header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

BIOMECHANICAL ANALYSIS OF THE SURGICAL POSITION OF TIBIAL INSERT IN TOTAL KNEE REPLACEMENT: A FINITE ELEMENT ANALYSIS



Abstract

The goal of total knee arthroplasty (TKA) is to relieve pain and restore the function of the knee joint. Recently the number of TKA cases in Korea has increased considerably with increase in elderly population and change in life style. Accordingly, demand for TKA design that is capable of better accommodating anatomical dimensions and life styles of Koreans is also on the rise. During the prototype design process for the Korean-TKA, different stem and keel designs of the tibial base plate have been attempted to improve fixation and longevity of the implant. In this study, we conducted a biomechanical analysis of the tibial base plate using finite element analysis (FEA). Specifically, biomechanical effects of insert positioning in the tibia were assessed to investigate the likelihood of tibial fracture and implant loosening due to mal-positioning of the implant.

A 3-D finite element(FE) models of the left femur, patella, and tibia were developed from computed tomography (CT) scan data (a normal Korean male, 27 years of age, 70 kg). 2-D truss elements were chosen to represent ligamentous structures such as lateral & medial collateral ligament, posterior cruciate ligament, patella tendon and patella ligament. Nonlinear elastic materal properties for the soft-tissue structures were also adopted from literatures. The surgical model was then constructed after inserting Korean-TKA prototype in the intact model. Here, the implant was the posterior cruciate ligament retaining type (CR) with the fixed bearing system. To simulate loading on the knee joint in heel strike and toe off positions, 15° and 45° flexions of the femur orientation were simulated under the compressive load of 3.8 and 5.7 times of body weight (BW= 700N), respectively, in a uniform pressure at the horizontal section of the femur. The tibia was assumed to be completely constrained. The surgical position of the tibial insert was varied from the center either to the medial or to the lateral direction by 3-mm. The peak von mises stresses (PVMS) at the stem and the keel regions of the tibial insert were assessed.

With respect to the central positioning the lateral shift of the tibial plate resulted in higher PVMS than the medial. Particularly, increases of 24.5 %, 29.8%, and 28.4% were observed at the stem, the lateral keel, and the medial keel, respectively, due to lateral mal-positioning of the implant. With the medial shift, on the other hand, PVMS increase remained at around 6% level at the stem and the lateral keel. A decrease of 4.5 % was noted at the medial keel region.

In this study, a computational approach was used to evaluate biomechanical effect of tibial plate positioning on the stress distribution within the implant. The lateral mal-positioning showed more stress concentration than the medial. This may be due to the fact that body weight is transmitted more to the lateral portion of the tibia (5.5:4.5) that is smaller and thinner than its counterpart. These results suggest that the lateral deviation of the implant can be more likely cause TKR loosening and tibial fracture.

Correspondence should be addressed to ISTA Secretariat, PO Box 6564, Auburn, CA 95604, USA. Tel: 1-916-454-9884, Fax: 1-916-454-9882, Email: ista@pacbell.net

Acknowledgement This research was supported by a grant from the Materials & Components Technology R& D Program funded by the Ministry of Commerce, Industry and Energy (10025570) 2007.