
Introduction. HXLPE
Introduction. Periprosthetic osteolysis is considered the main problem limiting the longevity and clinical success of artificial hip joints. Aiming at the reduction of the wear particles and the elimination of periprosthetic osteolysis, we have recently developed a novel articular cartilage-inspired technology for surface modification (Aquala® technology) with poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) grafting (100–150 nm in thickness) for an
Previous studies suggested that the shallow Ultra High Molecular Weight Polyethylene (UHMWPE)
Hip instability is one of the most common complications after total hip arthroplasty (THA). Among the possible techniques to treat and prevent hip dislocation, the use of constrained liners is a well-established option. However, there is concern regarding the longevity of these devices due to higher mechanical stress caused by limited hip motion. The primary aim of this paper is to analyze the failure rate of a specific constrained liner in a series of consecutive cases. This study is a retrospective consecutive case series of THA and revision hip arthroplasty (RHA), in which a constrained polyethylene insert was used to treat or prevent hip instability. Patients were divided in 3 different groups (THA for hip fracture, THA for osteoarthrosis, and RHA). Survival analysis was performed for failure, defined as at least one episode of hip dislocation or radiographical signs of acetabular loosening. Logistical regression was used to investigate risk factors for failure. A total of 103 patients were included in the study. Fourteen patients (13,6%) were THA for osteoarthrosis, 60 (58,3%) were THA for hip fracture, and 29(28,2%) were RHA. The median follow-up was 28 months (ranging 12 − 173 months). Failure occurred in 4 cases (3,9%) comprehending 2 dislocations (1,9%) and 2 early acetabular loosening (1,9%). Amongst the groups, there were no cases of failures in the THA due to osteoarthrosis, in the THA for hip fracture there were 3 cases (5%) and in the RHA one case (3,4%). Failure-free survival was not statistically different between groups. There were no risk factors statistically related to failure. The use of constrained acetabular insert to prevent or treat instability achieved an adequate survival time with a low rate of complications. Further studies are necessary to corroborate our findings.
The Trident acetabular system is the second most common cementless cup implanted in the UK. Recent studies have shown that malseating of the liner can be as high as 16.4%. We felt this was very high and were prompted to review our series and early clinical outcomes. We reviewed 118 hips in 110 patients, implanted between from 2005-2007. We reviewed initial post operative X-rays using the technique described by Howcroft to identify malseating. The posterior approach was used in all cases. All cups were Trident PSL and all 85 Patients had OA, 10 RA, 8 AVN, 5 DDH, 3 OA post trauma, 2 Perthes, 2 Psoriatic Arthritis, 3 other. We only identified 3 malseated cups in 118 hips. 2 were in patients with OA secondary to trauma and 1 in primary OA. The rate of malseating for trainees operating was 5 % and only 1% when consultants were operating. There were no adverse events in these patients. No-one required revision. Oxford Hip Score (OHS) improved from 47 pre-op to 20 post op. This was compared to 47 and 22 in the correctly seated group (115 cases). Surprisingly the subgroup with the poorest OHS at 1 year had surgery for DDH, with a mean OHS of 31. The reasons for this are unclear. Contrary to other studies our malseating rate is very low. We do not feel that malseating is a problem with Trident if adequate exposure is obtained. In those patients with sclerotic bone, we suggest over reaming the rim of the acetabulum by 1mm to avoid excess deformation of the shell which may lead to difficulty with seating the liner. We suggest trainees are supervised closely when using Trident.
Isolated liner and head exchange procedure has been an established treatment method for polyethylene wear and osteolysis when the acetabular component remains well-fixed. In this study, its mid-term results were evaluated retrospectively in 34 hips. Among the consecutive patients operated upon from September 1995, 2 patients (3 hips) were excluded because of inadequate follow-up and the results of remaining 34 hips of 34 patients were evaluated. They were 20 men and 14 women with a mean age of 49 years at the time of index surgery. Conventional polyethylene liner was used in 26 cases and highly cross-linked polyethylene liner was used in 8 cases. In 3 cases, liner was cemented in the metal shell because compatible liner could not be used. After a minimum follow-up of 5 years (range, 5∼20.2), re-revision surgery was necessary in 10 cases (29.4%); 8 for wear and osteolysis, 2 for acetabular loosening. In all re-revision cases, conventional polyethylene was used. There was no failure in the cases in which highly cross-linked polyethylene was used. There was no case complicated with dislocation. The results of this study suggest more promising results with the use of highly cross-linked polyethylene in isolated liner exchange.
Polyethylene liners of modular acetabular components wear and sometimes need to be replaced, despite the metal shell being well fixed. Replacing the liner is a relatively simple procedure, but very little is known of the outcome of liner revision. We prospectively followed up 1126 Harris-Gallante 1 metal backed, uncemented cups for between 9 and 19 years. 38 (3.4%) liners out of 1126 acetabular components wore and required revision. These revisions were then followed up for a mean of 4.8 years. The rate of dislocation was 28.9%. Nine of the dislocations were single dislocations and 2 were recurrent. The overall re-revision rate was 3 out of 38 total hip replacements (7.9%) at a mean follow up of 4.8 years. This gives a 92.1% survivorship at just under 5 years. In isolated liner revision we had a complication rate of 23%. In liner revision combined with stem revision we had a complication rate of 48%. Possible reasons for high dislocation rates are discussed. Leaving the well fixed acetabular shell in-situ leads to an increased risk of instability. However, this needs to be balanced against the otherwise low complication rate for liner revision. Patients should be consented accordingly
Previous studies suggested the lack of capture wall of acetabular Ultra High Molecular Weight Polyethylene (UHMWPE) liner can significantly increase the risk of hip joint dislocation. To date, the dislocation studies have been focused on the femoral neck impingement models. The purpose of this study was to identify a new Dislocating Force (DF) generated by rim directed joint force alone and investigate the factors to affect the magnitudes of the DF. The 3 D Finite Element Analysis (FEA) models were constructed by (30) 10 mm thick UHMWPE liners with six inner bearing diameters ranging from 22 mm to 44 mm and five capture wall heights in each bearing size from 0 mm to 2 mm. A load of 2 446 N was applied through the corresponding CoCr femoral head to the rim of the liner. The DF was recorded as a function of capture wall height and head diameter. The results were verified by the physical tests of two 28 mm head bearing liners with 0 and 1.5 mm capture wall heights respectively. The results showed that the highest DF was 1 269N in 0 mm capture wall and 22 mm head. The lowest DF was 171 N in 2 mm capture wall and 44 mm head. The DF decreased as the capture wall and head size increased. When capture wall increased from 0 mm to 1 mm, the DF was reduced more than 50%. Two experimental data points were consistent with the trend of DF curve found in the FEA. We concluded that the new intrinsic dislocating force DF can be induced by the rim directed joint loading force alone and can reach as high as 51% of the femoral loading force. A capture wall height above 1mm can effectively reduce DF to less than 25% of the joint force. In addition, the larger head diameter also resulted in less DF generation.
Polyethylene contact stresses have been shown to correlate with wear in total hip arthroplasty (THA). Several liner designs have been introduced in an attempt to increase stability or reduce impingement and increase range of motion. This study analyzed the effect of liner design on range of motion (ROM) and PE contact stresses in a finite element model (FEM). FEMs of four liner designs were generated: Generic was modelled as a simple hemisphere, Chamfer had a wide chamfer on the inner edge of the liner to increase ROM, Highwall had an extended lip to increase stability, and Anteverted created a 20° anteversion with lat-eralisation of the centre of rotation. With the liners in varying positions of abduction and anteversion, physiologic loads were applied through the femoral head. Hip ROM was measured by rotating the head and neck in different directions until prosthetic impingement. Significant differences in ROM were seen relative to the Generic liner. Chamfer increased ROM by mean 16%. Highwall reduced ROM by mean 12%. Anteverted increased flexion by 17% but decreased extension, abduction, and external rotation. Contact stresses were also significantly affected by liner design and acetabular orientation. Overall for the same acetabular position, contact stresses were higher for Chamfer and lower for Highwall and Anteverted. These results underline the complex interaction between cup design, hip stability, range of motion and contact stresses. Design features that increase stability tend to reduce contact stresses and ROM, while those features that increase ROM, tend to increase contact stresses. This data can help the surgeon match liner design to specific patient requirements.
Introduction. Femoral neck impingement occurs clinically in total hip replacements (THR) when the