Abstract
Total ankle replacement (TAR) has a mean survivorship of 77% at 10 years which is poor compared to other types of joint arthroplasty. Osteolysis and aseptic loosening are commonly cited TAR failure modes, the mechanisms of which are unknown. Retrieval analyses of TAR devices may reveal mechanisms of failure similar or dissimilar to other joint replacements. This study investigated whether TAR explants exhibit similar damage modes to those recognised in other total joint replacements.
22 Ankle Evolution System TARs (Transystème, Nimes, France) were implanted and retrieved by the same surgeon. Mean implantation time was 7.8 yrs (5.3 to 12.1 range). Pain and/or loosening were the indications for revision. Macro photography, an Alicona Infinite microscope and the Hood/Wasielewski scale were used to classify damage modes on the polyethylene insert. Scanning electron microscopy with energy dispersive X-ray spectroscopy was used to determine the composition of third body debris and to image the fixation surface of the tibial components.
Mean damage score was 185.4 (± 40.0 SD). Damage modes common to total knee replacements were identified on both the superior and inferior insert surfaces, these included: burnishing, scratching, pitting and abrasion. Titanium particles, hydroxyapatite fragments and bone debris were embedded in the insert surfaces. Fixation surface delamination was identified by the ongrowth of tissue between the cobalt chromium substrate and titanium alloy coating.
Damage modes indicative of high levels of wear and deformation were evident. Pitting caused by third body debris was abundant and suggested fixation surface wear and failure.