Advertisement for orthosearch.org.uk
Results 1 - 20 of 659
Results per page:
Bone & Joint Open
Vol. 4, Issue 8 | Pages 584 - 593
15 Aug 2023
Sainio H Rämö L Reito A Silvasti-Lundell M Lindahl J

Aims. Several previously identified patient-, injury-, and treatment-related factors are associated with the development of nonunion in distal femur fractures. However, the predictive value of these factors is not well defined. We aimed to assess the predictive ability of previously identified risk factors in the development of nonunion leading to secondary surgery in distal femur fractures. Methods. We conducted a retrospective cohort study of adult patients with traumatic distal femur fracture treated with lateral locking plate between 2009 and 2018. The patients who underwent secondary surgery due to fracture healing problem or plate failure were considered having nonunion. Background knowledge of risk factors of distal femur fracture nonunion based on previous literature was used to form an initial set of variables. A logistic regression model was used with previously identified patient- and injury-related variables (age, sex, BMI, diabetes, smoking, periprosthetic fracture, open fracture, trauma energy, fracture zone length, fracture comminution, medial side comminution) in the first analysis and with treatment-related variables (different surgeon-controlled factors, e.g. plate length, screw placement, and proximal fixation) in the second analysis to predict the nonunion leading to secondary surgery in distal femur fractures. Results. We were able to include 299 fractures in 291 patients. Altogether, 31/299 fractures (10%) developed nonunion. In the first analysis, pseudo-R. 2. was 0.27 and area under the receiver operating characteristic curve (AUC) was 0.81. BMI was the most important variable in the prediction. In the second analysis, pseudo-R. 2. was 0.06 and AUC was 0.67. Plate length was the most important variable in the prediction. Conclusion. The model including patient- and injury-related factors had moderate fit and predictive ability in the prediction of distal femur fracture nonunion leading to secondary surgery. BMI was the most important variable in prediction of nonunion. Surgeon-controlled factors had a minor role in prediction of nonunion. Cite this article: Bone Jt Open 2023;4(8):584–593


Bone & Joint Research
Vol. 5, Issue 6 | Pages 232 - 238
1 Jun 2016
Tanaka A Yoshimura Y Aoki K Kito M Okamoto M Suzuki S Momose T Kato H

Objectives. Our objective was to predict the knee extension strength and post-operative function in quadriceps resection for soft-tissue sarcoma of the thigh. Methods. A total of 18 patients (14 men, four women) underwent total or partial quadriceps resection for soft-tissue sarcoma of the thigh between 2002 and 2014. The number of resected quadriceps was surveyed, knee extension strength was measured with the Biodex isokinetic dynamometer system (affected side/unaffected side) and relationships between these were examined. The Musculoskeletal Tumor Society (MSTS) score, Toronto Extremity Salvage Score (TESS), European Quality of Life-5 Dimensions (EQ-5D) score and the Short Form 8 were used to evaluate post-operative function and examine correlations with extension strength. The cutoff value for extension strength to expect good post-operative function was also calculated using a receiver operating characteristic (ROC) curve and Fisher’s exact test. Results. Extension strength decreased when the number of resected quadriceps increased (p < 0.001), and was associated with lower MSTS score, TESS and EQ-5D (p = 0.004, p = 0.005, p = 0.006, respectively). Based on the functional evaluation scales, the cutoff value of extension strength was 56.2%, the equivalent to muscle strength with resection of up to two muscles. Conclusion. Good post-operative results can be expected if at least two quadriceps muscles are preserved. Cite this article: A. Tanaka, Y. Yoshimura, K. Aoki, M. Kito, M. Okamoto, S. Suzuki, T. Momose, H. Kato. Knee extension strength and post-operative functional prediction in quadriceps resection for soft-tissue sarcoma of the thigh. Bone Joint Res 2016;5:232–238. DOI: 10.1302/2046-3758.56.2000631


Bone & Joint Open
Vol. 4, Issue 10 | Pages 750 - 757
10 Oct 2023
Brenneis M Thewes N Holder J Stief F Braun S

Aims. Accurate skeletal age and final adult height prediction methods in paediatric orthopaedics are crucial for determining optimal timing of growth-guiding interventions and minimizing complications in treatments of various conditions. This study aimed to evaluate the accuracy of final adult height predictions using the central peak height (CPH) method with long leg X-rays and four different multiplier tables. Methods. This study included 31 patients who underwent temporary hemiepiphysiodesis for varus or valgus deformity of the leg between 2014 and 2020. The skeletal age at surgical intervention was evaluated using the CPH method with long leg radiographs. The true final adult height (FH. TRUE. ) was determined when the growth plates were closed. The final height prediction accuracy of four different multiplier tables (1. Bayley and Pinneau; 2. Paley et al; 3. Sanders – Greulich and Pyle (SGP); and 4. Sanders – peak height velocity (PHV)) was then compared using either skeletal age or chronological age. Results. All final adult height predictions overestimated the FH. TRUE. , with the SGP multiplier table having the lowest overestimation and lowest absolute deviation when using both chronological age and skeletal age. There were no significant differences in final height prediction accuracy between using skeletal age and chronological age with PHV (p = 0.652) or SGP multiplier tables (p = 0.969). Adult height predictions with chronological age and SGP (r = 0.769; p ≤ 0.001), as well as chronological age and PHV (r = 0.822; p ≤ 0.001), showed higher correlations with FH. TRUE. than predictions with skeletal age and SGP (r = 0.657; p ≤ 0.001) or skeletal age and PHV (r = 0.707; p ≤ 0.001). Conclusion. There was no significant improvement in adult height prediction accuracy when using the CPH method compared to chronological age alone. The study concludes that there is no advantage in routinely using the CPH method for skeletal age determination over the simple use of chronological age. The findings highlight the need for more accurate methods to predict final adult height in contemporary patient populations. Cite this article: Bone Jt Open 2023;4(10):750–757


The Bone & Joint Journal
Vol. 104-B, Issue 9 | Pages 1011 - 1016
1 Sep 2022
Acem I van de Sande MAJ

Prediction tools are instruments which are commonly used to estimate the prognosis in oncology and facilitate clinical decision-making in a more personalized manner. Their popularity is shown by the increasing numbers of prediction tools, which have been described in the medical literature. Many of these tools have been shown to be useful in the field of soft-tissue sarcoma of the extremities (eSTS). In this annotation, we aim to provide an overview of the available prediction tools for eSTS, provide an approach for clinicians to evaluate the performance and usefulness of the available tools for their own patients, and discuss their possible applications in the management of patients with an eSTS. Cite this article: Bone Joint J 2022;104-B(9):1011–1016


Bone & Joint Open
Vol. 5, Issue 3 | Pages 243 - 251
25 Mar 2024
Wan HS Wong DLL To CS Meng N Zhang T Cheung JPY

Aims. This systematic review aims to identify 3D predictors derived from biplanar reconstruction, and to describe current methods for improving curve prediction in patients with mild adolescent idiopathic scoliosis. Methods. A comprehensive search was conducted by three independent investigators on MEDLINE, PubMed, Web of Science, and Cochrane Library. Search terms included “adolescent idiopathic scoliosis”,“3D”, and “progression”. The inclusion and exclusion criteria were carefully defined to include clinical studies. Risk of bias was assessed with the Quality in Prognostic Studies tool (QUIPS) and Appraisal tool for Cross-Sectional Studies (AXIS), and level of evidence for each predictor was rated with the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) approach. In all, 915 publications were identified, with 377 articles subjected to full-text screening; overall, 31 articles were included. Results. Torsion index (TI) and apical vertebral rotation (AVR) were identified as accurate predictors of curve progression in early visits. Initial TI > 3.7° and AVR > 5.8° were predictive of curve progression. Thoracic hypokyphosis was inconsistently observed in progressive curves with weak evidence. While sagittal wedging was observed in mild curves, there is insufficient evidence for its correlation with curve progression. In curves with initial Cobb angle < 25°, Cobb angle was a poor predictor for future curve progression. Prediction accuracy was improved by incorporating serial reconstructions in stepwise layers. However, a lack of post-hoc analysis was identified in studies involving geometrical models. Conclusion. For patients with mild curves, TI and AVR were identified as predictors of curve progression, with TI > 3.7° and AVR > 5.8° found to be important thresholds. Cobb angle acts as a poor predictor in mild curves, and more investigations are required to assess thoracic kyphosis and wedging as predictors. Cumulative reconstruction of radiographs improves prediction accuracy. Comprehensive analysis between progressive and non-progressive curves is recommended to extract meaningful thresholds for clinical prognostication. Cite this article: Bone Jt Open 2024;5(3):243–251


Bone & Joint Open
Vol. 4, Issue 3 | Pages 168 - 181
14 Mar 2023
Dijkstra H Oosterhoff JHF van de Kuit A IJpma FFA Schwab JH Poolman RW Sprague S Bzovsky S Bhandari M Swiontkowski M Schemitsch EH Doornberg JN Hendrickx LAM

Aims. To develop prediction models using machine-learning (ML) algorithms for 90-day and one-year mortality prediction in femoral neck fracture (FNF) patients aged 50 years or older based on the Hip fracture Evaluation with Alternatives of Total Hip arthroplasty versus Hemiarthroplasty (HEALTH) and Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trials. Methods. This study included 2,388 patients from the HEALTH and FAITH trials, with 90-day and one-year mortality proportions of 3.0% (71/2,388) and 6.4% (153/2,388), respectively. The mean age was 75.9 years (SD 10.8) and 65.9% of patients (1,574/2,388) were female. The algorithms included patient and injury characteristics. Six algorithms were developed, internally validated and evaluated across discrimination (c-statistic; discriminative ability between those with risk of mortality and those without), calibration (observed outcome compared to the predicted probability), and the Brier score (composite of discrimination and calibration). Results. The developed algorithms distinguished between patients at high and low risk for 90-day and one-year mortality. The penalized logistic regression algorithm had the best performance metrics for both 90-day (c-statistic 0.80, calibration slope 0.95, calibration intercept -0.06, and Brier score 0.039) and one-year (c-statistic 0.76, calibration slope 0.86, calibration intercept -0.20, and Brier score 0.074) mortality prediction in the hold-out set. Conclusion. Using high-quality data, the ML-based prediction models accurately predicted 90-day and one-year mortality in patients aged 50 years or older with a FNF. The final models must be externally validated to assess generalizability to other populations, and prospectively evaluated in the process of shared decision-making. Cite this article: Bone Jt Open 2023;4(3):168–181


The Bone & Joint Journal
Vol. 106-B, Issue 1 | Pages 19 - 27
1 Jan 2024
Tang H Guo S Ma Z Wang S Zhou Y

Aims. The aim of this study was to evaluate the reliability and validity of a patient-specific algorithm which we developed for predicting changes in sagittal pelvic tilt after total hip arthroplasty (THA). Methods. This retrospective study included 143 patients who underwent 171 THAs between April 2019 and October 2020 and had full-body lateral radiographs preoperatively and at one year postoperatively. We measured the pelvic incidence (PI), the sagittal vertical axis (SVA), pelvic tilt, sacral slope (SS), lumbar lordosis (LL), and thoracic kyphosis to classify patients into types A, B1, B2, B3, and C. The change of pelvic tilt was predicted according to the normal range of SVA (0 mm to 50 mm) for types A, B1, B2, and B3, and based on the absolute value of one-third of the PI-LL mismatch for type C patients. The reliability of the classification of the patients and the prediction of the change of pelvic tilt were assessed using kappa values and intraclass correlation coefficients (ICCs), respectively. Validity was assessed using the overall mean error and mean absolute error (MAE) for the prediction of the change of pelvic tilt. Results. The kappa values were 0.927 (95% confidence interval (CI) 0.861 to 0.992) and 0.945 (95% CI 0.903 to 0.988) for the inter- and intraobserver reliabilities, respectively, and the ICCs ranged from 0.919 to 0.997. The overall mean error and MAE for the prediction of the change of pelvic tilt were -0.3° (SD 3.6°) and 2.8° (SD 2.4°), respectively. The overall absolute change of pelvic tilt was 5.0° (SD 4.1°). Pre- and postoperative values and changes in pelvic tilt, SVA, SS, and LL varied significantly among the five types of patient. Conclusion. We found that the proposed algorithm was reliable and valid for predicting the standing pelvic tilt after THA. Cite this article: Bone Joint J 2024;106-B(1):19–27


Bone & Joint Research
Vol. 13, Issue 4 | Pages 184 - 192
18 Apr 2024
Morita A Iida Y Inaba Y Tezuka T Kobayashi N Choe H Ike H Kawakami E

Aims. This study was designed to develop a model for predicting bone mineral density (BMD) loss of the femur after total hip arthroplasty (THA) using artificial intelligence (AI), and to identify factors that influence the prediction. Additionally, we virtually examined the efficacy of administration of bisphosphonate for cases with severe BMD loss based on the predictive model. Methods. The study included 538 joints that underwent primary THA. The patients were divided into groups using unsupervised time series clustering for five-year BMD loss of Gruen zone 7 postoperatively, and a machine-learning model to predict the BMD loss was developed. Additionally, the predictor for BMD loss was extracted using SHapley Additive exPlanations (SHAP). The patient-specific efficacy of bisphosphonate, which is the most important categorical predictor for BMD loss, was examined by calculating the change in predictive probability when hypothetically switching between the inclusion and exclusion of bisphosphonate. Results. Time series clustering allowed us to divide the patients into two groups, and the predictive factors were identified including patient- and operation-related factors. The area under the receiver operating characteristic (ROC) curve (AUC) for the BMD loss prediction averaged 0.734. Virtual administration of bisphosphonate showed on average 14% efficacy in preventing BMD loss of zone 7. Additionally, stem types and preoperative triglyceride (TG), creatinine (Cr), estimated glomerular filtration rate (eGFR), and creatine kinase (CK) showed significant association with the estimated patient-specific efficacy of bisphosphonate. Conclusion. Periprosthetic BMD loss after THA is predictable based on patient- and operation-related factors, and optimal prescription of bisphosphonate based on the prediction may prevent BMD loss. Cite this article: Bone Joint Res 2024;13(4):184–192


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 23 - 23
17 Nov 2023
Castagno S Birch M van der Schaar M McCaskie A
Full Access

Abstract. Introduction. Precision health aims to develop personalised and proactive strategies for predicting, preventing, and treating complex diseases such as osteoarthritis (OA), a degenerative joint disease affecting over 300 million people worldwide. Due to OA heterogeneity, which makes developing effective treatments challenging, identifying patients at risk for accelerated disease progression is essential for efficient clinical trial design and new treatment target discovery and development. Objectives. This study aims to create a trustworthy and interpretable precision health tool that predicts rapid knee OA progression based on baseline patient characteristics using an advanced automated machine learning (autoML) framework, “Autoprognosis 2.0”. Methods. All available 2-year follow-up periods of 600 patients from the FNIH OA Biomarker Consortium were analysed using “Autoprognosis 2.0” in two separate approaches, with distinct definitions of clinical outcomes: multi-class predictions (categorising patients into non-progressors, pain-only progressors, radiographic-only progressors, and both pain and radiographic progressors) and binary predictions (categorising patients into non-progressors and progressors). Models were developed using a training set of 1352 instances and all available variables (including clinical, X-ray, MRI, and biochemical features), and validated through both stratified 10-fold cross-validation and hold-out validation on a testing set of 339 instances. Model performance was assessed using multiple evaluation metrics, such as AUC-ROC, AUC-PRC, F1-score, precision, and recall. Additionally, interpretability analyses were carried out to identify important predictors of rapid disease progression. Results. Our final models yielded high accuracy scores for both multi-class predictions (AUC-ROC: 0.858, 95% CI: 0.856–0.860; AUC-PRC: 0.675, 95% CI: 0.671–0.679; F1-score: 0.560, 95% CI: 0.554–0.566) and binary predictions (AUC-ROC: 0.717, 95% CI: 0.712–0.722; AUC-PRC: 0.620, 95% CI: 0.616–0.624; F1-score: 0.676, 95% CI: 0.673–0679). Important predictors of rapid disease progression included the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scores and MRI features. Our models were further successfully validated using a hold-out dataset, which was previously omitted from model development and training (AUC-ROC: 0.877 for multi-class predictions; AUC-ROC: 0.746 for binary predictions). Additionally, accurate ML models were developed for predicting OA progression in a subgroup of patients aged 65 or younger (AUC-ROC: 0.862, 95% CI: 0.861–0.863 for multi-class predictions; AUC-ROC: 0.736, 95% CI: 0.734–0.738 for binary predictions). Conclusions. This study presents a reliable and interpretable precision health tool for predicting rapid knee OA progression using “Autoprognosis 2.0”. Our models provide accurate predictions and offer insights into important predictors of rapid disease progression. Furthermore, the transparency and interpretability of our methods may facilitate their acceptance by clinicians and patients, enabling effective utilisation in clinical practice. Future work should focus on refining these models by increasing the sample size, integrating additional features, and using independent datasets for external validation. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 19 - 19
2 Jan 2024
Castagno S Birch M van der Schaar M McCaskie A
Full Access

Precision health aims to develop personalised and proactive strategies for predicting, preventing, and treating complex diseases such as osteoarthritis (OA). Due to OA heterogeneity, which makes developing effective treatments challenging, identifying patients at risk for accelerated disease progression is essential for efficient clinical trial design and new treatment target discovery and development. To create a reliable and interpretable precision health tool that predicts rapid knee OA progression over a 2-year period from baseline patient characteristics using an advanced automated machine learning (autoML) framework, “Autoprognosis 2.0”. All available 2-year follow-up periods of 600 patients from the FNIH OA Biomarker Consortium were analysed using “Autoprognosis 2.0” in two separate approaches, with distinct definitions of clinical outcomes: multi-class predictions (categorising disease progression into pain and/or radiographic progression) and binary predictions. Models were developed using a training set of 1352 instances and all available variables (including clinical, X-ray, MRI, and biochemical features), and validated through both stratified 10-fold cross-validation and hold-out validation on a testing set of 339 instances. Model performance was assessed using multiple evaluation metrics. Interpretability analyses were carried out to identify important predictors of progression. Our final models yielded higher accuracy scores for multi-class predictions (AUC-ROC: 0.858, 95% CI: 0.856-0.860) compared to binary predictions (AUC-ROC: 0.717, 95% CI: 0.712-0.722). Important predictors of rapid disease progression included WOMAC scores and MRI features. Additionally, accurate ML models were developed for predicting OA progression in a subgroup of patients aged 65 or younger. This study presents a reliable and interpretable precision health tool for predicting rapid knee OA progression. Our models provide accurate predictions and, importantly, allow specific predictors of rapid disease progression to be identified. Furthermore, the transparency and explainability of our methods may facilitate their acceptance by clinicians and patients, enabling effective translation to clinical practice


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 102 - 102
11 Apr 2023
Mosseri J Lex J Abbas A Toor J Ravi B Whyne C Khalil E
Full Access

Total knee and hip arthroplasty (TKA and THA) are the most commonly performed surgical procedures, the costs of which constitute a significant healthcare burden. Improving access to care for THA/TKA requires better efficiency. It is hypothesized that this may be possible through a two-stage approach that utilizes prediction of surgical time to enable optimization of operating room (OR) schedules. Data from 499,432 elective unilateral arthroplasty procedures, including 302,490 TKAs, and 196,942 THAs, performed from 2014-2019 was extracted from the American College of Surgeons (ACS) National Surgical and Quality Improvement (NSQIP) database. A deep multilayer perceptron model was trained to predict duration of surgery (DOS) based on pre-operative clinical and biochemical patient factors. A two-stage approach, utilizing predicted DOS from a held out “test” dataset, was utilized to inform the daily OR schedule. The objective function of the optimization was the total OR utilization, with a penalty for overtime. The scheduling problem and constraints were simulated based on a high-volume elective arthroplasty centre in Canada. This approach was compared to current patient scheduling based on mean procedure DOS. Approaches were compared by performing 1000 simulated OR schedules. The predict then optimize approach achieved an 18% increase in OR utilization over the mean regressor. The two-stage approach reduced overtime by 25-minutes per OR day, however it created a 7-minute increase in underutilization. Better objective value was seen in 85.1% of the simulations. With deep learning prediction and mathematical optimization of patient scheduling it is possible to improve overall OR utilization compared to typical scheduling practices. Maximizing utilization of existing healthcare resources can, in limited resource environments, improve patient's access to arthritis care by increasing patient throughput, reducing surgical wait times and in the immediate future, help clear the backlog associated with the COVID-19 pandemic


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 5 - 5
23 Feb 2023
Jadresic MC Baker J
Full Access

Numerous prediction tools are available for estimating postoperative risk following spine surgery. External validation studies have shown mixed results. We present the development, validation, and comparative evaluation of novel tool (NZSpine) for modelling risk of complications within 30 days of spine surgery. Data was gathered retrospectively from medical records of patients who underwent spine surgery at Waikato Hospital between January 2019 and December 2020 (n = 488). Variables were selected a priori based on previous evidence and clinical judgement. Postoperative adverse events were classified objectively using the Comprehensive Complication Index. Models were constructed for the occurrence of any complication and significant complications (based on CCI >26). Performance and clinical utility of the novel model was compared against SpineSage (. https://depts.washington.edu/spinersk/. ), an extant online tool which we have shown in unpublished work to be valid in our local population. Overall complication rate was 34%. In the multivariate model, higher age, increased surgical invasiveness and the presence of preoperative anemia were most strongly predictive of any postoperative complication (OR = 1.03, 1.09, 2.1 respectively, p <0.001), whereas the occurrence of a major postoperative complication (CCI >26) was most strongly associated with the presence of respiratory disease (OR = 2.82, p <0.001). Internal validation using the bootstrapped models showed the model was robust, with an AUC of 0.73. Using sensitivity analysis, 80% of the model's predictions were correct. By comparison SpineSage had an AUC of 0.71, and in decision curve analysis the novel model showed greater expected benefit at all thresholds of risk. NZSpine is a novel risk assessment tool for patients undergoing acute and elective spine surgery and may help inform clinicians and patients of their prognosis. Use of an objective tool may help to provide uniformity between DHBs when completing the “clinician assessment of risk” section of the national prioritization tool


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 44 - 44
1 Dec 2020
Torgutalp ŞŞ Korkusuz F
Full Access

Background. Although there are predictive equations that estimate the total fat mass obtained from multiple-site ultrasound (US) measurements, the predictive equation of total fat mass has not been investigated solely from abdominal subcutaneous fat thickness. Therefore, the aims of this study were; (1) to develop regression-based prediction equations based on abdominal subcutaneous fat thickness for predicting fat mass in young- and middle-aged adults, and (2) to investigate the validity of these equations to be developed. Methods. The study was approved by the Local Research Ethics Committee (Decision number: GO 19/788). Twenty-seven males (30.3 ± 8.7 years) and eighteen females (32.4 ± 9.5 years) were randomly divided into two groups as the model prediction group (19 males and 12 females) and the validation group (8 males and 6 females). Total body fat mass was determined by dual-energy X-ray absorptiometry (DXA). Abdominal subcutaneous fat thickness was measured by US. The predictive equations for total fat mass from US were determined as fat thickness (in mm) × standing height (in m). Statistical analyses were performed using R version 4.0.0. The association between the total fat mass and the abdominal subcutaneous fat thickness was interpreted using the Pearson test. The linear regression analysis was used to predict equations for total body fat mass from the abdominal subcutaneous fat thickness acquired by US. Then these predictive equations were applied to the validation group. The paired t-test was used to examine the difference between the measured and the predicted fat masses, and Lin's concordance correlation coefficient (CCC) was used as a further measure of agreement. Results. There was a significant positive moderate correlation between the total fat mass and the abdominal subcutaneous fat thickness × height in the model prediction group of males (r = 0.588, p = 0.008), whereas significant positive very strong correlation was observed in the model prediction group of females (r = 0.896, p < 0.001). Predictive equations for DXA-measured total body fat mass from abdominal subcutaneous fat thickness using US were as follows: for males “Fat mass-DXA = 0.276 × (Fat thickness-US × Height) + 17.221” (R. 2. = 0.35, SEE = 3.6, p = 0.008); for females “Fat mass-DXA = 0.694 x (Fat thickness-US × Height) + 7.085” (R. 2. = 0.80, SEE = 2.8, p < 0.001). When fat mass prediction equations were applied to the validation groups, measured- and estimated-total fat masses in males and females were found similar (p = 0.9, p = 0.5, respectively). A good level of agreement between measurements in males and females was attained (CCC = 0.84, CCC = 0.76, respectively). Conclusion. We developed and validated prediction equations that are convenient for determining total fat masses in young- and middle-aged adults using abdominal subcutaneous fat thickness obtained from the US. The abdominal subcutaneous fat thickness obtained from a single region by US might provide a noninvasive quick and easy evaluation not only in clinical settings but also on the field


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 12 - 12
1 Aug 2020
Melo L White S Chaudhry H Stavrakis A Wolfstadt J Ward S Atrey A Khoshbin A Nowak L
Full Access

Over 300,000 total hip arthroplasties (THA) are performed annually in the USA. Surgical Site Infections (SSI) are one of the most common complications and are associated with increased morbidity, mortality and cost. Risk factors for SSI include obesity, diabetes and smoking, but few studies have reported on the predictive value of pre-operative blood markers for SSI. The purpose of this study was to create a clinical prediction model for acute SSI (classified as either superficial, deep and overall) within 30 days of THA based on commonly ordered pre-operative lab markers and using data from the American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) database. All adult patients undergoing an elective unilateral THA for osteoarthritis from 2011–2016 were identified from the NSQIP database using Current Procedural Terminology (CPT) codes. Patients with active or chronic, local or systemic infection/sepsis or disseminated cancer were excluded. Multivariate logistic regression was used to determine coefficients, with manual stepwise reduction. Receiver Operating Characteristic (ROC) curves were also graphed. The SSI prediction model included the following covariates: body mass index (BMI) and sex, comorbidities such as congestive heart failure (CHF), chronic obstructive pulmonary disease (COPD), smoking, current/previous steroid use, as well as pre-operative blood markers, albumin, alkaline phosphate, blood urea nitrogen (BUN), creatinine, hematocrit, international normalized ratio (INR), platelets, prothrombin time (PT), sodium and white blood cell (WBC) levels. Since the data met logistic assumption requirements, bootstrap estimation was used to measure internal validity. The area under the ROC curve for final derivations along with McFadden's R-squared were utilized to compare prediction models. A total of 130,619 patients were included with the median age of patients at time of THA was 67 years (mean=66.6+11.6 years) with 44.8% (n=58,757) being male. A total of 1,561 (1.20%) patients had a superficial or deep SSI (overall SSI). Of all SSI, 45.1% (n=704) had a deep SSI and 55.4% (n=865) had a superficial SSI. The incidence of SSI occurring annually decreased from 1.44% in 2011 to 1.16% in 2016. Area under the ROC curve for the SSI prediction model was 0.79 and 0.78 for deep and superficial SSI, respectively and 0.71 for overall SSI. CHF had the largest effect size (Odds Ratio(OR)=2.88, 95% Confidence Interval (95%CI): 1.56 – 5.32) for overall SSI risk. Albumin (OR=0.44, 95% CI: 0.37 – 0.52, OR=0.31, 95% CI: 0.25 – 0.39, OR=0.48, 95% CI: 0.41 – 0.58) and sodium (OR=0.95, 95% CI: 0.93 – 0.97, OR=0.94, 95% CI: 0.91 – 0.97, OR=0.95, 95% CI: 0.93 – 0.98) levels were consistently significant in all clinical prediction models for superficial, deep and overall SSI, respectively. In terms of pre-operative blood markers, hypoalbuminemia and hyponatremia are both significant risk factors for superficial, deep and overall SSI. In this large NSQIP database study, we were able to create an SSI prediction model and identify risk factors for predicting acute superficial, deep and overall SSI after THA. To our knowledge, this is the first clinical model whereby pre-operative hyponatremia (in addition to hypoalbuminemia) levels have been predictive of SSI after THA. Although the model remains without external validation, it is a vital starting point for developing a risk prediction model for SSI and can help physicians mitigate risk factors for acute SSI post THA


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_1 | Pages 32 - 32
1 Jan 2022
Sobti A Yiu A Jaffry Z Imam M
Full Access

Abstract. Introduction. Minimising postoperative complications and mortality in COVID-19 patients who were undergoing trauma and orthopaedic surgeries is an international priority. Aim was to develop a predictive nomogram for 30-day morbidity/mortality of COVID-19 infection in patients who underwent orthopaedic and trauma surgery during the coronavirus pandemic in the UK in 2020 compared to a similar period in 2019. Secondary objective was to compare between patients with positive PCR test and those with negative test. Methods. Retrospective multi-center study including 50 hospitals. Patients with suspicion of SARS-CoV-2 infection who had underwent orthopaedic or trauma surgery for any indication during the 2020 pandemic were enrolled in the study (2525 patients). We analysed cases performed on orthopaedic and trauma operative lists in 2019 for comparison (4417). Multivariable Logistic Regression analysis was performed to assess the possible predictors of a fatal outcome. A nomogram was developed with the possible predictors and total point were calculated. Results. Of the 2525 patients admitted for suspicion of COVID-19, 658 patients had negative preoperative test, 151 with positive test and 1716 with unknown preoperative COVID-19 status. Preoperative COVID-19 status, sex, ASA grade, urgency and indication of surgery, use of torniquet, grade of operating surgeon and some comorbidities were independent risk factors associated with 30-day complications/mortality. The 2020 nomogram model exhibited moderate prediction ability. In contrast, the prediction ability of total points of 2019 nomogram model was excellent. Conclusions. Nomograms can be used by orthopaedic and trauma surgeons as a practical and effective tool in postoperative complications and mortality risk estimation


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 7 - 7
1 Aug 2020
Melo L Sharma A Stavrakis A Zywiel M Ward S Atrey A Khoshbin A White S Nowak L
Full Access

Total knee arthroplasty (TKA) is the most commonly performed elective orthopaedic procedure. With an increasingly aging population, the number of TKAs performed is expected to be ∼2,900 per 100,000 by 2050. Surgical Site Infections (SSI) after TKA can have significant morbidity and mortality. The purpose of this study was to construct a risk prediction model for acute SSI (classified as either superficial, deep and overall) within 30 days of a TKA based on commonly ordered pre-operative blood markers and using audited administrative data from the American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) database. All adult patients undergoing an elective unilateral TKA for osteoarthritis from 2011–2016 were identified from the NSQIP database using Current Procedural Terminology (CPT) codes. Patients with active or chronic, local or systemic infection/sepsis or disseminated cancer were excluded. Multivariate logistic regression was conducted to estimate coefficients, with manual stepwise reduction to construct models. Bootstrap estimation was administered to measure internal validity. The SSI prediction model included the following co-variates: body mass index (BMI) and sex, comorbidities such as congestive heart failure (CHF), chronic obstructive pulmonary disease (COPD), smoking, current/previous steroid use, as well as pre-operative blood markers, albumin, alkaline phosphatase, blood urea nitrogen (BUN), creatinine, hematocrit, international normalized ratio (INR), platelets, prothrombin time (PT), sodium and white blood cell (WBC) levels. To compare clinical models, areas under the receiver operating characteristic (ROC) curves and McFadden's R-squared values were reported. The total number of patients undergoing TKA were 210,524 with a median age of 67 years (mean age of 66.6 + 9.6 years) and the majority being females (61.9%, N=130,314). A total of 1,674 patients (0.8%) had a SSI within 30 days of the index TKA, of which N=546 patients (33.2%) had a deep SSI and N=1,128 patients (67.4%) had a superficial SSI. The annual incidence rate of overall SSI decreased from 1.60% in 2011 to 0.68% in 2016. The final risk prediction model for SSI contained, smoking (OR=1.69, 95% CI: 1.31 – 2.18), previous/current steroid use (OR=1.66, 95% CI: 1.23 – 2.23), as well as the pre-operative lab markers, albumin (OR=0.46, 95% CI: 0.37 – 0.56), blood urea nitrogen (BUN, OR=1.01, 95% CI: 1 – 1.02), international normalized ratio (INR, OR=1.22, 95% CI:1.05 – 1.41), and sodium levels (OR=0.94, 95% CI: 0.91 – 0.98;). Area under the ROC curve for the final model of overall SSI was 0.64. Models for deep and superficial SSI had ROC areas of 0.68 and 0.63, respectively. Albumin (OR=0.46, 95% CI: 0.37 – 0.56, OR=0.33, 95% CI: 0.27 – 0.40, OR=0.75, 95% CI: 0.59 – 0.95) and sodium levels (OR=0.94, 95% CI: 0.91 – 0.98, OR=0.96, 95% CI: 0.93 – 0.99, OR=0.97, 95% CI: 0.96 – 0.99) levels were consistently significant in all prediction models for superficial, deep and overall SSI, respectively. Overall, hypoalbuminemia and hyponatremia are both significant risk factors for superficial, deep and overall SSI. To our knowledge, this is the first prediction model for acute SSI post TKA whereby hyponatremia (and hypoalbuminemia) are predictive of SSI. This prediction model can help fill an important gap for predicting risk factors for SSI after TKA and can help physicians better optimize patients prior to TKA


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_5 | Pages 47 - 47
1 Apr 2022
Myatt D Stringer H Mason L Fischer B
Full Access

Introduction. Diaphyseal tibial fractures account for approximately 1.9% of adult fractures. Several studies demonstrate a high proportion of diaphyseal tibial fractures have ipsilateral occult posterior malleolus fractures, this ranges from 22–92.3%. Materials and Methods. A retrospective review of a prospectively collected database was performed at Liverpool University Hospitals NHS Foundation Trust between 1/1/2013 and 9/11/2020. The inclusion criteria were patients over 16, with a diaphyseal tibial fracture and who underwent a CT. The articular fracture extension was categorised into either posterior malleolar (PM) or other fracture. Results. 764 fractures were analysed, 300 had a CT. There were 127 intra-articular fractures. 83 (65.4%) cases were PM and 44 were other fractures. On univariate analysis for PM fractures, fibular spiral (p=.016) fractures, no fibular fracture(p=.003), lateral direction of the tibial fracture (p=.04), female gender (p=.002), AO 42B1 (p=.033) and an increasing angle of tibial fracture. On multivariate regression analysis a high angle of tibia fracture was significant. Other fracture extensions were associated with no fibular fracture (p=.002), medial direction of tibia fracture (p=.004), female gender (p=.000), and AO 42A1 (p=.004), 42A2 (p=.029), 42B3 (p=.035) and 42C2 (p=.032). On multivariate analysis, the lateral direction of tibia fracture, and AO classification 42A1 and 42A2 were significant. Conclusions. Articular extension happened in 42.3%. A number of factors were associated with the extension, however multivariate analysis did not create a suitable prediction model. Nevertheless, rotational tibia fractures with a high angle of fracture should have further investigation with a CT


Background. Dislocation is a common complication following total hip arthroplasty (THA), and accounts for a high percentage of subsequent revisions. The purpose of this study was to develop a convolutional neural network (CNN) model to identify patients at high risk for dislocation based on postoperative anteroposterior (AP) pelvis radiographs. Methods. We retrospectively evaluated radiographs for a cohort of 13,970 primary THAs with 374 dislocations over 5 years of follow-up. Overall, 1,490 radiographs from dislocated and 91,094 from non-dislocated THAs were included in the analysis. A CNN object detection model (YOLO-V3) was trained to crop the images by centering on the femoral head. A ResNet18 classifier was trained to predict subsequent hip dislocation from the cropped imaging. The ResNet18 classifier was initialized with ImageNet weights and trained using FastAI (V1.0) running on PyTorch. The training was run for 15 epochs using ten-fold cross validation, data oversampling and augmentation. Results. The hip dislocation prediction classifier achieved the following mean performance: accuracy= 49.5(±4.1)%, sensitivity= 89.0(±2.2)%, specificity= 48.8(±4.2)%, positive predictive value= 3.3(±0.3)%, negative predictive value= 99.5(±0.1)%, and area under the receiver operating characteristic curve= 76.7(±3.6)%. Saliency maps demonstrated that the model placed the greatest emphasis on the femoral head and acetabular component. Conclusions. Existing prediction methods fail to identify patients at high risk of dislocation following THA. Our prediction model has high sensitivity and negative predictive value. Therefore, it can be helpful in rapid assessment of risk for dislocation following THA. The model further suggests radiographic locations which may be important in understanding the etiology of prosthesis dislocation


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_12 | Pages 68 - 68
1 Oct 2019
Bedair HS
Full Access

Background. Postoperative recovery after routine total hip arthroplasty (THA) can lead to the development of prolonged opioid use but there are few tools for predicting this adverse outcome. The purpose of this study was to develop machine learning algorithms for preoperative prediction of prolonged post-operative opioid use after THA. Methods. A retrospective review of electronic health records was conducted at two academic medical centers and three community hospitals to identify adult patients who underwent THA for osteoarthritis between January 1. st. , 2000 and August 1. st. , 2018. Prolonged postoperative opioid prescriptions were defined as continuous opioid prescriptions after surgery to at least 90 days after surgery. Five machine learning algorithms were developed to predict this outcome and were assessed by discrimination, calibration, and decision curve analysis. Results. Overall, 5507 patients underwent THA, of which 345 (6.3%) had prolonged postoperative opioid prescriptions. The factors determined for prediction of prolonged postoperative opioid prescriptions were: age, duration of pre-operative opioid exposure, preoperative hemoglobin, and certain preoperative medications (anti-depressants, benzodiazepines, non-steroidal anti-inflammatory drugs, and beta-2-agonists). The elastic-net penalized logistic regression model achieved the best performance across discrimination (c-statistic = 0.77), calibration, and decision curve analysis. This model was incorporated into a digital application able to provide both predictions and explanations; available here: . https://sorg-apps.shinyapps.io/thaopioid/. Conclusion. If externally validated in independent populations, the algorithms developed in this study could improve preoperative screening and support for THA patients at high-risk for prolonged postoperative opioid use. Early identification and intervention in high-risk cases may mitigate the long-term adverse consequence of opioid dependence. For any tables or figures, please contact the authors directly


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 81 - 81
2 Jan 2024
Vautrin A Aw J Attenborough E Varga P
Full Access

Although 3D-printed porous dental implants may possess improved osseointegration potential, they must exhibit appropriate fatigue strength. Finite element analysis (FEA) has the potential to predict the fatigue life of implants and accelerate their development. This work aimed at developing and validating an FEA-based tool to predict the fatigue behavior of porous dental implants. Test samples mimicking dental implants were designed as 4.5 mm-diameter cylinders with a fully porous section around bone level. Three porosity levels (50%, 60% and 70%) and two unit cell types (Schwarz Primitive (SP) and Schwarz W (SW)) were combined to generate six designs that were split between calibration (60SP, 70SP, 60SW, 70SW) and validation (50SP, 50SW) sets. Twenty-eight samples per design were additively manufactured from titanium powder (Ti6Al4V). The samples were tested under bending compression loading (ISO 14801) monotonically (N=4/design) to determine ultimate load (F. ult. ) (Instron 5866) and cyclically at six load levels between 50% and 10% of F. ult. (N=4/design/load level) (DYNA5dent). Failure force results were fitted to F/F. ult. = a(N. f. ). b. (Eq1) with N. f. being the number of cycles to failure, to identify parameters a and b. The endurance limit (F. e. ) was evaluated at N. f. = 5M cycles. Finite element models were built to predict the yield load (F. yield. ) of each design. Combining a linear correlation between FEA-based F. yield. and experimental F. ult. with equation Eq1 enabled FEA-based prediction of F. e. . For all designs, F. e. was comprised between 10% (all four samples surviving) and 15% (at least one failure) of F. ult. The FEA-based tool predicted F. e. values of 11.7% and 12.0% of F. ult. for the validation sets of 50SP and 50SW, respectively. Thus, the developed FEA-based workflow could accurately predict endurance limit for different implant designs and therefore could be used in future to aid the development of novel porous implants. Acknowledgements: This study was funded by EU's Horizon 2020 grant No. 953128 (I-SMarD). We gratefully acknowledge the expert advice of Prof. Philippe Zysset