Objectives. The purpose of this study was to examine the bactericidal efficacy of
Polymethylmethacrylate (PMMA) Acrylic Bone Cement is a polymer used to anchor the prosthesis during Joint Replacement Surgery. Arthroplasty with Bone Cement is associated with late loosening, compromising prosthetic stability leading to Revision arthroplasty. Different irrigating solutions such as
There are several different ways of preparing the femoral canal prior to cementing a hip prosthesis. This study investigated the mechanical strength of the cement-bone interface of four different types of preparation determined by the maximum tensile force required to separate a cemented prosthesis from its cancellous bone origin. Forty-eight fresh-frozen ox femora were prepared for hip arthroplasty, In a four-way comparison, groups of eleven femora were prepared by irrigation using
syringe injected normal saline; hydrogen-peroxide soaked gauze; pulse-lavage brushing; and pulse-lavage brushing and hydrogen-peroxide soaked gauze combination. Specimens were secured to a Material-test System (MTS), and the femoral implant pulled from the femur uni-axially at a rate of 5mm/min. The ‘pull-out strength’ was defined as the maximum tension recorded by the MTS during separation. Cement interdigitation was also inspected for each technique by microscopy of eight bone-implant transverse sections taken from prepared specimens. Following an analysis of variance and pair-wise Fisher comparison, the average pull-out strength of the cemented prosthesis was significantly higher (P<
0.001) using pulse-lavage brushing (mean 8049.2 N), and pulse-lavage brushing in combination with hydrogen-peroxide soaked gauze (mean 8489.1 N), than with normal saline irrigation (mean 947.1 N) or hydrogen-peroxide soaked gauze preparation (mean 1832.6 N). Prosthesis pull-out strength following pulse-lavage brushing in combination with hydrogen-peroxide soaked gauze was not significantly different (P>
0.05) than preparing with pulse-lavage brushing alone. Low and high power microscopy of specimen transverse sections revealed the greatest levels of cement penetration in specimens prepared using pulse-lavage brushing. This study demonstrated that one of the most effective preparations of the femoral canal for optimal mechanical fixation between cement and cancellous bone is pulse- lavage brushing. The use of hydrogen-peroxide soaked gauze in femoral canal preparation, either alone or in combination with pulse-lavage brushing, may not significantly improve prosthesis fixation.
Aims. This study was performed to explore the effect of melatonin on pyroptosis in nucleus pulposus cells (NPCs) and the underlying mechanism of that effect. Methods. This experiment included three patients diagnosed with lumbar disc herniation who failed conservative treatment. Nucleus pulposus tissue was isolated from these patients when they underwent surgical intervention, and primary NPCs were isolated and cultured. Western blotting, reverse transcription polymerase chain reaction, fluorescence staining, and other methods were used to detect changes in related signalling pathways and the ability of cells to resist pyroptosis. Results. Western blot analysis confirmed the expression of cleaved CASP-1 and melatonin receptor (MT-1A-R) in NPCs. The cultured NPCs were identified by detecting the expression of CD24, collagen type II, and aggrecan. After treatment with
Introduction: One of the most common complications following total joint surgery is aseptic loosening. Improving the bone-cement interlock may increase implant longevity. An ideally prepared bony surface is dry; clean; free from marrow, fat and debris; free from active bleeding; and free from micro-organisms. Lavage removes debris, blood and fat from the interstices of the bone surface so as to allow optimal penetration of the cement. The hypothesis that we investigated in this study was that lavage with a detergent solution obtains a greater depth of cement penetration into bone compared with lavage using 0.9% saline,
Cells of the intervertebral disc exist in an unusual environment compared to those of other tissues. Within the disc there are low levels of nutrients available, low oxygen levels and it is an acidic environment due to high lactate levels. Apoptosis (programmed or controlled cell death) has been reported in intervertebral discs, as well as necrosis (uncontrolled cell death). This study has focused on examining the sensitivity of nucleus pulpo-sus (NP) cells to several stimuli, in comparison to two other cells types. Ultra violet (UV) irradiation, serum starvation (with no foetal calf serum) and treatment with 2mM
Introduction Bone morphogenetic protein-7 (BMP-7) is known to stimulate both cellular proliferation and extracellular matrix synthesis in the intervertebral disc but its protective role in apoptosis is unknown. The aim of this study was to determine whether BMP-7 protect cultured intervertebral disc cells following stimulation of apoptosis. Methods Nucleus pulposus tissues were obtained from consent individuals under surgical procedures and digested with collagenase prior to culturing. Cellular apoptosis was achieved by either tumor necrosis factor-alpha (TNF-β) or
Leucocytes are white blood cells that help the body fight against bacteria, viruses and tumour cells. However, the activity of leucocytes has been implicated in other clinically important inflammatory conditions such as ischaemic heart disease, stroke, and during cardio-aortic and orthopaedic surgery. The main objectives of this study was to optimise methods for the isolation of leucocyte subpopulations (neutrophils and monocytes), and to assess in vitro the effects of PMA and fMLP on markers of leucocyte adhesion (CD11b, CD62L) and activation (intracellular hydrogen peroxide) (n=10). Leucocyte subpopulations were labelled by incubation with fluorescein isothiocya-nate (FITC) conjugated anti-human CD11b and CD62L antibodies. The cell surface expression of these labelled adhesion molecules were measured by flow cytometry. Intracellular production of
Aim. Polypropylene (PPE) synthetic mesh is increasingly used in knee arthroplasty surgery to salvage a disrupted extensor mechanism. Despite its clinical success, it is associated with a high rate of periprosthetic joint infection (PJI), which is hypothesized to be caused by bacterial biofilm. The purpose of the current study is to describe the progression of PPE-based biofilm formation over time and to determine if intraoperative antiseptic solutions could be used to effectively remove biofilm when treating PJI. Method. Commercially available knotted monofilament PPE mesh. 1. was cut into 10mm circular shape, immersed in tryptic soy broth (TSB) with methicillin-sensitive staphylococcus aureus and cultured individually in 48-well plates for 10 days to elucidate the biofilm grown on mesh over time. At every 24 hours, a triplicate of samples was retrieved and biofilm on the mesh was dislodged by sonicating at 52 kHz for 15 minutes and quantified by counting colony-forming units (CFUs) after overnight growth. The biofilm growth was also verified using scanning electron microscopy. The effect of saline and antiseptic solutions was verified by exposing 1) 0.05% chlorohexidine gluconate. 2. , 2) acetic acid-based mixture. 3. , 3) diluted povidone-iodine (0.35%), 4) undiluted povidone-iodine (10%). 4. , and 5) 1:1 combination of 10% povidone-iodine & 3%
Aim. Irrigation and debridement with an irrigation solution are essential components of the surgical management of acute and chronic periprosthetic joint infection (PJI). Nevertheless, there is a lack of agreement regarding the most effective solution to use. The aim of the study was to perform a systematic review and meta-analysis of the current literature concerning the efficacy of different irrigation solutions over bacterial biofilm. Method. This study was conducted in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analysis extension for Network meta-analysis (PRISMA-NMA) checklist for systematic reviews and meta-analyses. A comprehensive literature search of PubMed, Cochrane Library, Web of Science and Scopus databases from inception to September 1, 2023. We combined terms related to PJI, biofilm and irrigation solutions studied in vitro. We performed a network meta-analysis to analyze which irrigation solution achieved a higher reduction of colony forming units (CFU) after specific exposure times, always with a maximum of five minutes, replicating intraoperative conditions. Effect-size was summarized with logarithmic response ratio (logRR) and 95% confidence intervals (95% CI). The rank probability for each treatment was calculated using the p-scores. Results. We screened 233 potential sources. Following deduplication, screening and full-text review, four studies with ten irrigation solutions for different duration of exposures were included, always less than five minutes, replicating intraoperative conditions. Solutions were studied over mature biofilms of most frequent bacteria grown over metal, bone cement or polyethylene surfaces. The highest effect was achieved with povidone iodine 10% during 5 minutes (logRR: −12.02; 95% CI: −14.04, −9.99). The best ranked solutions were povidone iodine 10% during five, three and one minute (respective p-scores: 0.977, 0.932, 0.887) and its combination with
Objectives. Oxidative stress plays a major role in the onset and progression of involutional osteoporosis. However, classical antioxidants fail to restore osteoblast function. Interestingly, the bone anabolism of parathyroid hormone (PTH) has been shown to be associated with its ability to counteract oxidative stress in osteoblasts. The PTH counterpart in bone, which is the PTH-related protein (PTHrP), displays osteogenic actions through both its N-terminal PTH-like region and the C-terminal domain. Methods. We examined and compared the antioxidant capacity of PTHrP (1-37) with the C-terminal PTHrP domain comprising the 107-111 epitope (osteostatin) in both murine osteoblastic MC3T3-E1 cells and primary human osteoblastic cells. Results. We showed that both N- and C-terminal PTHrP peptides at 100 nM decreased reactive oxygen species production and forkhead box protein O activation following
Summary Statement. The problem facing this research is to promote rapid osteointegration of titanium implants and to minimise the risks of infections by the functionalization with different agents, each designed for a specific action. A patented process gives a multifunctional titanium surface. Introduction. A patented process of surface modification is described. It gives a multifunctional surface with a multiscale roughness (micro and nano topography), that is excellent for osteoblast adhesion and differentiation. It has a high degree of hydroxylation, that is relevant for inorganic bioactivity (apatite-HA precipitation) and it is ready for a functionalization with biological factors. A direct grafting of ALP has been obtained. Moreover, the growth of an antibacterial agent within the surface oxide layer can be useful in order to combine the osteoinduction ability to antimicrobial effects. The selection of an inorganic agent (metal nanoparticles) has the advantage to avoid an eventual development of antibiotic resistance by bacteria. Experimental Methods. Ti-cp and Ti6Al4V samples were polished or blasted, etched in diluted hydrofluoric acid (step 1a), oxidised in
The number of cemented femoral stems implanted in the United States continues to slowly decrease over time. Approximately 10% of all femoral components implanted today are cemented, and the majority are in patients undergoing hip arthroplasty for femoral neck fractures. The European experience is quite different. In the UK, cemented femoral stems account for approximately 50% of all implants, while in the Swedish registry, cemented stems still account for the majority of implanted femoral components. Recent data demonstrating some limitations of uncemented fixation in the elderly for primary THA, may suggest that a cemented femoral component may be an attractive alternative in such a group. Two general philosophies exist with regards to the cemented femoral stem: Taper slip and Composite Beam. There are flagship implants representing both philosophies and select designs have shown excellent results past 30 years. A good femoral component design and cementing technique, however, is crucial for long-term clinical success. The author's personal preference is that of a “taper slip” design. The cemented Exeter stem has shown excellent results past 30 years with rare cases of loosening. The characteristic behavior of such a stem is to allow slight subsidence of the stem within the cement mantle through the process of cement creep. One or two millimeters of subsidence in the long-term have been observed with no detrimental clinical consequences. There have been ample results in the literature showing the excellent results at mid- and long-term in all patient groups. The author's current indication for a cemented stem include the elderly with no clear and definitive cutoff for age, most likely in females, THA for femoral neck fracture, small femoral canals such as those patients with DDH, and occasionally in patients with history of previous hip infection. Modern and impeccable cement technique is paramount for durable cemented fixation. It is important to remember that the goal is interdigitation of the cement with cancellous bone, so preparing the femur should not remove cancellous bone. Modern technique includes distal plugging of the femoral canal, pulsatile lavage, drying of the femoral canal with epinephrine or
The number of cemented femoral stems implanted in the United States continues to slowly decrease over time. Approximately 10% of all femoral components implanted today are cemented, and the majority are in patients undergoing hip arthroplasty for femoral neck fractures. The European experience is quite different, in the UK, cemented femoral stems account for approximately 50% of all implants, while in the Swedish registry, cemented stems still account for the majority of implanted femoral components. Recent data demonstrating some limitations of uncemented fixation in the elderly for primary THA, may suggest that a cemented femoral component may be an attractive alternative in such a group. Two general philosophies exist with regards to the cemented femoral stem: Taper slip and Composite Beam. There are flagship implants representing both philosophies and select designs have shown excellent results past 30 years. A good femoral component design and cementing technique, however, is crucial for long-term clinical success. The authors' personal preference is that of a “taper slip” design. The cemented Exeter stem has shown excellent results past 30 years with rare cases of loosening. The characteristic behavior of such a stem is to allow slight subsidence of the stem within the cement mantle through the process of cement creep. One or two millimeters of subsidence in the long-term have been observed with no detrimental clinical consequences. There have been ample results in the literature showing the excellent results at mid- and long-term in all patient groups. The authors' current indications for a cemented stem include the elderly with no clear and definitive cutoff for age, most likely in females, THA for femoral neck fracture, small femoral canals such as those patients with DDH, and occasionally in patients with history of previous hip infection. Modern and impeccable cement technique is paramount for durable cemented fixation. It is important to remember that the goal is interdigitation of the cement with cancellous bone, so preparing the femur should not remove cancellous bone. Modern technique includes distal plugging of the femoral canal, pulsatile lavage, drying of the femoral canal with epinephrine or
This study aims to identify the efficiency of biomechanical and bioactive properties of the bovine cortical bone cage treated with conditionally surface demineralization. The procured bovine femoral bones were got rid of lipid, protein, and blood materials by chemical process such as 3%
The posterior midline approach used in spinal surgery has been associated with a significant rate of wound dehiscence. This study investigates anatomical study of the arterial supply of the cervical and thoracic spinal muscles and overlying skin at each vertebral level. It aimed to provide possible anatomical basis for such wound complications. A dissection and angiographic study was undertaken on 8 cadaveric neck and posterior torso from 6 embalmed and 2 fresh human cadavers. Harvested cadavers were warmed and
Purpose. The purpose of this study is to compare using a novel cementing technique with hydroxyapatite granules at bone-cement interface with using the 3. rd. cementing technique on the acetabular component. Patients and Methods. Between 2005 and 2007, we performed 54 primary cemented THAs using the 3. rd. generation cementing technique with hydroxyapatite granules at bone-cement interface (Group A: 21 hips) or without them (Group B: 33 hips) in 49 patients with dysplastic hip (6 males, 43 female; mean age at operation, 67 years; age range, 48–84 years). Mean follow up was 5.3 years (range, 2.3–7.1 years), with none of the patients lost to follow up. According to Crowe's classification, subluxation was Group I in 31 hips, group II in 11 hips, group III in 8 hips, and group IV in 4 hips. We used Exeter flanged cup, Exeter stem with a 22-mm diameter metal head (Stryker, Benoist Girard, France) and Simplex-P bone cement (Stryker, Limerick, Ireland) in all hips. A posterolateral approach was performed for all patients. Bone graft was performed 25 hips (block bone graft: 11 hips; impaction bone grafting with a metal mesh: 13 hips) from autogeneic femoral head. Our 3. rd. cementing technique is to make multiple 6-mm anchor holes, to clean the the host acetabular bed with pulse lavage, to dry it with
Introduction: Staphylococcal bacteria, especially the coagulase negative Staphylococci, are responsible for the majority of orthopaedic device related infection. These infections are sub acute, and may not present for months or years following surgery. The virulence of these bacteria is related to their ability to form biofilm, a protective slime which allows them to survive the effects of the host immune system and antimicrobial therapy. Treatment of biofilm based infection almost always necessitates removal of the implant. Recent work has identified environmental stimuli which induce biofilm formation in Staphylococci. These include stressors such as high temperature, high osmolarity, anaerobiosis, nutrient depletion, salt, ethanol and subinhibitory concentrations of certain antimicrobial drugs. Given the ability of these bacteria to survive the “respiratory burst” from the cells of the mononuclear-macrophage system, we hypothesised that oxidative stress may be one such promoter of biofilm formation by Staphylococci. Methods and Materials:Staphylococcus epidermidis CSF41498 and Staphylococcus aureus RN422O were selected for study as these are known biofilm forming organisms.
In hip joint simulator studies, wear measurement is usually performed gravimetrically. This procedure is reliable for metal-on-polyethylene or ceramic-on-polyethylene bearings, in which relatively high amounts of abrasive wear particles are produced. With modern hard-on-hard bearings, volumetric wear decreases significantly up to 100 to 200-fold. The gravimetric method reaches its detection limit with metal-on-metal bearings and even more so with ceramic-on-ceramic bearings. This study establishes a new method of determining wear in hard-on-hard bearings by measuring the amount of worn particles/ions in the serum of hip simulators. A wear study on three resurfacing hip implants (BHR. ®. , Smith&
Nephew) was conducted using a hip joint simulator. Prior to the wear study, tests were performed to validate the detection power for high resolution-inductively coupled plasma-mass spectrometry (HR-ICP-MS). More importantly the system’s accuracy was compared to the gravimetric method, which is described in ISO 14243-2. The simulator was altered to run completely metal ion free. The ion concentration in the serum was measured every 100 000 cycles up to 1 500 000 cycles and subsequently in intervals of 500 000 cycles using HR-ICP-MS. The implants were neither removed from the simulator nor excessively cleaned during the course of the simulation. Serum was refreshed every 500 000 cycles. The serum samples were digested with purified nitric acid and
Introduction. Large diameter femoral heads offer increased range of motion and reduced risk of dislocation. However, their use in total hip arthroplasty has historically been limited by their correlation with increased polyethylene wear. The improved wear resistance of highly crosslinked UHWMPE has led a number of clinicians to transition from implanting traditionally popular sizes (28mm and 32 mm) to implanting 36 mm heads. Desire to further increase stability and range of motion has spurred interest in even larger sizes (> 36 mm). While the long-term clinical ramifications are unknown, in-vivo measurements of highly crosslinked UHMWPE liners indicate increases in head diameter are associated with increased volumetric wear [1]. The goal of this study was to determine if this increase in wear could be negated by using femoral heads with a ceramic surface, such as oxidized Zr-2.5Nb (OxZr), rather than CoCrMo (CoCr). Specifically, wear of 10 Mrad crosslinked UHMWPE (XLPE) against 36 mm CoCr and 44 mm OxZr heads was compared. Materials and Methods. Ram-extruded GUR 1050 UHMWPE was crosslinked by gamma irradiation to 10 Mrad, remelted, and machined into acetabular liners. Liners were sterilized using vaporized