Introduction. The
Objective. The aim of this study was to evaluate the shape of patella relative to the femoral
Introduction: The
Introduction. The assumption that symmetric extension-flexion gaps improve the femoral condyle lift-off phenomenon and the patellofemoral joint congruity in total knee arthroplasty (TKA) is now widely accepted. Conventional understanding of knee kinematics suggests that the femoral component should be rotationally aligned parallel to the surgical
Introduction. A femoral rotational alignment is one of the essential factors, affecting the postoperative knee balance and patellofemoral tracking in total knee arthroplasty (TKA). To obtain an adequate alignment, the femoral component must be implanted parallel to the surgical
The accuracy of measurement in computer-assisted total knee arthroplasty is dependent on the quality of data acquisition at the start of the procedure; errors in landmark identification could lead to misalignment and therefore poorer longterm outcomes. Some navigation systems require the surgeon to explicitly identify the femoral epicondyles in order to calculate the trans-epicondylar axis, whereas other systems are able to interpolate the epicondylar location based on a number of points acquired from the distal femoral surface. Significant inter-observer variability in landmark identification has been previously reported in dry bone studies. The purpose of this study was to test the accuracy of identification of the epicondyles during a simulated total knee replacement on a fresh cadaveric specimen. An unfixed fresh cadaveric left lower limb was used to perform a navigated total knee replacement using the Orthopilot® (B|Braun-Aesculap, Tuttlingen, Germany) image-free navigation system. Sixteen surgeons attending an advanced navigation training course were invited to take part. A single consultant surgeon performed initial dissection and pin placement, up to the point of landmark acquisition. Each subject was then asked to use a pointer tool to identify the medial and lateral epicondyles, as they would in an operative situation. Data were recorded by the Orthopilot® system, and exported as a 3D array for further analysis. Initial visualisation with a 3D scatter plot showed that points were evenly distributed within a circular pattern around each epicondyle. The length of a vector between each point on each epicondyle was calculated in turn. The maximum distances between points were 15.6mm for the medial epicondyle, and 19.9mm for the lateral epicondyle. We then calculated the length and angulation of the trans-epicondylar axis (TEA) for each observer, equivalent to the vector between each pair of points (medial and lateral epicondyle). An average TEA was calculated, and the range and standard deviation of angulation were determined. In the x axis the range was 16.3° (–8.3° to 7.9°, SD 5.1°), in the y axis the range was 18.7° (–8.7° to 10°, SD 5.2°) and in the z axis the range was 20.5° (–10.1° to 10.4°, SD 6.5°). Range of recorded TEA length was 64.5 to 74.9mm (mean 70.6mm, SD 3.3mm). We conclude that in this simulated operative scenario, surgeons exhibited considerable variability when locating the epicondyles. Range of angulation of the TEA exceeded 16° (SD >
5.1°) in all 3 planes. We cannot recommend the use of a trans-epicondylar axis determined from 2 single points, as a reliable landmark in navigated total knee replacement.
This study aims to describe a new method that may be used as a supplement to evaluate humeral rotational alignment during intramedullary nail (IMN) insertion using the profile of the perpendicular peak of the greater tuberosity and its relation to the transepicondylar axis. We called this angle the greater tuberosity version angle (GTVA). This study analyzed 506 cadaveric humeri of adult patients. All humeri were CT scanned using 0.625 × 0.625 × 0.625 mm cubic voxels. The images acquired were used to generate 3D surface models of the humerus. Next, 3D landmarks were automatically calculated on each 3D bone using custom-written C++ software. The anatomical landmarks analyzed were the transepicondylar axis, the humerus anatomical axis, and the peak of the perpendicular axis of the greater tuberosity. Lastly, the angle between the transepicondylar axis and the greater tuberosity axis was calculated and defined as the GTVA.Aims
Methods
This study was to assess the accuracy of fixed posterior condylar referencing cutting blocks to the accuracy of combined
Purpose of the study: The aim of this study was to analyze rotation of the normal and prosthetic distal femur as well as the spaces from 90 to 130 degrees flexion. Material and methods: Torsion scans were obtained preoperatively and postoperatively for 44 total knee prostheses. The difference in femoral torsion between the pre- and postoperative image was used to assess the rotation in which the femoral component was implanted. The prostheses were divided into two groups: group I when the femoral implant was implanted with external rotation of more than 5°; group II when the femoral implant was implanted with external rotation less than 5°. A preoperative stress scan was obtained in 20 patients then repeated during the year following implantation. Stress images with knee flexion at angles from 90° to 130° were obtained. The patient was installed in the ventral supine position. 8mm scan slices were centered on the lower end of the femur, ten 50ms images were acquired during flexion movement from 90° to 130°. This enabled determination of the knee flexion axis preoperatively and postoperatively, to measure the variation in the
The anterior curve of the tibial plateau cortex represents a realiable and reproducible landmark which may help aligning the tibial component with the femoral component and the extensor mechanism. Few studies analyzed the tibial component rotational alignment during total knee arthroplasty. Malrotation can affect both patello-femoral and tibio-femoral postoperative function. We evaluated the rotational relationship between femur and tibia, and we investigated which tibial landmark consistently matches the rotation of the femoral
INTRODUCTION. Mechanical alignment in TKA introduces significant anatomic modifications for many individuals, which may result in unequal medial-lateral or flexion-extension bone resections. The objective of this study was to calculate bone resection thicknesses and resulting gap sizes, simulating a measured resection mechanical alignment technique for TKA. METHODS. Measured resection mechanical alignment bone resections were simulated on 1000 consecutive lower limb CT-Scans from patients undergoing TKA. Bone resections were simulated to reproduce the following measured resection mechanical alignment surgical technique. The distal femoral and proximal tibial cuts were perpendicular to the mechanical axis, setting the resection depth at 8mm from the most distal femoral condyle and from the most proximal tibial plateau (Figure 1). If the resection of the contralateral side was <0mm, the resection level was increased such that the minimum resection was 0mm. An 8mm resection thickness was based on an implant size of 10mm (bone +2mm of cartilage). Femoral rotation was aligned with either the trans-epicondylar axis or with 3 degrees of external rotation to the posterior condyles. After simulation of the bone cuts, media-lateral gap difference and flexion-extension gaps difference were calculated. The gap sizes were calculated as the sum of the femoral and tibial bone resections, with a target bone resection of 16mm (+ cartilage corresponding to the implant thickness). RESULTS. For both the varus and valgus knees, the created gaps in the medial and lateral compartments were reduced in the vast majority of cases (<16mm). The insufficient lateral condyle resection distalises the lateral joint surface by a mean of 2.1mm for the varus and 4.4mm for the valgus knees. The insufficient medial tibial plateau resection proximalises the medial joint surface by 3.3mm for the varus and 1.2mm for the valgus knees. Medio-lateral gap imbalances in the extension space of more than 2mm) occurred in 25% of varus and 54% of valgus knees and significant imbalances of more than 5mm were present in up to 8% of varus and 19% of valgus knees. Higher medio-lateral gap imbalances in the flexion space were created with trans
The cornerstone to proper ligament balancing in TKR is correct varus and valgus alignment in flexion and extension. For alignment in the extended position, fixed anatomic landmarks such as the intramedullary canal of the femur and long axis of the tibia are accepted. When the joint surface is resected at an angle of 5 degrees to 7 degrees valgus to the medullary canal of the femur and perpendicular to the long axis of the tibia, the joint surfaces are perpendicular to the mechanical axis of the lower extremity, and roughly parallel to the
Aim. The aim of this study is to evaluate the effect of three-dimensional (3D) simulation with 3D planning software ZedKnee® (ZK) in total knee arthroplasty (TKA). Materials and methods. The participants in this study were all TKA patients whose operations were simulated by using ZK. The alignment of all components was evaluated with the ZK valuation software in postoperative computer tomography. Thirty patients (43 knees) met the inclusion criteria. 6 patients were male and 24 patients were female. The mean age of the 30 patients was 72 years old. Diagnoses for surgery were: osteoarthritis- 40 knees, rheumatoid arthritis- 2 knees and osteonecrosis- 1 knee. TKA was performed using the measured resection technique. The distal femur axis where the intramedullary rod would be inserted was drawn manually on the 3D image. Then, the angle between the distal femoral axis and the mechanical axis was measured. The rotational angles of the femoral components were determined from the automatically calculated angle between the posterior condylar axis and the surgical
The cornerstone to correct ligament balancing is correct varus and valgus alignment in flexion and extension. For alignment in the extended position, fixed anatomic landmarks such as the intramedullary canal of the femur and long axis of the tibia are accepted. When the joint surface is resected at an angle of 5° to 7° valgus to the medullary canal of the femur and perpendicular to the long axis of the tibia, the joint surfaces are perpendicular to the mechanical axis of the lower extremity, and roughly parallel to the
Restoration of the position of the prosthetic joint line to the same level as the natural joint line, is a challenging problem in primary and revision knee arthroplasty and there is no reliable method for achieving this objective. We hypothesise that there is a constant ratio between the inter-epicondylar distance and the distance from this interepicondylar line to the joint line. We analysed one hundred Computerised Tomography (CT) scans of the knee in the non arthritic population to study this relationship. The inter-epicondylar distance and the perpendicular distance from this inter-epicondylar line to the joint line was measured using both the clinical and surgical epicondylar axes for each knee as described in previous literature. The results showed that using the clinical
Introduction. The Walch Type B2 glenoid has the hallmark features of posteroinferior glenoid erosion, retroversion, and posterior humeral head subluxation. Although our understanding of the pathoanatomy of bone loss and its evolution in Type B's has improved, the etiology remains unclear. Furthermore, the morphology of the humerus in Walch B types has not been studied. The purpose of this imaging based anthropometric study was to examine the humeral torsion in Walch Type B2 shoulders. We hypothesized that there would be a compensatory decrease in humeral retroversion in Walch B2 glenoids. Methods. Three-dimensional models of the full length humerus were generated from computed tomography data of normal cadaveric (n = 59) and Walch Type B shoulders (n = 59). An anatomical coordinate system referencing the medial and lateral epicondyles was created for each model. A simulated humeral head osteotomy plane was created and used to determine humeral version relative to the
Correct rotational alignment of the femoral component is one of the most important elements in successful total knee arthroplasty. The surgical
Background: The purpose of this study was to assess the anterior femoral cortical line (AFCL) as an additional anatomical landmark for determining intraoperative femoral component rotation in total knee arthroplasty. The AFCL was compared with the
Introduction:. Conventional understanding of knee kinematics suggests that the femoral component should be rotationally aligned parallel to the surgical
Background. Total knee arthroplasty (TKA) is a cost-effective surgical procedure for degenerative knee disease and has good long-term results. However, these results are not always related to patient satisfaction and functional outcome. With an increasing demand of surgeons and patients on functioning of total knee implants, the need for adequate objective outcome measures is high. Imaging of the knee is commonly used in clinical practice and research to objectively measure many different outcome parameters concerning the implant, such as alignment and complications.1 However, techniques on comparison of the sagittal contour of the knee before and after implant placement are scarce. Goal. To develop and describe a standardized method for measuring the sagittal contour of the implant in a 3D model of the knee before and after implant placement. Methods. Images of the static knee of a subject are obtained in-vivo using fluoroscopy over a 180° sweep at 15 frames per second (MultiDiagnost Eleva, Philips, The Netherlands). A 3D model of the knee is constructed in accompanying software (3D-RX, Philips, The Netherlands) and is subsequently imported in OsiriX imaging software (Pixmeo, Switzerland). In Osirix, a reproducible coordinate system is obtained using the bone stub axis and the anatomical