Directly molding IB, MG and AGC UHMWPE
Aims. Patient dissatisfaction is not uncommon following primary total knee arthroplasty. One proposed method to alleviate this is by improving knee kinematics. Therefore, we aimed to answer the following research question: are there significant differences in knee kinematics based on the design of the
INTRODUCTION. Postoperative functional limitations after Total Knee Arthroplasty (TKA) are caused, in part, by a mismatch between a patient's natural anatomy and conventional “off-the-shelf” implants. To address this, we propose a new concept combining off-the-shelf femur and tibia implants with custom polyethylene
Introduction. A
A
Aims. Mobile-bearing unicompartmental knee arthroplasty (UKA) with a flat tibial plateau has not performed well in the lateral compartment, leading to a high rate of dislocation. For this reason, the Domed Lateral UKA with a biconcave bearing was developed. However, medial and lateral tibial plateaus have asymmetric anatomical geometries, with a slightly dished medial and a convex lateral plateau. Therefore, the aim of this study was to evaluate the extent at which the normal knee kinematics were restored with different
Artificial knee joints are continuously loaded by higher contact stress than artificial hip joints due to a less conformity and much smaller contact area between the femoral and tibial surfaces. The higher contact stress causes severe surface damage such as pitting or delamination of polyethylene (PE)
Introduction. Ability to accommodate increased range of motion is a design objective of many modern TKA prostheses. One challenge that any “high-flex friendly” prosthesis has to overcome is to manage the femorotibial contact stress at higher flexion angle, especially in the polyethylene
Introduction. Total knee arthroplasty (TKA) prostheses are semi-constrained artificial joints. Femorotibial constraint is a key property of a TKA prosthesis and should be designed to match the device's intended function. Cruciate Retaining (CR) prostheses are usually used for patients with a functioning posterior cruciate ligament (PCL). For patients without a fully functioning PCL, CR-Constrained (CRC) prostheses may be used. A CRC
Purpose: This study develops and validates a technique to quantify polyethylene wear in
To reveal if patient reported knee-related pain, function, quality of life, general health and satisfaction at one year after primary total knee arthroplasty (TKA) is different between patients not being subject to revision surgery and those having had early treatment with open debridement and exchange of the
One third of the world population have a life style to sit sedentary on a floor. Thus far the patients who had undergone TKA surgery loose deep flexion of the knee and various designs of artificial knee joint capable of deep knee flexion have been proposed. Among them, Bi-surface knee prosthesis (Kyocera Inc., Japan) is of special interest because of its unique design with a ball-and-socket joint. Although some patients attained a sedentary sitting with this prosthesis, the X-ray studies revealed that the femoral condyles and
Knee prostheses have widely been used for severely damaged knee with osteoarthritis or articular rheumatism. PS type knee prosthesis is one of typical artificial knee joint systems and characterized by possessing the post-cam structure to stabilize the motion of the knee at large flexion angles. Post is a projection placed on the surface of UHMWPE
The goal of total knee arthroplasty (TKA) is to relieve pain and restore the function of the knee joint. Recently the number of TKA cases in Korea has increased considerably with increase in elderly population and change in life style. Accordingly, demand for TKA design that is capable of better accommodating anatomical dimensions and life styles of Koreans is also on the rise. During the prototype design process for the Korean-TKA, different stem and keel designs of the tibial base plate have been attempted to improve fixation and longevity of the implant. In this study, we conducted a biomechanical analysis of the tibial base plate using finite element analysis (FEA). Specifically, biomechanical effects of insert positioning in the tibia were assessed to investigate the likelihood of tibial fracture and implant loosening due to mal-positioning of the implant. A 3-D finite element(FE) models of the left femur, patella, and tibia were developed from computed tomography (CT) scan data (a normal Korean male, 27 years of age, 70 kg). 2-D truss elements were chosen to represent ligamentous structures such as lateral &
medial collateral ligament, posterior cruciate ligament, patella tendon and patella ligament. Nonlinear elastic materal properties for the soft-tissue structures were also adopted from literatures. The surgical model was then constructed after inserting Korean-TKA prototype in the intact model. Here, the implant was the posterior cruciate ligament retaining type (CR) with the fixed bearing system. To simulate loading on the knee joint in heel strike and toe off positions, 15° and 45° flexions of the femur orientation were simulated under the compressive load of 3.8 and 5.7 times of body weight (BW= 700N), respectively, in a uniform pressure at the horizontal section of the femur. The tibia was assumed to be completely constrained. The surgical position of the
Introduction. In total knee arthroplasty (TKA),
Postoperative functional outcomes and patients’ satisfaction after total knee arthroplasty are associated with postoperative range of motion. Severe deformities require surgical correction such as soft tissue release and appropriate bone resection. The goal of surgery is to correct the contracture and bring the knee to good range of motion. Using gap-balancing technique is one of the major techniques to obtain good range of motion. Although the gaps are well balanced, the thickness of
Numerous studies have reported on the effects of modular insert design on stress at the tibial/femoral articular surface. However, while the
Optimal soft tissue tension maximises function after total knee arthroplasty (TKA). Excessive tension may lead to stiffness and or pain, while inadequate tension can lead to instability. Composite component thickness is a prime determinant of this soft tissue tension. The thickness provided by polyethylene inserts currently allows for a 2–3 mm incremental change. This study analyses the effect of incremental change in polyethyl-ene thickness on soft tissue tension. Computer assisted (Stryker Knee Nav) TKA was performed on 8 cadaveric knee specimens (4 pairs). Kinematic data was collected through the navigation software. The soft tissue tension was analysed by measuring compartmental loads. A validated load cell instrumented
Introduction: Optimal soft tissue tension maximises function after total knee arthroplasty (TKA). Excessive tension may lead to stiffness and or pain, while inadequate tension can lead to instability. Composite component thickness is a prime determinant of this soft tissue tension. The variable component thickness provided by polyethylene inserts generally allows for 2-3 mm incremental change. This study analyses the effect of incremental change in polyethylene thickness on soft tissue tension. Methodology: Computer assisted (Stryker Knee Nav) TKA was performed on 8 cadaveric knee specimens (4 pairs). Kinematic data was collected through the navigation software. The soft tissue tension was analysed by measuring compartmental loads. A validated load cell instrumented