Advertisement for orthosearch.org.uk
Results 1 - 20 of 134
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 87 - 87
1 Jan 2017
Basci O Erduran M Acan A Uzun B Karakasli A
Full Access

Basic engineering principles dictate that unplugged screw holes serve as sites of the concentration of stress and the initiation and growth of cracks (1,2). The idea of filling the holes were tested previously in the literature showing promising results (3). However there's either adverse results which might be a design mistake (4). The purpose of this study was to determine if the use of specially designed screw hole inserts in empty locking screw holes improves the strength and failure characteristics of locking plates. Forty two 7-hole locking LC/DCP plates were mounted on cylindric UHMW Polyethylene blocks with a 1-cm gap between blocks, simulating a fracture with comminution and bone loss. 21 plates had a screw hole insert placed in the center hole (centered over the simulated fracture), while 21 of the plates remained empty in the center hole. The plate–block constructs were placed in a mechanical testing machine and subjected to a series of loading conditions. The axial, bending and torsional stiffness and displacements needed for failure of each plate-block construct was calculated. The Statistical analysis was performed by Mann Whitney-U test for independent variables. All plates were then loaded to failure. There were significant difference in the axial load to failure (p=0.017), bending load to failure (p<0.01) and bending diplacements (p<0.01) of the test groups favoring the screw hole insert group as a higher mechanical strength. In conclusion the study demonstrates that the addition of the specially designed locking screw hole insert does significantly change the stength of the locking LC/DCP plates and might be suggested in the clinical application


Bone & Joint Research
Vol. 9, Issue 10 | Pages 645 - 652
5 Oct 2020
Chao C Chen Y Lin J

Aims. To determine whether half-threaded screw holes in a new titanium locking plate design can substantially decrease the notch effects of the threads and increase the plate fatigue life. Methods. Three types (I to III) of titanium locking plates were fabricated to simulate plates used in the femur, tibia, and forearm. Two copies of each were fabricated using full- and half-threaded screw holes (called A and B, respectively). The mechanical strengths of the plates were evaluated according to the American Society for Testing and Materials (ASTM) F382-14, and the screw stability was assessed by measuring the screw removal torque and bending strength. Results. The B plates had fatigue lives 11- to 16-times higher than those of the A plates. Before cyclic loading, the screw removal torques were all higher than the insertion torques. However, after cyclic loading, the removal torques were similar to or slightly lower than the insertion torques (0% to 17.3%), although those of the B plates were higher than those of the A plates for all except the type III plates (101%, 109.8%, and 93.8% for types I, II, and III, respectively). The bending strengths of the screws were not significantly different between the A and B plates for any of the types. Conclusion. Removing half of the threads from the screw holes markedly increased the fatigue life of the locking plates while preserving the tightness of the screw heads and the bending strength of the locking screws. However, future work is necessary to determine the relationship between the notch sensitivity properties and titanium plate design. Cite this article: Bone Joint Res 2020;9(10):645–652


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 76 - 76
19 Aug 2024
Cook SD Patron LP Salkeld SL Nolan LP Lavernia CJ
Full Access

Dislocation after total hip replacement (THR) is a devastating complication. Risk factors include patient and surgical factors. Mitigation of this complication has proven partially effective. This study investigated a new innovating technique to decrease this problem using rare earth magnets. Computer simulations with design and magnetic finite element analysis software were used to analyze and quantitate the forces around hip implants with embedded magnets into the components during hip range of motion. N52 Neodymium-Iron-Boron rare earth magnets were sized to fit within the existing acetabular shells and the taper of a hip system. Additionally, magnets placed within the existing screw holes were studied. A 50mm titanium acetabular shell and a 36mm ceramic liner utilizing a taper sleeve adapter were modeled which allowed for the use of a 12mm × 5mm magnet placed in the center hole, an 18mm × 15mm magnet within the femoral head, and 10mm × 5mm magnets in the screw holes. Biomechanical testing was also performed using in-vitro bone and implant models to determine retention forces through a range of hip motion. The novel system incorporating magnets generated retentive forces between the acetabular cup and femoral head of between 10 to 20 N through a range of hip motion. Retentive forces were stronger at the extreme position hip range of motion when additional magnets were placed in the acetabular screw holes. Greater retentive forces can be obtained with specially designed femoral head bores and acetabular shells specifically designed to incorporate larger magnets. Mechanical testing validated the loads obtained and demonstrated the feasibility of the magnet system to provide joint stability and prevent dislocations. Rare earth magnets provide exceptional attractive strength and can be used to impart stability and prevent dislocation in THR without the complications and limitations of conventional methods


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 60 - 60
19 Aug 2024
Lau LCM Cheung MH Ng FY Fu H Chan PK Chiu P
Full Access

In total hip arthroplasty (THA), cementless cup without screw holes has the putative benefits of maximizing host bone contact and reducing osteolysis by eliminating channels to backside wear particles. However, supplemental trans-acetabular screws cannot be used. 74 hips in 60 patients receiving same model of cementless cup without screw holes (Depuy Duraloc 100 HA cup) from 6/1999 to 3/2003 were prospectively followed up. All patients were allowed to have immediate full weight bearing. Age at THA was 53 ± 13 (range 24–74) years. Osteonecrosis was the leading hip disease (45% of hips). Survivorship was assessed using revision of the cup as the end point. Radiological parameters, including lateral opening angle, vertical and horizontal migration distances of the cups were measured. Paired t-test was used to compare between the measurements in early postoperative period and at final follow up. 51 hips were assessed at minimum 20 years follow-up. The mean follow-up was 22.6 (range 21 – 25) years. All the cups were well fixed. There were two cup revisions. Conventional polyethylene (PE) was used in both hips; osteolysis occurred 17 and 18 years later. Both cups were well fixed but were revised, one due to cup mal-positioning, one due to need in upsizing the articulation. 14 other hips were revised but these cups were well fixed and not revised; 9 loosened stems (most were cemented Elite plus stems), 5 PE wear and osteolysis (all were conventional PE). At 20 years, the survivorship of cups was 96.1%. Changes in lateral opening angle, vertical and horizontal migration distances were 0.44±1.59°, 0.01±1.52mm and -0.32±1.47mm respectively, without statistical significance. This study provided evidence of excellent long-term survivorship of cementless cup without screw holes. Immediate postoperative weight-bearing also did not lead to cup migration in the long-term


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 21 - 21
1 Apr 2018
Yamashita S Cho C Mori T Kawasaki M
Full Access

Introduction. Ultra-high molecular weight polyethylene (UHMWPE) is the sole polymeric material currently used for weight- bearing surfaces in total joint replacement. However, the wear of UHMWPE in knee and hip prostheses after total joint replacement is one of the major restriction factors on the longevity of these implants. In order to minimize the wear of UHMWPE and to improve the longevity of artificial joints, it is necessary to clarify the factors influencing the wear of UHMWPE. A number of studies have investigated the factors influencing the wear of UHMWPE acetabular cup liner in hip prosthesis. Most of these studies, however, have focused on the main articulating surfaces between the femoral head and the polyethylene liner. Materials and Methods. In a previous study (Cho et al., 2016), the generations of cold flow into the screw holes in the metal acetabular cup were observed on the backside of the retrieved UHMWPE acetabular cup liners as shown in Figure 1. We focused on the screw holes in the metal acetabular cup (Figure 2) as a factor influencing the wear behavior of polyethylene liner in hip prosthesis. In this study, computer simulations of the generation of cold flow into the screw holes were performed using the finite element method (FEM) in order to investigate the influence of the screw holes in the metal acetabular cup on the mechanical state and wear behavior of polyethylene liner in hip prosthesis. Results. An example of the results of the FEM simulations performed in this study is shown in Figure 3. In the region which the cold flow into the screw holes occurred, it was found that locally high contact stresses which exceed the yield stress of UHMWPE and considerable plastic strains were generated throughout the overall thickness between the backside and top surface of the polyethylene liners. On the contrary, in the case of the polyethylene liner combined with the metal acetabular cup without screw hole, although the regions of high contact stress and high plastic strain had a tendency to be limited around contact surface compared with those of the combination with screw holes, the values of contact stress and plastic strain were lower than the combination with screw holes. Discussion and Conclusions. The results of this study suggest that the cold flow generated by the existence of the screw holes in the metal acetabular cup of hip prosthesis reduces the wear resistance of the UHMWPE acetabular cup liner. It would appear that the cold flow into the screw holes contributes to structural weakening of the UHMWPE and reduction of the polyethylene thickness, thus increase of internal stresses and plastic strains in and around the regions of cold flow. Therefore, it is required that improvement of the screw holes in the metal acetabular cup and/or improvement of fixation method of the metal acetabular cup to a pelvis in order to enhance the wear resistance of the polyethylene liner. For any figures or tables, please contact authors directly


Bone & Joint Research
Vol. 9, Issue 8 | Pages 493 - 500
1 Aug 2020
Fletcher JWA Zderic I Gueorguiev B Richards RG Gill HS Whitehouse MR Preatoni E

Aims. To devise a method to quantify and optimize tightness when inserting cortical screws, based on bone characterization and screw geometry. Methods. Cortical human cadaveric diaphyseal tibiae screw holes (n = 20) underwent destructive testing to firstly establish the relationship between cortical thickness and experimental stripping torque (T. str. ), and secondly to calibrate an equation to predict T. str. Using the equation’s predictions, 3.5 mm screws were inserted (n = 66) to targeted torques representing 40% to 100% of T. str. , with recording of compression generated during tightening. Once the target torque had been achieved, immediate pullout testing was performed. Results. Cortical thickness predicted T. str. (R. 2. = 0.862; p < 0.001) as did an equation based on tensile yield stress, bone-screw friction coefficient, and screw geometries (R. 2. = 0.894; p < 0.001). Compression increased with screw tightness up to 80% of the maximum (R. 2. = 0.495; p < 0.001). Beyond 80%, further tightening generated no increase in compression. Pullout force did not change with variations in submaximal tightness beyond 40% of T. str. (R. 2. = 0.014; p = 0.175). Conclusion. Screw tightening between 70% and 80% of the predicted maximum generated optimum compression and pullout forces. Further tightening did not considerably increase compression, made no difference to pullout, and increased the risk of the screw holes being stripped. While further work is needed for development of intraoperative methods for accurate and reliable prediction of the maximum tightness for a screw, this work justifies insertion torque being considerably below the maximum. Cite this article: Bone Joint Res 2020;9(8):493–500


Bone & Joint Research
Vol. 12, Issue 1 | Pages 72 - 79
18 Jan 2023
Welling MM Warbroek K Khurshid C van Oosterom MN Rietbergen DDD de Boer MGJ Nelissen RGHH van Leeuwen FWB Pijls BG Buckle T

Aims. Arthroplasty surgery of the knee and hip is performed in two to three million patients annually. Periprosthetic joint infections occur in 4% of these patients. Debridement, antibiotics, and implant retention (DAIR) surgery aimed at cleaning the infected prosthesis often fails, subsequently requiring invasive revision of the complete prosthetic reconstruction. Infection-specific imaging may help to guide DAIR. In this study, we evaluated a bacteria-specific hybrid tracer (. 99m. Tc-UBI. 29-41. -Cy5) and its ability to visualize the bacterial load on femoral implants using clinical-grade image guidance methods. Methods. 99m. Tc-UBI. 29-41. -Cy5 specificity for Stapylococcus aureus was assessed in vitro using fluorescence confocal imaging. Topical administration was used to highlight the location of S. aureus cultured on femoral prostheses using fluorescence imaging and freehand single photon emission CT (fhSPECT) scans. Gamma counting and fhSPECT were used to quantify the bacterial load and monitor cleaning with chlorhexidine. Microbiological culturing helped to relate the imaging findings with the number of (remaining) bacteria. Results. Bacteria could be effectively stained in vitro and on prostheses, irrespective of the presence of biofilm. Infected prostheses revealed bacterial presence on the transition zone between the head and neck, and in the screw hole. Qualitative 2D fluorescence images could be complemented with quantitative 3D fhSPECT scans. Despite thorough chlorhexidine treatments, 28% to 44% of the signal remained present in the locations of the infection that were identified using imaging, which included 500 to 2,000 viable bacteria. Conclusion. The hybrid tracer . 99m. Tc-UBI. 29-41. -Cy5 allowed effective bacterial staining. Qualitative real-time fluorescence guidance could be effectively combined with nuclear imaging that enables quantitative monitoring of the effectiveness of cleaning strategies. Cite this article: Bone Joint Res 2023;12(1):72–79


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 69 - 69
1 Apr 2019
Shallenberg A
Full Access

Aims. The aim of this study was to optimize screw hole placement in an acetabulum cup implant to improve secondary initial fixation by identifying the region of thickest acetabulum bone. The “scratch fit” of modern acetabular cup implants with highly porous coatings is often adequate for initial fixation in primary total hip arthroplasty. Initial fixation must limit micromotion to acceptable levels to facilitate osseointegration and long term cup stability. Secondary initial fixation can be required in cases with poor bone quality or bone loss and is commonly achieved with bone screws and a cup implant with multiple screw holes. To provide maximum secondary initial fixation, the cup screw holes should be positioned to allow access to the limited region of thick pelvic bone. Patients and Methods. Through a partnership with Materialise, a statistical shape model of the pelvis was created utilizing 80 CT scans (36 female, 44 male). To limit the effect of variation outside the area of cup implant fixation, the shape model includes only the inferior pelvis (cut off at the greater sciatic notch and above the anterior inferior iliac spine). A virtual implantation protocol was developed which creates instances of the pelvis shape model that accurately simulate the intraoperative reaming of the acetabulum to accept the cup implant. First a sphere is best fit to the native acetabulum and the diameter is rounded to the nearest whole millimeter. The diameter of the best fit sphere is increased by 1mm to simulate bone removal during the spherical reaming procedure. The sphere is translated medially and superiorly such that it is tangent to the teardrop and removes 2mm of superior acetabulum. The sphere is used to perform a Boolean subtraction from the shape model to create a virtually reamed pelvis shape model. The Materialise 3-Matic software was used to perform a thickness analysis of the prepared shape models. The output of the thickness analysis is displayed as a color “heat map” where green represents thin bone and red is thick bone. The region of thickest bone was identified and used to drive ideal screw hole placement in the cup implant to access this region. Results. The analysis finds there is a limited arc of thick bone in the acetabulum that begins superiorly and extends posterior-inferior that accounts for only about 15% of total reamed surface area. Maximum screw purchase is provided when screw holes in the cup implant are placed over this limited region of thick bone. The thickest bone, located superiorly, facilitates the placement of a long bone screw up the iliac column and the posterior-inferior region of thick bone facilitates the placement of additional posterior screws. Conclusion. The shape model development, virtual implantation protocol, and heat map thickness analysis allowed the placement of bone screw holes directly over the limited region of thick pelvic bone. This allows maximum screw purchase which is important in achieving adequate secondary initial fixation with bone screws. Disclaimer. Author is an engineer employed by DJO Surgical who funded this study


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 22 - 22
1 Apr 2018
Baba S Cho C Mori T Kawasaki M
Full Access

Introduction. Wear phenomenon of ultra-high molecular weight polyethylene (UHMWPE) in hip and knee prostheses is one of the major restriction factors on the longevity of these implants. In retrieved hip prostheses with screw holes in the metal acetabular cup for fixation to the pelvis, the generation of cold flow into the screw holes is frequently observed on the backside of the UHMWPE acetabular cup liner. In most retrieved cases, the protruded areas of cold flow on the backside were located on the reverse side of the severely worn and deformed surface of the polyethylene liner. It would appear that the cold flow into screw holes contributes to increase of wear and damages of the polyethylene liner in hip prosthesis. Methods. In a previous study (Cho et al., 2016), we pointed out the generation of cold flow into the screw holes on the backside of the retrieved UHMWPE acetabular cup liner as shown in Figure 1. The primary purpose of this study was to investigate the influence of the cold flow into the screw holes on the wear of the polyethylene liner in hip prosthesis. In this study, computer simulations of the generation of cold flow were performed using the finite element method (FEM) in order to propose the design criteria about the cold flow of the hip prosthesis for improving the wear resistance of the polyethylene liner. We especially focused on the influence of polyethylene thickness and contact surface conformity on the generation of cold flow into the screw hole. Results. An example of the results of a series of the FEM simulations performed in this study is shown in Figure 2. This figure shows the distributions of the contact stress in the polyethylene liners. The graphs shown in Figure 3 are the summary of results of a series of the FEM simulations performed in this study. The graph in Figure 3(a) shows the changes in the maximum contact stress in the polyethylene liner with the thickness of polyethylene liner. The graph in Figure 3(b) shows the changes in the maximum contact stress in the polyethylene liner with the radial clearance between the femoral head and the polyethylene liner. Discussion and Conclusions. It was found that the magnitudes of cold flow and maximum contact stress in the polyethylene liner had a tendency to increase with decreasing the thickness of polyethylene liner. It was also found that the magnitude of cold flow and maximum contact stress in the polyethylene liner had a tendency to increase with increasing the radial clearance between the femoral head and the polyethylene liner. The results of this study suggest that polyethylene thickness and contact surface conformity have a significant influence on the generation of cold flow into the screw holes and wear of the polyethylene liner. For any figures or tables, please contact authors directly


Bone & Joint Open
Vol. 2, Issue 8 | Pages 599 - 610
1 Aug 2021
Hothi H Bergiers S Henckel J Iliadis AD Goodier WD Wright J Skinner J Calder P Hart AJ

Aims. The aim of this study was to present the first retrieval analysis findings of PRECICE STRYDE intermedullary nails removed from patients, providing useful information in the post-market surveillance of these recently introduced devices. Methods. We collected ten nails removed from six patients, together with patient clinical data and plain radiograph imaging. We performed macro- and microscopic analysis of all surfaces and graded the presence of corrosion using validated semiquantitative scoring methods. We determined the elemental composition of surface debris using energy dispersive x-ray spectroscopy (EDS) and used metrology analysis to characterize the surface adjacent to the extendable junctions. Results. All nails were removed at the end of treatment, having achieved their intended lengthening (20 mm to 65 mm) and after regenerate consolidation. All nails had evidence of corrosion localized to the screw holes and the extendable junctions; corrosion was graded as moderate at the junction of one nail and severe at the junctions of five nails. EDS analysis showed surface deposits to be chromium rich. Plain radiographs showed cortical thickening and osteolysis around the junction of six nails, corresponding to the same nails with moderate – severe junction corrosion. Conclusion. We found, in fully united bones, evidence of cortical thickening and osteolysis that appeared to be associated with corrosion at the extendable junction; when corrosion was present, cortical thickening was adjacent to this junction. Further work, with greater numbers of retrievals, is required to fully understand this association between corrosion and bony changes, and the influencing surgeon, implant, and patient factors involved. Cite this article: Bone Jt Open 2021;2(8):599–610


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 23 - 23
1 Apr 2018
Cho C Mori T Kawasaki M
Full Access

Introduction. Ultra-high molecular weight polyethylene (UHMWPE) is the sole polymeric material currently used for weight- bearing surfaces in total joint replacement. However, the wear of UHMWPE and the polyethylene wear debris generated in the human body after total joint replacement cause serious clinical and biomechanical reactions. Therefore, the wear phenomenon of UHMWPE in total joint replacement is now recognized as one of the major factors restricting the longevity of these implants. In order to minimize the wear of UHMWPE and to improve the longevity of artificial joints, it is necessary to clarify the factors influencing the wear mechanism of UHMWPE. Materials and Methods. The wear and/or failure characteristics of 33 retrieved UHMWPE acetabular cup liners of hip prostheses were examined in this study. The retrieved liners had an average in vivo duration of 193.8 months (75 to 290 months). Several examples of the retrieved liners are shown in Figure 1. The elasto-plastic contact analyses between metal femoral neck and polyethylene liner and between metal femoral head and polyethylene liner using the finite element method (FEM) were also performed in order to investigate the factors influencing the wear and/or failure mechanism of the polyethylene liner in hip prosthesis. Results. In the examination of the retrieved polyethylene liners, the generation of component impingement was observed in 24 cases of the 33 retrieved liners (72.7%) as shown in Figures 1(a) and (b). In addition, the generation of cold flow into the screw holes in the metal acetabular cup was observed in 27 cases of the 33 retrieved liners (81.8%) as shown in Figures 1(c) and (d). Several examples of the results of the FEM contact analyses are shown in Figure 2. In the simulation of the component impingement, it was found that high contact stresses which exceed the yield stress of UHMWPE and considerable plastic strains occurred in the rim of the polyethylene liner as shown in Figures 2(a) and (b). In the simulation of the cold flow, it was found that the stress concentration near the edge of screw hole has significant influence on the states of contact stresses and plastic strains in the surface and undersurface (backside) of the polyethylene liner as shown in Figures 2(c) and (d). Discussion and Conclusions. In this study, we focused on the impingement between the metal femoral neck and the polyethylene liner and the cold flow into the screw holes on the backside of the polyethylene liner as the factors influencing the wear and/or failure of the UHMWPE acetabular cup liner in hip prosthesis. The results of these retrieval and analytical studies confirmed that the component impingement and the cold flow into the screw holes contribute to increase of wear and/or failure of the polyethylene liner. Therefore, it is necessary to improve resistance to the component impingement and the cold flow in order to decrease the wear and/or failure of the UHMWPE acetabular cup liner and to increase the longevity of hip prosthesis. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 90 - 90
14 Nov 2024
Halloum A Rahbek O Gholinezhad S Kold S Rasmussen J Rölfing JD Tirta M Abood AA
Full Access

Introduction. Current treatments of rotational deformities of long bones in children are osteotomies and fixations. In recent years, the use of guided growth for correction of rotational deformities has been reported in several pre-clinical and clinical studies. Various techniques have been used, and different adverse effects, like growth retardation and articular deformities, have been reported. We tested a novel plate concept intended for correction of rotational deformities of long bones by guided growth, with sliding screw holes to allow for longitudinal growth, in a porcine model. Method. Twelve, 12-week-old female porcines were included in the study. Surgery was performed on the left femur. The right femur was used as control. Plates were placed distally to induce external rotation, as longitudinal growth occurred. CT-scans of the femurs were processed to 3-D models and used for measuring rotation. Result. The plates rotated as intended in all 12 porcines. One porcine was excluded due to congenital deformity of the proximal part of the femurs. Two porcines had cut-out of the proximal screw on the lateral side, observed at the end of the intervention. These two porcines were included in the results. We observed a Δrotation of 5.7° ± 2° in external direction (CI: 3.7°– 7.7°). ΔFemur length was -0.4 cm [-0.7 cm – 0 cm] equal to 1.5% shortening of the operated femur. No significant difference was observed in coronal or sagittal plane. Conclusion. Significant external rotation was achieved with minimal effect on longitudinal growth. While the use of guided growth for correction of rotational deformities is already being used clinically, it is still to be considered an experimental procedure with sparse evidence. This study shows promising results for the feasibility of the method in a large animal model and is an important first step in validating the technique and detecting possible adverse effects, before future clinical studies


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_11 | Pages 27 - 27
7 Jun 2023
Hothi H Henckel J Di Laura A Schlueter-Brust K Hart A
Full Access

3D printing is rapidly being adopted by manufacturers to produce orthopaedic implants. There is a risk however of structural defects which may impact mechanical integrity. There are also no established standards to guide the design of bone-facing porous structures, meaning that manufacturers may employ different approaches to this. Characterisation of these variables in final-production implants will help understanding of the impact of these on their clinical performance. We analysed 12 unused, final-production custom-made 3D printed acetabular cups that had been produced by 6 orthopaedic manufacturers. We performed high resolution micro-CT imaging of each cup to characterise the morphometric features of the porous layers: (1) the level of porosity, (2) pore size, (3) thickness of porous struts and (4) the depth of the porous layers. We then examined the internal cup structures to identify the presence of any defects and to characterise: (1) their total number, (2) volume, (3) sphericity, (4) size and (5) location. There was a variability between designs in the level of porosity (34% to 85%), pore size (0.74 to 1.87mm), strut thickness (0.28 to 0.65mm), and porous layer depth (0.57 to 11.51mm). One manufacturer printed different porous structures between the cup body and flanges; another manufacturer printed two differing porous regions within the cup body. 5 cups contained a median (range) of 90 (58–101) defects. The median defect volume was 5.17 (1.05–17.33) mm3. The median defect sphericity and size were 0.47 (0.19–0.65) and 0.64 (0.27–8.82) mm respectively. The defects were predominantly located adjacent to screw holes, within flanges and at the transition between the flange and main cup body; these were between 0.17 and 4.66mm from the cup surfaces. There is a wide variability between manufacturers in the porous titanium structures they 3D print. The size, shape and location of the structural defects identified are such that there may be an increased risk of crack initiation from them, potentially leading to a fracture. Regulators, surgeons, and manufacturers should be aware of this variability in final print quality


Bone & Joint Research
Vol. 7, Issue 12 | Pages 629 - 635
1 Dec 2018
Hung L Chao C Huang J Lin J

Objectives. Screw plugs have been reported to increase the fatigue strength of stainless steel locking plates. The objective of this study was to examine and compare this effect between stainless steel and titanium locking plates. Methods. Custom-designed locking plates with identical structures were fabricated from stainless steel and a titanium alloy. Three types of plates were compared: type I unplugged plates; type II plugged plates with a 4 Nm torque; and type III plugged plates with a 12 Nm torque. The stiffness, yield strength, and fatigue strength of the plates were investigated through a four-point bending test. Failure analyses were performed subsequently. Results. For stainless steel, type II and type III plates had significantly higher fatigue strength than type I plates. For titanium, there were no significant differences between the fatigue strengths of the three types of plates. Failure analyses showed local plastic deformations at the threads of screw plugs in type II and type III stainless steel plates but not in titanium plates. Conclusion. The screw plugs could increase the fatigue strength of stainless steel plates but not of titanium plates. Therefore, leaving screw holes open around fracture sites is recommended in titanium plates. Cite this article: L-W. Hung, C-K. Chao, J-R. Huang, J. Lin. Screw head plugs increase the fatigue strength of stainless steel, but not of titanium, locking plates. Bone Joint Res 2018;7:629–635. DOI: 10.1302/2046-3758.712.BJR-2018-0083.R1


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_III | Pages 319 - 319
1 Mar 2004
Charriere E Harrigan T Kurtz S Streicher R
Full Access

Aims: The purpose of this study was to assess the effect of changes in peripheral attachment on stresses and displacements at the liner-shell interface. Methods: Three dimensional þnite element models were constructed of two acetabular cup designs for a liner with a 32 mm inner diameter, a liner thickness of 5 mm, and a shell thickness of 4 mm. An additional set of models was constructed with a 28 mm head diameter, corresponding to a liner thickness of 7 mm. 16 sequential quasistatic loading steps were used to describe the stance phase of a patientñs gait cycle. Results: Changes in the design had a larger inßuence on the backside relative motion during the gait cycle than load magnitude. However, changes in the design had a smaller inßuence on the backside contact stress, von Mises stress, or radial extrusion into screw holes. Reduction in head size from 32 to 28 mm diameter resulted in a slight decrease in screw hole extrusion. Conclusions: In this study, changes in the acetabular cup design, including screw hole placement and increased peripheral interlocking, were shown to decrease relative motion at the liner-shell interface, but the peak liner-shell contact stresses, backside von Mises stresses, and radial screw hole extrusion were less signiþcantly changed


Introduction: It is not uncommon situation, in a hip fracture patient treated with dynamic hip screw(DHS) system, that the hip arthroplasty should be done after removal of DHS. However multiple screw holes and postplating osteopenia under the barrel plate will be created in the proximal femur resulting adverse mechanical effects. Purpose: The authors analysed the micromotion of femoral stem and the stress concentration of proximal femur in hip replacement performed after removal of DHS using finite element analysis. Methods: For simulation of femoral cortical defects after removal of 4-holed DHS system, four Φ4.5 mm cortical screw holes on medial and lateral cortices of the femur and one Φ12mm lag screw. One 20mmx90mm weakened cortical bone area on lateral cortex was made for simulation of the postplating osteopenia created under the barrel plate. After meshing with eight node linear hexahedron, nonlinear contact analysis was done using ABAQUS 5.8 package system. For the postplating osteopenia we decreased the bony strength of cortical bone up to 20%. Results: In one leg stance, the maximal micromotions at metal to bone interface were around 150& #13211; (142.3-160.6& #13211;) even in the osteoporotic femur. However, in stair climbing, it increased over 150& #13211; (170.1-191.1& #13211;) even in the non-osteoporotic intact femur. The maximal micromotions were 170.1& #13211; in intact non-osteoporotic femur and 191.1& #13211; in osteoporotic DHS removed femur in a stair climbing. The pattern of stress distribution on the surface of the femur was changed showing distal transfer of the point with maximal stress from the proximal medial area to the stem tip area. The maximal stress increased up to 89% at the lag screw hole. Conclusion: This study suggests that the femoral stem for primary cementless hip replacement could be used in the DHS removed femur regardless of bone quality, if it is long enough to pass the screw holes and also if the post-operative rehabilitation is strictly controlled


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 28 - 28
1 Oct 2012
Takemoto M Neo M Fujibayashi S Okamoto T Ota E Sakamoto T Nakamura T
Full Access

The accuracy of pedicle screw placement is essential for successful spinal reconstructive surgery. The authors of several previous studies have described the use of image-based navigational templates for pedicle screw placement. These are designed based on a pre-operative computed tomographic (CT) image that fits into a unique position on an individual's bone, and holes are carefully designed to guide the drill or the pedicle probe through a pre-planned trajectory. The current study was conducted to optimise navigational template design and establish its designing method for safe and accurate pedicle screw placement. Thin-section CT scans were obtained from 10 spine surgery patients including 7 patients with adolescent idiopathic scoliosis (AIS) and three with thoracic ossification of the posterior longitudinal ligament (OPLL). The CT image data were transferred to the commercially available image-processing software and were used to reconstruct a three-dimensional (3D) model of the bony structures and plan pedicle screw placement. These data were transferred to the 3D-CAD software for the design of the template. Care was taken in designing the template so that the best intraoperative handling would be achieved by choosing several round contact surfaces on the visualised posterior vertebral bony structure, such as transverse process, spinous process and lamina. These contact surfaces and holes to guide the drill or the pedicle probe were then connected by a curved pipe. STL format files for the bony models with planned pedicle screw holes and individual templates were prepared for rapid prototype fabrication of the physical models. The bony models were made using gypsum-based 3D printer and individual templates were fabricated by a selective laser melting machine using commercially pure titanium powder. Pedicle screw trajectory of the bony model, adaptation and stability of the template on the bony model, and screw hole orientation of the template were evaluated using physical models. Custom-made titanium templates with adequate adaptation and stability in addition to proper orientation of the screw holes were sterilised by autoclave and evaluated during surgery. During segmentation, reproducibility of transverse and spinous processes were inferior to the lamina and considered inadequate to select as contact surfaces. A template design with more bone contact area might enhance the stability of the template on the bone but it is susceptible to intervening soft tissue and geometric inaccuracy of the template. In the bony model evaluation, the stability and adaptation of the templates were sufficient with few small round contact surfaces on each lamina; thus, a large contact surface was not necessary. In clinical patients, proper fit for positioning the template was easily found manually during the operation and 141/142 screws were inserted accurately with 1 insignificant pedicle wall breach in AIS patient. This study provides a useful design concept for the development and introduction of custom-fit navigational template for placing pedicle screws easily and safely


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 71 - 71
1 Mar 2008
Zalzal P Cheung G Bhandari M Spelt J Papini M
Full Access

Femoral nails are thought to be load sharing devices. However, the specific load sharing characteristics and associated stress concentrations have not yet been reported in the literature. The purpose of this study was to use a validated, three dimensional finite element model of a nailed femur subjected to gait loads in order to determine the resulting stresses in the femur and the nail. The results showed that load was shared between the nail and the bone throughout the gait cycle. In addition, high stress concentrations were noted in the bone around the screw holes, and dynamization was of minimal benefit. To determine the stresses in the bone and nail in a femur with a locked, retrograde, intramedullary nail. The retrograde femoral nail is a load sharing device. High stress concentrations occur in the bone around locking screw holes. When only one locking screw is used proximally and distally, stresses in the implant are excessive and may lead to failure. Dynamization was of minimal benefit. This is the first study to use a validated three dimensional finite element model to provide a detailed biomechanical analysis of stress patterns in a retrograde nailed femur under gait loads. The results can help resolve issues of stress shielding, implant removal, number of locking screws and dynamization. In the fully locked condition, loads in the femur were significantly higher than those in the nail for most of the gait cycle. Removal of locking screws to obtain dynamization only increased axial load in the femur by 17 %. However, stresses in the locking screws increased by as much as 250% when fewer than 4 screws were used. Maximum stresses in the bone were found around screw holes. A three dimensional finite element model of the femur and nail was developed. The model was validated by comparing results to a physical saw bone model instrumented with strain gages and subjected to a simple a compressive load. Once good correlation with simple loading patterns was demonstrated, gait loading patterns obtained from literature were incorporated and simulations were run for various conditions


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 572 - 573
1 Nov 2011
Pichora D Ma B Kunz M Alsanawi H Rudan J
Full Access

Purpose: We compare the accuracy and precision of patient-specific plastic guides versus computer-assisted navigation for distal radius osteotomy (DRO). We hypothesize that guides would provide similar accuracy and precision compared to computer-assisted surgery, and that they would be faster to use than navigated surgery. Method: We used CT scans, computer models, and planned corrections of radii from seven patients who had previously received computer-assisted DRO. The planned correction included the locations and directions of the screw holes for the fixation plate on the intact deformed radius. Using computer-assisted technique, the surgeon drills the holes for the fixation plate using computer navigation before performing the osteotomy; after cutting the radius, the plate is fixated to the distal radius, and the distal radius is distracted until the holes in the proximal radius align with the holes of the fixation plate. A patient-specific guide can be manufactured that fits on the intact deformed radius to guide the drilling of the screw holes. The guide is designed so that it mates exactly with the dorsal surface of the radius. Each guide was designed using custom software and manufactured in ABS plastic using a 3D printer. The surgeon places the guide on the radius and uses a metal drill sleeve in each guide hole to guide the drilling of the plate screw holes. We manufactured urethane plastic phantoms of the seven deformed radii. Our laboratory experiment had six surgeons each perform four computer-assisted and four patient-specific guide procedures on the phantom radii; the specimen and type of guidance were randomly chosen. The time from the start of the procedure to when the shaping of the distal radius was completed was recorded; we did not record the time required to cut and fixate the radius because this time does not depend on the type of guidance used. The plated phantoms were assessed for errors in ulnar variance, radial inclination, and volar tilt as compared to the planned correction. Results: The results for the computer-assisted procedures were: ulnar variance error (−0.2 +/ − 2.0 mm), radial inclination error (−0.9 +/ − 6.1 deg), volar tilt error (−0.9 +/ − 1.9 deg). The results for the customized jig procedures were: ulnar variance error (−0.7 +/ − 0.6 mm), radial inclination error (−1.0 +/ − 1.4 deg), volar tilt error (−0.4 +/ − 2.2 deg). There were no significant differences detected in the means of the measurements (significance level 0.05) using the two-sample t-test. Significant differences were detected in the variances of the ulnar variance and radial inclination errors (significance level 0.05) using Levene’s test. It took (705 +/ − 144 sec) to perform the computer-assisted procedures and (214 +/ − 98 sec) to perform the customized guide procedures. The differences between the means and variances were statistically significant. Conclusion: Patient-specific guides are as accurate, more precise, and require less time than computer-assisted navigation for DRO


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 60 - 60
1 Feb 2017
Vanacore C Masini M Westrich G Campbell D Robinson K
Full Access

Introduction. Acetabular revision surgery remains a technically demanding procedure with higher failure rates than primary total hip arthroplasty (THA). An acetabular component with three dimensional porous titanium and anatomic screw holes (Figure 1) was designed to allow the cup to be positioned anatomically and provide reliable fixation. Methods. A prospective multicenter study of 193 cases (190 patients) was conducted to assess the midterm clinical outcomes of the revision titanium acetabular shell. Radiographs, demographics, Harris Hip Score (HHS), and Short Form 36 (SF-36) were collected preoperatively, at 6 weeks, 3 months, and annually thereafter to 5 years. The mean duration of follow-up was 3.36 years. The Paprosky classification was assessed intraoperatively. Short Form 6D (SF-6D) utility values were obtained by transforming SF-36 scores through the Brazier method and were analyzed for effect size. Results. At time of surgery, mean patient age was 63.5 years and mean BMI was 28.1. 69 of the 193 cases were graded as 3A or 3B according to the Paprosky classification method. For all cases, Harris Hip Scores improved significantly (p < 0.001) from a preoperative mean score of 53.60 to a mean score of 86.15 at 1 year. These significant gains were maintained through 5 years, with a mean score of 87.35 at the 5-year time point. The Harris Hip Scores for Paprosky 3A and 3B cases also improved significantly (p < 0.001) from a preoperative mean score of 48.11 to a mean score of 85.45 at 1 year. These significant gains were maintained through 5 years, with a mean score of 85.65 at the 5-year time point. Among the radiographs independently reviewed to date, no cup migration or unstable cups have been identified. There were 12 acetabular shell re-revisions reported, for infection (7), aseptic loosening (4) and recurrent dislocation (1). Three of the cases revised for aseptic loosening were Paprosky type 3A, and one was 3B. For all cases, a clinically significant improvement in health utility was achieved by 3 months postoperative, with an effect size of 0.54. Clinically significant scores were maintained throughout the follow-up period, reaching an effect size of 0.64 at 5 years. Effect sizes were larger for cases with Paprosky classifications of 3A and 3B than the overall study population at all time points, reaching clinical significance at 3 months with an effect size of 0.64, and continuing to increase to an effect size of 1.19 at 5 years. Conclusion. Even in patients with severe acetabular defects, next generation highly porous acetabular components with three dimensional porous titanium and anatomic screw holes provide excellent stability, predictable midterm biologic fixation, pain, and reduction, and improved clinical function and health utility