Advertisement for orthosearch.org.uk
Results 1 - 17 of 17
Results per page:
Bone & Joint Open
Vol. 2, Issue 8 | Pages 599 - 610
1 Aug 2021
Hothi H Bergiers S Henckel J Iliadis AD Goodier WD Wright J Skinner J Calder P Hart AJ

Aims. The aim of this study was to present the first retrieval analysis findings of PRECICE STRYDE intermedullary nails removed from patients, providing useful information in the post-market surveillance of these recently introduced devices. Methods. We collected ten nails removed from six patients, together with patient clinical data and plain radiograph imaging. We performed macro- and microscopic analysis of all surfaces and graded the presence of corrosion using validated semiquantitative scoring methods. We determined the elemental composition of surface debris using energy dispersive x-ray spectroscopy (EDS) and used metrology analysis to characterize the surface adjacent to the extendable junctions. Results. All nails were removed at the end of treatment, having achieved their intended lengthening (20 mm to 65 mm) and after regenerate consolidation. All nails had evidence of corrosion localized to the screw holes and the extendable junctions; corrosion was graded as moderate at the junction of one nail and severe at the junctions of five nails. EDS analysis showed surface deposits to be chromium rich. Plain radiographs showed cortical thickening and osteolysis around the junction of six nails, corresponding to the same nails with moderate – severe junction corrosion. Conclusion. We found, in fully united bones, evidence of cortical thickening and osteolysis that appeared to be associated with corrosion at the extendable junction; when corrosion was present, cortical thickening was adjacent to this junction. Further work, with greater numbers of retrievals, is required to fully understand this association between corrosion and bony changes, and the influencing surgeon, implant, and patient factors involved. Cite this article: Bone Jt Open 2021;2(8):599–610


Bone & Joint Research
Vol. 7, Issue 7 | Pages 476 - 484
1 Jul 2018
Panagiotopoulou VC Davda K Hothi HS Henckel J Cerquiglini A Goodier WD Skinner J Hart A Calder PR

Objectives. The Precice nail is the latest intramedullary lengthening nail with excellent early outcomes. Implant complications have led to modification of the nail design. The aim of this study was to perform a retrieval study of Precice nails following lower-limb lengthening and to assess macroscopical and microscopical changes to the implants and evaluate differences following design modification, with the aim of identifying potential surgical, implant, and patient risk factors. Methods. A total of 15 nails were retrieved from 13 patients following lower-limb lengthening. Macroscopical and microscopical surface damage to the nails were identified. Further analysis included radiology and micro-CT prior to sectioning. The internal mechanism was then analyzed with scanning electron microscopy and energy dispersive x-ray spectroscopy to identify corrosion. Results. Seven male and three female patients underwent 12 femoral lengthenings. Three female patients underwent tibial lengthening. All patients obtained the desired length with no implant failure. Surface degradation was noted on the telescopic part of every nail design, less on the latest implants. Microscopical analysis confirmed fretting and pitting corrosion. Following sectioning, black debris was noted in all implants. The early designs were found to have fractured actuator pins and the pin and bearings showed evidence of corrosive debris. The latest designs showed evidence of biological deposits suggestive of fluid ingress within the nail but no corrosion. Conclusion. This study confirms less internal corrosion following modification, but evidence of titanium debris remains. We recommend no change to current clinical practice. However, potential reuse of the Precice nail, for secondary limb lengthening in the same patient, should be undertaken with caution. Cite this article: V. C. Panagiotopoulou, K. Davda, H. S. Hothi, J. Henckel, A. Cerquiglini, W. D. Goodier, J. Skinner, A. Hart, P. R. Calder. A retrieval analysis of the Precice intramedullary limb lengthening system. Bone Joint Res 2018;7:476–484. DOI: 10.1302/2046-3758.77.BJR-2017-0359.R1


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 16 - 16
11 Apr 2023
Buchholz A Łapaj Ł Herbster M Gehring J Bertrand J Lohmann C Döring J
Full Access

In 2020 almost 90% of femoral heads for total hip implants in Germany were made of ceramic. Nevertheless, the cellular interactions and abrasion mechanisms in vivo have not been fully understood until now. Metal transfer from the head-neck taper connection, occurring as smear or large-area deposit, negatively influences the surface quality of the articulating bearing. In order to prevent metal transfer, damage patterns of 40 Biolox delta ceramic retrievals with CoC and CoPE bearings were analysed. A classification of damage type and severity for each component (n=40) was done according to an established scoring system. To investigate the physical properties, the surface quality was measured using confocal microscopy, quantitative analysis of phase composition were performed by Raman spectroscopy and qualitative analysis of metal traces was done by scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX). The periprosthetic tissue was analysed for abrasion particles with SEM and EDX. Both bearing types show different damage patterns. Dotted/ drizzled metal smears were identified in 82 % of CoC (n=16) and 96 % of CoPE (n=24) bearings. Most traces on the ceramic heads were identified in the proximal area while they were observed predominantly in the distal area for the ceramic inlays. The identified marks are similar to those of metallic bearings. Metallic smears lead to an increase of up to 30 % in the monoclinic crystalline phase of the ceramic. The roughness increases by up to six times to Ra=48 nm. Ceramic and metallic wear particles from the articulating surfaces or head neck taper junctions were found in the periprosthetic tissue. Damage patterns on CoC hip implants seem to be similar to those of metallic implants. More detailed analysis of CoC implants are needed to understand the described damage patterns and provide advice for prevention


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_12 | Pages 18 - 18
10 Jun 2024
Haston S Langton D Townshend D Bhalekar R Joyce T
Full Access

Despite advancements, revision rates following total ankle replacement (TAR) are high in comparison to other total joint replacements. This explant analysis study aimed to investigate whether there was appreciable metal particulate debris release from various contemporary TARs by describing patterns of material loss. Twenty-eight explanted TARs (9 designs: 3 fixed and 6 mobile bearing), revised for any reason, were studied. The articulating surfaces of the metal tibial and talar components as well as the polyethylene insert were assessed for damage features using light microscopy. Based on the results of the microscopic analysis, scanning electron microscopy with energy dispersive X-ray spectroscopy was performed to determine the composition of embedded debris identified, as well as non-contacting 3D profilometry. Pitting, indicative of material loss, was identified on the articulating surfaces of 54% of tibial components and 96% of talar components. Bearing constraint was not found to be a factor, with similar proportions of fixed and mobile bearing metal components showing pitting. More cobalt-chromium than titanium alloy tibial components exhibited pitting (63% versus 20%). Significantly higher average surface roughness (Sa) values were measured for pitted areas in comparison to unpitted areas of these metal components (p<0.05). Additionally, metallic embedded debris (cobalt-chromium likely due to pitting of the tibial and talar components or titanium likely from loss of their porous coatings) was identified in 18% of polyethylene inserts. The presence of hard 3. rd. body particles was also indicated by macroscopically visible sliding plane scratching, identified on 79% of talar components. This explant analysis study demonstrates that metal debris is released from the articulating surfaces and the coatings of various contemporary TARs, both fixed and mobile bearing. These findings suggest that metal debris release in TARs may be an under-recognised issue that should be considered in the study of painful or failed TAR moving forwards


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 87 - 87
1 Oct 2022
Puetzler J Hasselmann J Gosheger G Niemann S Fobker M Hillebrand J Schwarze J Theil C Schulze M
Full Access

Aim. A novel anti-infective biopolymer implant coating was developed to prevent bacterial biofilm formation and allow on-demand burst release of anti-infective silver (Ag) into the surrounding of the implant at any time after surgery via focused high-energy extracorporeal shock waves (fhESW). Method. A semi-crystalline Poly-L-lactic acid (PLLA) was loaded with homogeneously dissolved silver (Ag) applied onto Ti6Al4V discs. A fibroblast WST-1 assay was performed to ensure adequate biocompatibility of the Ag concentration at 6%. The prevention of early biofilm formation was investigated in a biofilm model with Staphylococcus epidermidis RP62A after incubation for 24 hours via quantitative bacteriology. In addition, the effect of released Ag after fhESW (Storz DUOLITH SD1: 4000 impulses, 1,24 mJ/mm. 2. , 3Hz, 162J) was assessed via optical density of bacterial cultures (Escherichia coli TG1, Staphylococcus epidermidis RP62A, Staphylococcus aureus 6850) and compared to an established electroplated silver coating. The amount of released Ag after the application of different intensities of fhESW was measured and compared to a control group without fhESW via graphite furnace atomic absorption spectrometry (GF-AAS), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Results. The coating with 6% Ag reduced Staphylococcus epidermidis biofilm formation by 99.7% (mean±SD: 2.1×10^5 ± 3,9×10^5 CFU/µL) compared to uncoated controls (6.8×10^7 ± 4.9×10^7 CFU/µL); (p=0.0001). After applying fhESW the commercially available electroplated silver coating did not prevent the growth of all tested bacterial strains. Bacterial growth is delayed with 4% Ag and completely inhibited with 6% Ag in the novel coating, except for a small increase of S. aureus after 17 hours. SEM and EDS confirmed a local disruption of the coating after fhESW. Conclusions. This novel anti-infective implant coating has the potential to prevent bacterial biofilm formation. The on-demand burst release of silver via fhESW could be an adjunctive in the treatment of implant related infection and is of particular interest in the concept of single stage revision surgery


Bone & Joint Research
Vol. 10, Issue 7 | Pages 425 - 436
16 Jul 2021
Frommer A Roedl R Gosheger G Hasselmann J Fuest C Toporowski G Laufer A Tretow H Schulze M Vogt B

Aims. This study aims to enhance understanding of clinical and radiological consequences and involved mechanisms that led to corrosion of the Precice Stryde (Stryde) intramedullary lengthening nail in the post market surveillance era of the device. Between 2018 and 2021 more than 2,000 Stryde nails have been implanted worldwide. However, the outcome of treatment with the Stryde system is insufficiently reported. Methods. This is a retrospective single-centre study analyzing outcome of 57 consecutive lengthening procedures performed with the Stryde nail at the authors’ institution from February 2019 until November 2020. Macro- and microscopic metallographic analysis of four retrieved nails was conducted. To investigate observed corrosion at telescoping junction, scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX) were performed. Results. Adjacent to the nail’s telescoping junction, osteolytic changes were observed in bi-planar radiographs of 20/57 segments (35%) after a mean of 9.5 months (95% confidence interval 7.2 to 11.9) after surgery. A total of 8/20 patients with osseous alterations (40%) reported rest and ambulation pain of the lengthened segment during consolidation. So far, 24 Stryde nails were retrieved and in 20 (83%) macroscopic corrosion was observed at the nail’s telescoping junction. Before implant removal 11/20 radiographs (55%) of lengthened segments with these 20 nails revealed osteolysis. Implant retrieval analysis by means of SEM showed pitting and crevice corrosion. EDX detected chromium as the main metallic element of corrosion. Conclusion. Patients are exposed to the risk of implant-related osteolysis of unclear short- and long-term clinical consequences. The authors advocate in favour of an early implant removal after osseous consolidation. Cite this article: Bone Joint Res 2021;10(7):425–436


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 56 - 56
1 Dec 2020
TOKTAŞ AG AKYÜREKLİ S OKUMUŞ Y GÜL M KÖSE N DOĞAN A
Full Access

Musculoskeletal disorders is one of most important health problems human population is facing includes. Approximately 310 thousand of hip protheses have been used in 45 years and older patients in total according to the recent studies have been done. [1, 2]. Many factors, including poor osseointegration or relaxation of the implant due to stress, limit the life of the load-bearing implants [3]. To overcome these difficulties and to protect metal implants inside the body, the surfaces of the implants were coated with silver ion doped hydroxyapatite/bioglass. In this study, silver doped hydroxyapatite ceramic powder and 6P57 bioglass were synthesized. Two different coating suspensions, 100% bioglass and 70% Ag-HAp / 30% bioglass, were prepared in methyl alcohol with a solid content of 1% by weight. Two layers were coated on the external fixator nails by using electrospray method with the bioglass and Ag-Hap/Bioglass suspensions respectively. The coated implants were cut with an equal surface area and kept in human blood plasma for different time. The scanning electron microscopy (SEM, Zeiss Supra 50VP and Zeiss Evo 50EP) and stereo microscope (Zeiss Axiocam Stemi 2000-C) were used to characterize microstructure and thickness of coated surface. Energy dispersive X-ray Spectroscopy was used characterized of chemical composition of coating. Changing of pH value of plasma was measured by pH meter (Hanna HI83414). In addition, the ICP method was used to determine the elements contained in the plasma fluid after dissolution. As a result of this study, physical and chemical changes occurring on the coating surface in different time periods are presented in detail


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 78 - 78
1 Nov 2021
Jolic M Shah FA Omar O Emanuelsson L Norlindh B Engqvist H Engstrand T Palmquist A Thomsen P
Full Access

Introduction and Objective. Calcium phosphates are among the most commonly used bone graft substitute materials. Compositions containing predominantly monetite (∼84.7%) with smaller additions of beta-tricalcium phosphate (β-TCP; ∼8.3%) and calcium pyrophosphate (Ca-PP; ∼6.8%) have previously been demonstrated to exhibit osteoinductive properties. Such a multi-component calcium phosphate bioceramic was fashioned in the form of hollowed-out, dome-shaped devices (15 mm diameter, 4 mm height), each reinforced with a 3D printed Ti6Al4V ELI frame. With the aim to induce bone formation beyond the skeletal envelope, these devices were investigated in vivo using a sheep (Ovis aries) occipital bone model. Materials and Methods. The bioceramic composition was prepared from a mixture of β-TCP/dicalcium pyrophosphate and monocalcium phosphate monohydrate powders mixed with glycerol. The Ti6Al4V ELI frame was positioned into a dome-shaped mould and bioceramic paste was poured over the frame and allowed to set, in sterile water, prior to removal from the mould. In adult female sheep (n=7), the devices were positioned directly over the bone and stabilised using self-drilling screws. After 52 weeks, the devices were retrieved, resin embedded, and used for X-ray micro-computed tomography (micro-CT), histology, backscattered electron scanning electron microscopy (BSE-SEM), energy dispersive X-ray spectroscopy (EDX), micro-Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR). Results. The bioceramic composition (Ca/P: ∼0.85 at. %) transforms to carbonated apatite (Ca/P: ∼1.2 at. %, Mg/Ca: ∼0.03 at. %), in vivo, largely at the expense of monetite and Ca-PP whereas β-TCP remains detectable. Discrete particles of Ca-PP are identified by correlative BSE-SEM and micro-Raman spectroscopy. Together with chemical transformation, physical degradation is evident within the bulk of the bioceramic. Beyond the confines of the skeletal envelope, de novo bone occupies ∼53–84% (∼73 ± 11%; mean ± standard deviation) of the hollowed-out space. Low porosity and the arrangement of remodelled bone into a concentric lamellar pattern is indicative of cortical-like structure. Such areas are typically surrounded by yet unremodelled, and microstructurally disordered, woven bone that stains intensely with blue cationic dyes, owing to relatively higher acid phosphate content. This pattern indicates a recurring sequence of woven bone formation followed by remodelling. Bone formation is also visible within the bioceramic. Recently remodelled and areas of ongoing remodelling are identified by relatively lower mineral density than the surrounding woven bone. Dendritic extensions of osteocytes appear to extend into the bioceramic surface. Both micro-Raman spectroscopy and FTIR reveal little, if any, detectable difference between the mineral and organic phases of the extracellular matrix, between de novo and native bone. Conclusions. The bioceramic composition undergoes physical degradation, but remains largely intact by 52 weeks in vivo, and only partially transforms to carbonated apatite. In addition to very high bone volume within the hollowed-out bioceramic device, the overall composition and microstructure of de novo bone are similar to native bone. Notably, the mineral phase of bone in response to, and in direct contact with the β-TCP, monetite, and Ca-PP, remains exclusively carbonated apatite


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 44 - 44
1 Oct 2016
Stratton-Powell A Tipper JL Williams SD Redmond A Brockett CL
Full Access

Total ankle replacement (TAR) has a mean survivorship of 77% at 10 years which is poor compared to other types of joint arthroplasty. Osteolysis and aseptic loosening are commonly cited TAR failure modes, the mechanisms of which are unknown. Retrieval analyses of TAR devices may reveal mechanisms of failure similar or dissimilar to other joint replacements. This study investigated whether TAR explants exhibit similar damage modes to those recognised in other total joint replacements. 22 Ankle Evolution System TARs (Transystème, Nimes, France) were implanted and retrieved by the same surgeon. Mean implantation time was 7.8 yrs (5.3 to 12.1 range). Pain and/or loosening were the indications for revision. Macro photography, an Alicona Infinite microscope and the Hood/Wasielewski scale were used to classify damage modes on the polyethylene insert. Scanning electron microscopy with energy dispersive X-ray spectroscopy was used to determine the composition of third body debris and to image the fixation surface of the tibial components. Mean damage score was 185.4 (± 40.0 SD). Damage modes common to total knee replacements were identified on both the superior and inferior insert surfaces, these included: burnishing, scratching, pitting and abrasion. Titanium particles, hydroxyapatite fragments and bone debris were embedded in the insert surfaces. Fixation surface delamination was identified by the ongrowth of tissue between the cobalt chromium substrate and titanium alloy coating. Damage modes indicative of high levels of wear and deformation were evident. Pitting caused by third body debris was abundant and suggested fixation surface wear and failure


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 123 - 123
1 Jul 2020
J.Dixon S Beaucage K Nagao M Lajoie G Veras M Fournier D Holdsworth D Bailey C Hammond J Séguin C
Full Access

Equilibrative nucleoside transporter 1 (ENT1) transfers nucleosides, such as adenosine, across plasma membranes. We reported previously that mice lacking ENT1 (ENT1-KO) exhibit progressive ectopic calcification of spinal tissues, including the annulus fibrosus (AF) of intervertebral discs (J Bone Miner Res 28:1135–49, 2013, Bone 90:37–49, 2016). Our purpose was twofold: (1) to compare ectopic calcifications in ENT1-KO mice with those in human DISH, and (2) to investigate the molecular pathways underlying pathological calcification in ENT1-KO mice. Studies were performed with age-matched wild-type (WT) and ENT1-KO mice, as well as human cadaveric vertebral columns meeting radiographic criteria for DISH. Mouse and human specimens were scanned using high-resolution, micro-computed tomography (micro-CT). As well, some samples were decalcified and processed for histological assessment. Calcified lesions in selected specimens were examined using energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). To investigate molecular changes associated with ectopic calcification, we isolated AF tissue from thoracic intervertebral discs of WT and ENT1-KO mice. Tissues were then subjected to transcriptomic and proteomic analyses. Micro-CT of ENT1-KO mice revealed ectopic calcification of spinal tissues, first appearing in the cervical-thoracic region and extending caudally with advancing age. Histological examination of calcified lesions in mice revealed accumulations of amorphous, eosinophilic, acellular material in paraspinal ligaments and entheses, intervertebral discs, mandibular symphysis, and sternocostal articulations. There was no evidence of inflammation associated with these lesions. EDX of calcified lesions revealed a high content of calcium and phosphorus in a molar ratio of ∼1.6, with hydroxyapatite detected by micro-XRD. Ten human cadaveric spines (three females and seven males, mean age 81 years) that met radiographic criteria for DISH were analysed in detail by micro-CT. Remarkable heterogeneity in the density and morphology of ectopic calcifications was observed. Analyses of calcifications by EDX and XRD again yielded a calcium/phosphorus ratio of ∼1.6 and a crystalline diffraction pattern matching hydroxyapatite. Histological examination of human lesions revealed regions of mature ossification and other areas of irregular amorphous calcification that resembled lesions in ENT1-KO mice. Microarray analysis of AF tissue from WT and ENT1-KO mice showed extensive dysregulation of transcription in affected tissues. Cell cycle-associated transcripts were the most affected, including the E2f family of transcription factors and proliferating cell nuclear antigen. In addition, expression of genes involved in the regulation of mineralization and bone development were dysregulated. Proteomic analyses confirmed transcriptomic changes and revealed alterations in known modulators of biomineralization such as matrix Gla-protein. Many of the characteristics of ectopic calcification in ENT1-KO mice resemble those of DISH in humans. Human lesions were found to be heterogeneous with regions of pathological ossification and amorphous calcification, the latter resembling lesions in the mouse model. Our studies of the molecular events associated with ectopic calcification in ENT1-KO mice may provide insights into the pathogenesis of DISH in humans. ENT1-KO mice may also be useful for evaluating therapeutics for the prevention of ectopic calcification in DISH and related disorders


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 115 - 115
1 Apr 2019
Bock R Cullen D McEntire B More K Leonard D Bal BS
Full Access

Introduction. The osteogenic capability of any biomaterial is governed by a number of critical surface properties such as surface energy, surface potential, and topography. Prior work suggested that the Si-Y-O-N phase(s) present in the form of a thin (<150 nm), interrupted film at the surface of an annealed silicon nitride bioceramic may be responsible for an observed upregulation of osteoblastic activity due to passive surface properties and dissolution of chemical species. In this study high- resolution analytical electron microscopy was utilized to identify the Si-Y-O-N phase present on the annealed silicon nitride surface, and dissolution studies were employed to elucidate mechanisms of the material's favorable cell interactions. Materials and Methods. Si. 3. N. 4. discs (12.7 mm diameter × 1 mm thick) containing Y. 2. O. 3. and Al. 2. O. 3. sintering aids were processed using conventional techniques and subsequently subjected to annealing in a nitrogen atmosphere. Pre-cultured SaOS-2 osteosarcoma cells at a concentration of 5 × 10. 5. cells/ml were seeded onto sterile polished nitrogen-annealed Si. 3. N. 4. discs in an osteogenic medium consisting of DMEM supplemented with about 50 µg/mL ascorbic acid, 10 mM β-glycerol phosphate, 100 mM hydrocortisone, and 10% fetal bovine calf serum. The samples were incubated for up to 7 days at 37°C with two medium replenishments. Transmission electron microscopy (TEM) images were acquired from focused ion beam (FIB)-prepared samples using a Hitachi HF-3300 TEM (300 kV). Scanning transmission electron microscopy (STEM) images were recorded using a Nion UltraSTEM 100 (60 kV). STEM high-angle annular dark-field (HAADF) imaging and energy dispersive X-ray spectroscopy (EDS) analyses were performed on a JEOL JEM2200FS (200 kV) equipped with a third-order CEOS aberration corrector and a Bruker XFlash silicon drift detector. Results. A cross-section of the of the Si. 3. N. 4. /extracellular polymer (ECP) interface is illustrated in Fig. 1(a)∼(b) as a high- angle annular dark field (HAADF) STEM image (a) with and EDS map overlay (b) highlighting locations of Ca, Y, and Si. The underlying Si. 3. N. 4. microstructure is covered by a yttrium-rich intergranular phase (IGP) film. Deposition of cell-derived hydroxyapatite (HAp) occurred directly onto this IGP film. In Fig. 2, a bright field TEM image (electron diffraction pattern inset) shows the interface between the partially-crystalline HAp and the Y-Si-O-N phase, identified as monoclinic yttrium disilicate (i.e., m-Y. 2. Si. 2. O. 7. ) with a 2 atomic% N impurity, at teh atomic scale. Although rapid electron damage of the mineralized ECP was observed, EDS analyses suggested a Ca/P ratio of ∼1.43, along with the incorporation of Si. Conclusions. The osteogenic Si-Y-O-N phase was successfully identified as a minority concentration of Si. 3. N. 4. dissolved into a m-Y. 2. Si. 2. O. 7. matrix. Evidence of the release of (SiO. 4. ). 4−. tetrahedra from this phase into the local biological microenvironment and their incorporation into the cell-derived HAp layer was also observed. Identification of this phase paves the way for ongoing work to understand and optimize this novel biomaterial. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 139 - 139
1 Sep 2012
Topolovec M Milosev I Coer A Bloebaum R
Full Access

Background. Wear particles are considered to be the major culprit for the aseptic loosening. Their characterization is thus crucial for the understanding of their bioreactivity and contribution to the development of aseptic loosening. Methods. Metal wear debris particles were analyzed directly in periprosthetic tissue resins by scanning electron microscopy (SEM) combined with back-scattered electron imaging (BSE) and energy dispersive X-ray spectroscopy (EDS). Four groups of tissue samples retrieved at revision operations of loosened hip implants with different bearing surfaces (metal-on-metal, ceramic-on-polyethylene and metal-on-polyethylene), and different material of the femoral stem (Ti alloy, CoCrMo and polymer combined with stainless steel) were investigated. Tissue samples were first analyzed histologicaly. Sections from the same paraffin blocks were then carbon coated and analyzed using SEM/BSE/EDS method. Results. Metal particles were detected in all samples. Their composition corresponded to the composition of the implant components. The gradation of metal particles ranged from +1 to +3. A considerable number of big metal particles were actually agglomerates of submicron particles visible only at higher magnification. The clustering of particles was observed primarily for CoCrMo and, to a lesser extent, for stainless steels particles. The median sizes of CoCrMo clusters in two groups of samples were 2.9 1.8 m (range, 0.5 to 7.6 m) and 3.2 1.0 m (range, 1.9 to 5.4 m). The effect of clustering was not observed for Ti particles. The median sizes of individual Ti particles determined in two groups of samples were 2.5 3.6 m (range, 0.4 to 17.3 m) and 4.3 2.8 m (range, 0.8 to 11.0 m). Conclusion. Scanning electron microscopy combined with back-scattered electron imaging is an appropriate and selective method to recognize metal particles in tissue sections, without being destructive to specimens. When the size of the particles is considered, however, it should be differed between the size of individual particles and size of clusters of particles. Besides its benefits, this study has some limitations: the detection of particles smaller than 0.4 m is difficult, and this method cannot be used to identify polyethylene particles


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 328 - 328
1 Jul 2014
Hargrave-Thomas E Thambyah A McGlashan S Broom N
Full Access

Summary. Macroscopic grading, histologic grading, morphometry, mineral analysis, and mechanical testing were performed to better understand the changes that occur in the cartilage, calcified cartilage, and subchondral bone in early osteoarthritis. Introduction. The earliest changes in osteoarthritis (OA) remain poorly understood due to the difficulty in detecting OA before patients feel pain. We have published details of the mature bovine patella model showing the pre-OA state where no gross macroscopic changes are visible yet microstructural changes indicate very early degeneration. In this new study, we proceed to investigate this model further by more comprehensively quantifying the changes in articular cartilage (AC), zone of calcified cartilage (ZCC), and subchondral bone (SB) in pre and early OA. Methods. Patellae from mature cow were studied. Gross examination with India ink was used to classify macroscopic cartilage degeneration. Two groups were selected in this study: one with no visible surface degeneration (pre-OA) and the other with mild to moderate macroscopically visible surface degeneration (early OA). Histologic staining with Safranin O and Fast Green was analysed with two osteoarthritic scoring systems: Mankin and OOCHAS. Differential Interference Contrast (DIC) microscopy was used to quantify morphometric changes. Degree of mineralisation was analysed with energy dispersive X-ray spectroscopy (EDS) to quantify the calcium and phosphorus content of the mineralised tissues. Material properties of calcified cartilage and subchondral bone were tested macroscopically using 3 point bending. Results. In the early OA group, cartilage was fissured and showed matrix loss. In its hydrated state, average cartilage thickness was significantly greater (p<0.05) in the early OA group by 24% compared to pre-OA group. The early OA group showed an 88% increase in ZCC thickness. Early OA tissue was graded significantly higher in OOCHAS grading and structure scores, cellularity, and staining scores of Mankin grading but not in the tidemark integrity score. Pre-OA and early OA tissues showed no significant differences in ZCC or SB mineralisation although all samples showed an increase in the degree of mineralisation going from the upper to the deeper ZCC and SB. Macroscopic mechanical testing showed no significant differences in mechanical properties between pre-OA and early OA groups. However within groups, the ZCC was an order of magnitude less stiff than the SB. Micromechanical testing showed that deeper ZCC and SB were stiffer than their regions closer to the joint surface. Conclusions. Early osteoarthritic changes in the joint tissues produce macro-level cartilage degeneration as well as microstructural changes. The combination of mineralisation and mechanical data show that though calcified cartilage and subchondral bone have similar mineralisation profiles, their material properties are drastically different, suggesting that stiffness is not purely the result of the mineral phase


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 436 - 436
1 Sep 2009
Little C Melrose J Burkhardt D Taylor T Dillon C Read R Cake M
Full Access

Introduction: The aetiology of dystrophic disc calcification in adult humans is unknown but a well-described clinical disorder with hydroxyapatite as the single mineral phase. Comparable but age-related pathology in the sheep could serve as a model for the human disorder. The objective of this study was to investigate the mineral phase, its mechanisms of formation/association with degeneration in a naturally-occurring animal model of disc calcification. Methods: Adult sheep lumbar intervertebral discs (n=134) from animals aged 6 (n=4), 8 (n=12) and 11 years (n=2) were evaluated using radiography, morphology, scanning and transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray powder diffraction, histology, immunohistology and proteoglycan analysis. Results: Half of the 6 yr, 84% of the 8 yr and 86% of the 11 yr old discs had calcific deposits. These were not well delineated by plain radiography. They were either:. punctate deposits in the outer annulus,. diffuse deposits in the transitional zone or inner annulus fibrosus with occasional deposits in the nucleus, or. large deposits in the transitional zone extending variably into the nucleus. Their maximal incidence was in the lower lumbar discs (L4/5-L6/7) with no calcification seen in the lumbosacral or lower thoracic discs. All deposits were hydroxyapatite with large crystallite sizes (800–1300 angstrom) compared to cortical bone (300–600 angstrom). No type X-collagen, osteopontin or osteonectin, were detected in calcific deposits although positive staining for bone sialoprotein was evident. Calcified discs had less proteoglycan of smaller hydrodynamic size than non-calcified discs. Discussion: Disc calcification in ageing sheep is due to hydroxyapatite deposition. The variable but large crystal size, lack of protein markers indicate that this does not occur by an ordered endochondral ossification-like process. The decrease in disc proteoglycan content and size suggests an association between calcification and disc degeneration in ageing sheep. There are notable dissimilarities between hydroxyapatite deposition disorder in humans and sheep. No mechanistic explanation can be offered for the different spinal distributions, thoracic and upper lumbar in the former and lumbar in the latter; hydroxyapatite deposition disorder has occasionally been seen in the lumbar spines of four year old sheep during the course of other studies but not at an earlier age. Diffferences in spinal biomechanics may be implicated but hydroxyapatite deposition does not primarily affect the most or least mobile discs in either species. Neither can an explanation be offered for the apparent immunity of the ovine lumbosacral disc to calcification. However, it is known that proteoglycan turnover is faster at this spinal level than at more proximal lumbar discs. While we have been unable to elucidate the mechanism of hydroxyapatite deposition disorder in sheep, clearly it is different from that in normal osteogenesis. We contend this animal provides a useful, naturally-occurring model for investigation of the aetiology and pathogenesis of human hydroxyapatite deposition disorder, notwithstanding obvious differences between sheep and man


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 92 - 92
1 Jul 2014
Wong H Chu P Cheung K Luk K Yeung K
Full Access

Summary. A promising approach to stimulate in vivo bone formation by using our newly developed magnesium-based bone substitutes, which can be an alternative to treat the patients with bone loss in addition to the anticatabolic drugs and growth factors. Introduction. Bone impairment arising from osteoporosis as well as other pathological diseases is a major health problem. Anti-catabolic drugs such as bisphosphonates and other biological agents such as bone morphogenetic proteins and insulin-like growth factor can theoretically apply to stimulate bone formation. However, the formation of more brittle bone and uncontrolled release rate are still a challenge nowadays. Hence, we propose to stimulate bone formation by using a newly developed magnesium-based bone substitute. Indeed, the presence of magnesium ions can stimulate bone growth and healing by enhancing osteoblastic activity. This study aims to investigate the mechanical, in vitro and in vivo properties of this novel bone substitute. Methods. The bone substitutes were prepared by incorporating 9% TMSPM-treated Mg granules (i.e. 45μm & 150μm) into biodegradable polymer, polycaprolactone (PCL). The TMSPM silane-coupling agent treatment was used to protect the Mg particles from rapid degradation. Compression test was performed to study the mechanical properties of the bone substitute by using the MTS machine. A 7-day stimulated body fluid (SBF) immersion test was conducted to test their bioactivity. The surface composition was checked by energy dispersive x-ray spectroscopy (EDX) after immersion. The cytocompatibility and osteogenic differentiation properties of the bone substitutes were studied by MTT, ALP assays and qRT-PCR with the use of MC3T3-E1 pre-osteoblasts. Finally, the in vivo response of the bone substitutes was evaluated by using rat model of 2 months. Micro-CT was used to monitor the volume change of bone formation. Pure PCL was used as the control. Results. At least 36% higher compressive modulus was found on the new bone substitutes as compared to pure PCL. Calcium and phosphate deposition were detected on the Mg bone substitutes but not on pure PCL after 7-day SBF immersion. Significantly higher cell viabilities and specific ALP activities were found on the new bone substitutes as compared to pure PCL. Additionally, significantly higher ALP, Type I collagen, osteopontin and Runx2 expressions were found on the Mg-based substitutes at different time points. Finally, more than 15% new bone was found on the Mg bone substitutes after 1 week of post-operation and 40% higher after 3 weeks. Discussion/Conclusion. The increased compressive moduli of the Mg-based bone substitutes suggested that the mechanical property of PCL could be enhanced by incorporating Mg granules and the values fall within the range of cancellous bone (50 – 800 MPa). Moreover, the detection of the calcium and phosphate on the bone substitutes showed that they might possess osteoinductivity. The in vitro study showed the enhanced cytocompatibility and osteogenic differentiation properties of the new bone substitutes, which was possibly due to the effect of Mg ions release. Our previous study showed that only a low level of Mg ions (i.e. 50ppm) is able to stimulate the growth and differentiation of osteoblasts. Hence, this suggested the importance of controlling the release of Mg ions. This also explained why more new bone formation was found on the new bone substitutes than pure PCL during animal implantation. Hence, all the data presented here suggested our new bone substitutes maybe a potential candidate to stimulate new bone formation


Bone & Joint Research
Vol. 5, Issue 10 | Pages 461 - 469
1 Oct 2016
Liu YK Deng XX Yang H

Objectives

The cytotoxicity induced by cobalt ions (Co2+) and cobalt nanoparticles (Co-NPs) which released following the insertion of a total hip prosthesis, has been reported. However, little is known about the underlying mechanisms. In this study, we investigate the toxic effect of Co2+ and Co-NPs on liver cells, and explain further the potential mechanisms.

Methods

Co-NPs were characterised for size, shape, elemental analysis, and hydrodynamic diameter, and were assessed by Transmission Electron Microscope, Scanning Electron Microscope, Energy Dispersive X-ray Spectroscopy and Dynamic Light Scattering. BRL-3A cells were used in this study. Cytotoxicity was evaluated by MTT and lactate dehydrogenase release assay. In order to clarify the potential mechanisms, reactive oxygen species, Bax/Bcl-2 mRNA expression, IL-8 mRNA expression and DNA damage were assessed on BRL-3A cells after Co2+ or Co-NPs treatment.


Bone & Joint Research
Vol. 1, Issue 4 | Pages 56 - 63
1 Apr 2012
Langton DJ Sidaginamale R Lord JK Nargol AVF Joyce TJ

Objectives

An ongoing prospective study to investigate failing metal-on-metal hip prostheses was commenced at our centre in 2008. We report on the results of the analysis of the first consecutive 126 failed mated total hip prostheses from a single manufacturer.

Methods

Analysis was carried out using highly accurate coordinate measuring to calculate volumetric and linear rates of the articular bearing surfaces and also the surfaces of the taper junctions. The relationship between taper wear rates and a number of variables, including bearing diameter and orientation of the acetabular component, was investigated.