Advertisement for orthosearch.org.uk
Results 1 - 20 of 424
Results per page:
Bone & Joint Open
Vol. 2, Issue 11 | Pages 1004 - 1016
26 Nov 2021
Wight CM Whyne CM Bogoch ER Zdero R Chapman RM van Citters DW Walsh WR Schemitsch E

Aims. This study investigates head-neck taper corrosion with varying head size in a novel hip simulator instrumented to measure corrosion related electrical activity under torsional loads. Methods. In all, six 28 mm and six 36 mm titanium stem-cobalt chrome head pairs with polyethylene sockets were tested in a novel instrumented hip simulator. Samples were tested using simulated gait data with incremental increasing loads to determine corrosion onset load and electrochemical activity. Half of each head size group were then cycled with simulated gait and the other half with gait compression only. Damage was measured by area and maximum linear wear depth. Results. Overall, 36 mm heads had lower corrosion onset load (p = 0.009) and change in open circuit potential (OCP) during simulated gait with (p = 0.006) and without joint movement (p = 0.004). Discontinuing gait’s joint movement decreased corrosion currents (p = 0.042); however, wear testing showed no significant effect of joint movement on taper damage. In addition, 36 mm heads had greater corrosion area (p = 0.050), but no significant difference was found for maximum linear wear depth (p = 0.155). Conclusion. Larger heads are more susceptible to taper corrosion; however, not due to frictional torque as hypothesized. An alternative hypothesis of taper flexural rigidity differential is proposed. Further studies are necessary to investigate the clinical significance and underlying mechanism of this finding. Cite this article: Bone Jt Open 2021;2(11):1004–1016


Bone & Joint Research
Vol. 5, Issue 9 | Pages 370 - 378
1 Sep 2016
Munir S Oliver RA Zicat B Walter WL Walter WK Walsh WR

Objectives. This study aimed to characterise and qualitatively grade the severity of the corrosion particles released into the hip joint following taper corrosion. Methods. The 26 cases examined were CoC/ABG Modular (n = 13) and ASR/SROM (n = 13). Blood serum metal ion levels were collected before and after revision surgery. The haematoxylin and eosin tissue sections were graded on the presence of fibrin exudates, necrosis, inflammatory cells and corrosion products. The corrosion products were identified based on visible observation and graded on abundance. Two independent observers blinded to the clinical patient findings scored all cases. Elemental analysis was performed on corrosion products within tissue sections. X-Ray diffraction was used to identify crystalline structures present in taper debris. Results. The CoC/ABG Modular patients had a mean age of 64.6 years (49.4 to 76.5) and ASR/SROM patients had a mean age of 58.2 years (33.3 to 85.6). The mean time in situ for CoC/ABG was 4.9 years (2 to 6.4) and ASR/SROM was 6.1 years (2.5 to 8.1). The blood serum metal ion concentrations reduced following revision surgery with the exception of Cr levels within CoC/ABG. The grading of tissue sections showed that the macrophage response and metal debris were significantly higher for the ASR/SROM patients (p < 0.001). The brown/red particles were significantly higher for ASR/SROM (p < 0.001). The taper debris contained traces of titanium oxide, chromium oxide and aluminium nitride. Conclusion. This study characterised and qualitatively graded the severity of the corrosion particles released into the hip joint from tapers that had corrosion damage. Cite this article: S. Munir, R. A. Oliver, B. Zicat, W. L. Walter, W. K. Walter, W. R. Walsh. The histological and elemental characterisation of corrosion particles from taper junctions. Bone Joint Res 2016;5:370–378. DOI: 10.1302/2046-3758.59.2000507


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_12 | Pages 3 - 3
1 Oct 2019
Wright TM Wach A Romero JA Padgett DE
Full Access

Introduction. MDM implants can enhance stability in total hip replacement (THR), but complications include malseated liners and corrosion between the cobalt-chrome liner and titanium acetabular shell increased systemic metal ion levels. The liner-shell junction has the potential for fretting corrosion, and the corrosion could be exacerbated in malseated liners. We determined the potential for fretting corrosion in malseated versus well-seated liners using a mechanical electrochemical corrosion chamber. Methods. Four pristine MDM liners and shells were tested. Two liners were well-seated into their shells; two were canted at 6°. The liner-shell couples were assembled with a 2kN force after wetting the surfaces to promote a crevice environment conducive to corrosion. Couples were fixed in an electrochemical chamber at 40° inclination/20° anteversion to the load axis. The chamber was filled with phosphate buffered saline and setup as a three-electrode configuration: the shell as the working, a saturated calomel electrode as the reference, and a carbon rod as the counter electrode. A potentiostat held the system at −50mV throughout testing. After equilibration, couples underwent cyclic loading of increasing magnitudes from 100 to 3400N at 3 Hz. Fretting current was measured throughout, and the onset load for fretting was determined from the increase in average current. Results. Well-seated liners showed lower fretting current values at all peak compressive loads greater than 800 N (p<0.05). Canted liners demonstrated a fretting onset load of 2400 N, and fretting currents at greater than 2400 N were larger than those at lower peak compressive loads (p<0.05). Conclusion. The clinical consequences of MDM liner malseating remain unknown, but our results demonstrate earlier fretting current onset at lower peak loads when compared to well-seated liners. The onset loads were consistent with physiologic loads for daily activities. Our findings are significant given the potential for metallosis and adverse local tissue reactions. For any tables or figures, please contact the authors directly


Bone & Joint Research
Vol. 10, Issue 7 | Pages 425 - 436
16 Jul 2021
Frommer A Roedl R Gosheger G Hasselmann J Fuest C Toporowski G Laufer A Tretow H Schulze M Vogt B

Aims. This study aims to enhance understanding of clinical and radiological consequences and involved mechanisms that led to corrosion of the Precice Stryde (Stryde) intramedullary lengthening nail in the post market surveillance era of the device. Between 2018 and 2021 more than 2,000 Stryde nails have been implanted worldwide. However, the outcome of treatment with the Stryde system is insufficiently reported. Methods. This is a retrospective single-centre study analyzing outcome of 57 consecutive lengthening procedures performed with the Stryde nail at the authors’ institution from February 2019 until November 2020. Macro- and microscopic metallographic analysis of four retrieved nails was conducted. To investigate observed corrosion at telescoping junction, scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX) were performed. Results. Adjacent to the nail’s telescoping junction, osteolytic changes were observed in bi-planar radiographs of 20/57 segments (35%) after a mean of 9.5 months (95% confidence interval 7.2 to 11.9) after surgery. A total of 8/20 patients with osseous alterations (40%) reported rest and ambulation pain of the lengthened segment during consolidation. So far, 24 Stryde nails were retrieved and in 20 (83%) macroscopic corrosion was observed at the nail’s telescoping junction. Before implant removal 11/20 radiographs (55%) of lengthened segments with these 20 nails revealed osteolysis. Implant retrieval analysis by means of SEM showed pitting and crevice corrosion. EDX detected chromium as the main metallic element of corrosion. Conclusion. Patients are exposed to the risk of implant-related osteolysis of unclear short- and long-term clinical consequences. The authors advocate in favour of an early implant removal after osseous consolidation. Cite this article: Bone Joint Res 2021;10(7):425–436


Bone & Joint Research
Vol. 12, Issue 3 | Pages 155 - 164
1 Mar 2023
McCarty CP Nazif MA Sangiorgio SN Ebramzadeh E Park S

Aims. Taper corrosion has been widely reported to be problematic for modular total hip arthroplasty implants. A simple and systematic method to evaluate taper damage with sufficient resolution is needed. We introduce a semiquantitative grading system for modular femoral tapers to characterize taper corrosion damage. Methods. After examining a unique collection of retrieved cobalt-chromium (CoCr) taper sleeves (n = 465) using the widely-used Goldberg system, we developed an expanded six-point visual grading system intended to characterize the severity, visible material loss, and absence of direct component contact due to corrosion. Female taper sleeve damage was evaluated by three blinded observers using the Goldberg scoring system and the expanded system. A subset (n = 85) was then re-evaluated following destructive cleaning, using both scoring systems. Material loss for this subset was quantified using metrology and correlated with both scoring systems. Results. There was substantial agreement in grading among all three observers with uncleaned (n = 465) and with the subset of cleaned (n = 85) implants. The expanded scoring criteria provided a wider distribution of scores which ultimately correlated well with corrosion material loss. Cleaning changed the average scores marginally using the Goldberg criteria (p = 0.290); however, using the VGS, approximately 40% of the scores for all observers changed, increasing the average score from 4.24 to 4.35 (p = 0.002). There was a strong correlation between measured material loss and new grading scores. Conclusion. The expanded scoring criteria provided a wider distribution of scores which ultimately correlated well with corrosion material loss. This system provides potential advantages for assessing taper damage without requiring specialized imaging devices. Cite this article: Bone Joint Res 2023;12(3):155–164


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 77 - 77
2 Jan 2024
Khiabani A Kovrlija I Locs J Loca D Gasik M
Full Access

Titanium alloys are one of the most used for orthopaedic implants and the fabrication of them by 3D printing technology is a raising technology, which could effectively resolve existing challenges. Surface modification of Ti surfaces is often necessary to improve biocorrosion resistance, especially in inflammatory conditions. Such modification can be made by coatings based on hydrogels, like alginate (Alg) - a naturally occurring anionic polymer. The properties of the hydrogel can be further enhanced with calcium phosphates like octacalcium phosphate (OCP) as a precursor of biologically formed hydroxyapatite. Formed Alg-OCP matrices have a high potential in wound healing, delivery of bioactive agents etc. but their effect on 3D printed Ti alloys performance was not well known. In this work, Alg-OCP coated 3D printed samples were studied with electrochemical measurements and revealed significant variations of corrosion resistance vs. composition of the coating. The potentiodynamic polarization test showed that the Alg-OCP-coated samples had lower corrosion current density than simple Alg-coated samples. Electrochemical impedance spectroscopy indicated that OCP incorporated hydrogels had also a high value of the Bode modulus and phase angle. Hence Alg-OCP hydrogels could be highly beneficial in protecting 3D printed Ti alloys especially when the host conditions for the implant placement are inflammatory. AcThis work was supported by the European Union Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Actions GA860462 (PREMUROSA). The authors also acknowledge the access to the infrastructure and expertise of the BBCE – Baltic Biomaterials Centre of Excellence (European Union Horizon 2020 programme under GA857287)


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 146 - 146
1 Feb 2017
Grostefon J Nelson W
Full Access

Introduction. Since the introduction of modular hip taper junctions, corrosion has been studied yet the clinical effect remains unclear. Mechanically assisted corrosion and crevice corrosion are thought to be the primary clinical processes driving taper corrosion. Like all corrosion reactions, these processes require the taper junction to be in contact with an electrolyte. This study investigates the effect of sealing the taper junction from the environment on the mechanically-induced corrosion of a modular hip taper junction. Methods. A short-term corrosion fatigue test was conducted with Ti6Al4V 12/14 taper coupons coupled with CoCrMo 12/14 taper 28mm+12 heads (DePuy Synthes, Warsaw, IN). Ten specimens were assembled with a 1.1 kN press load and sealed with silicone sealant (Dow-Corning 732 Multi-Purpose Sealant). Prior to assembly five of these specimens were assembled with the taper junction having been wetted with phosphate buffered saline before assembly; the rest were assembled dry. Specimens were then immersed in phosphate buffered saline and a potentiostat was used to maintain the potential of the specimen at −50mV vs. Ag/AgCl. Incrementally larger loads were applied to the head of the specimen until a 4000N maximum load was reached. The average currents generated during this test was used to assess the corrosion performance of the specimens. The data from the sealed specimens was compared to a control group, which were wetted before assembly but not sealed. Results. In all cases the corrosion of the sealed specimens did not appear to increase in response to the cyclic load; throughout the test, the corrosion did not increase over the baseline anodic current of roughly 0.25 μA. In contrast, the unsealed controls experienced average corrosion currents of around 5 μA at the maximum load, and an average current of 2.0±0.93 µA over the entire test. The wet and dry sealed assembly specimens both resulted in significantly lower average currents of 0.24±0.09 µA and 0.25±0.09 µA, respectively. Discussion. Test specimens with sealed taper junctions to prevent fluid and ion ingress and egress resulted in no measurably increased corrosion currents compared to the baseline currents in the ambient fluid. The wetted sealed specimens might possibly be subject to corrosion; however the corrosion process and effects in this case may be isolated within the taper junction. This test indicates mechanically assisted corrosion does not occur if the taper junction is not exposed to an electrolyte. Significance. This study demonstrates that mechanically induced corrosion can be greatly reduced or prevented by sealing the taper junction to prevent the ingress of electrolyte


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 108 - 108
1 Jan 2016
Day J MacDonald D Arnholt C Williams G Getz C Kraay M Rimnac C Kurtz S
Full Access

INTRODUCTION. Mechanically assisted crevice corrosion of taper interfaces was raised as a concern in total hip arthroplasty (THA) approximately 20 years ago (Gilbert 1993). In total shoulder replacement, however, comparatively little is known about the prevalence of fretting assisted crevice corrosion or the biomechanical and patient factors that influence this phenomenon. Given the comparatively lower loading experienced in the shoulder compared to the hip, we asked: (1) What is the prevalence of fretting assisted corrosion in modular total shoulder replacements, and (2) What patient and implant factors are associated with corrosion?. METHODS. Modular components were collected from 48 revision shoulder arthroplasties as part of a multi-center, IRB approved retrieval program. For anatomic shoulders, this included 40 humeral heads, 32 stems and four taper adapters from seven manufacturers. For reverse shoulders, there were eight complete sets of retrieved components from three manufacturers. The components were predominantly revised for instability, loosening and pain. Anatomical shoulders were implanted for an average of 3.1 years (st dev 3.8; range 0.1–14.5). Reverse shoulders were implanted for an average of 2.2 years (st dev 0.7; range 1.3–3.3). Modular components were disassembled and examined for taper damage. The modular junctions were scored for fretting corrosion using a semi-quantitative four-point scoring system adapted from Goldberg, et al. (Goldberg, 2002, Higgs 2013). The scoring system criteria was adapted from Goldberg and Higgs which is comprised of a one to four grading system (with one indicating little-to-no fretting/corrosion and four indicating extensive fretting/corrosion). The component alloy composition was determined using the manufacturer's laser markings and verified by x-ray fluorescence. Patient age, gender, hand dominance, alloy, flexural rigidity of the trunnion and taper geometry were assessed independently as predictors for fretting corrosion. RESULTS. Moderate to severe fretting corrosion (score > 2) was observed in 23% of the anatomic modular components (Figure 1) and 22% of the reverse shoulder components. An example with severe damage is included in Figure 1. There was no significant relation between corrosion scores and any of the assessed factors. DISCUSSION AND CONCLUSION. It has been suggested that fretting assisted crevice corrosion may be a concern in THA, particularly with large head metal-on-metal articulations. We have identified the presence of moderate to severe corrosion on approximately one quarter of all retrieved shoulder arthroplasties. This is similar to the proportion observed in retrieved modular hips (Goldberg, 2002). While the expected loading of the shoulder is less than that in the hip (Westerhoff, 2009), the offset between the effective center of the prosthetic humeral head and the taper connecter is often larger and the size of the taper is smaller. This can increase the effect of bearing surface loading on the taper. We were unable to detect significant associated biomechanical or patient factors. This was probably due to the limited sample size of our population. At the present time, the clinical effects of taper corrosion in shoulder arthroplasty remain unknown


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 90 - 90
1 Apr 2019
Pierre D Gilbert J
Full Access

Introduction. Fretting crevice-corrosion (tribocorrosion) of metallic biomaterials is a major concern in orthopedic, spinal, dental and cardiovascular devices. 1. Stainless steel (i.e., 316L SS) is one alloy that sees extensive use in applications where fretting, crevices and corrosion may be present. While fretting-corrosion of this alloy has been somewhat studied, the concept of fretting-initiating crevice corrosion (FICC), where an initial fretting corrosion process leads to ongoing crevice-corrosion without continued fretting, is less understood. This study investigated the susceptibility of 316L SS to FICC and the role of applied potential on the process. The hypothesis is crevice-corrosion can be induced in 316L SS at potentials well below the pitting potential. Materials and Methods. A pin-on-disk fretting test system similar to that of Swaminathan et al. 2. was employed. Disks were ∼35 mm in diameter and the pin area was ∼500 mm. Samples were polished to 600 mm finish, cleaned with ethanol and distilled water. An Ag/AgCl wire as the reference, a carbon counter electrode and phosphate buffered saline (PBS, pH 7.4, Room T) were used for electrochemical testing. Load was controlled with a dead-weight system, monitored with a six-axis load cell (ATI Inc.). Interfacial motion was captured with a non-contact eddy current sensor (0.5 mm accuracy). Motion and load data acquisition was performed with Labview (National Instruments). Samples were loaded to ∼2 N. The potential per tests was increased from −250 to 250 mV (50 mV increments) with new locations and pins used in each repeat (n=3). Testing incorporated a 1 min rest before fretting (5 min, 1.25 Hz, 60 mm displacement saw tooth pattern). Fretting ceased and the load was held while currents were captured for another 5 min to assess ongoing crevice corrosion. Results. Testing showed that crevice corrosion can be initiated within minutes of fretting (or in a few cycles depending on potential; Fig. 1). Potentials as low as −100 mV showed evidence of corrosion, while sustained crevice corrosion was seen at −50 mV. As the potential increased above −50 mV, susceptibility to FICC increased. Fig. 2 is a typical cyclic polarization curve for 316L SS in PBS without fretting. Pitting starts at 400 mV vs Ag/AgCl, and the protection potential in this case is around potentials where FICC can be induced. Discussion. This study showed that 316L SS is prone to FICC starting at −100 mV and the severity of the crevice-corrosion damage depends on the applied potential (Fig. 3). Current after cessation of fretting takes longer to return to baseline or does not return indicating ongoing corrosion without fretting (Fig. 1). If the pin and disk are separated, the crevice-corrosion process stops immediately. The region immediately outside the fretting contact was crevice-like with a very small separation distance between the pin and disk surface which allowed crevice corrosion to develop (Fig. 3). Conclusion. 316L SS can undergo FICC at potentials close to normal physiological electrode potential conditions. Few fretting cycles are required to develop conditions for continued crevice-corrosion. Higher potentials increased the susceptibility of FICC in 316L SS


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 68 - 68
1 Jul 2020
Hall D Pourzal R Jacobs J Urban R
Full Access

Little is known about the relationship between head-neck corrosion and its effect on the periprosthetic tissues and distant organs of patients hosting well-functioning devices. The purpose of this study was to investigate in postmortem retrieved specimens the degree and type of taper damage, and the corresponding histologic responses in periprosthetic tissues and distant organs. Fifty postmortem THRs (34 primaries, 16 revisions) retrieved after 0.5 to 26 years were analyzed. Forty-three implants had a CoCrMo stem and seven had a Ti6Al4V stem. All heads were CoCrMo and articulated against polyethylene cups (19 XLPE, 31 UHMWPE). H&E sections of joint pseudocapsules, liver, spleen, kidneys and lymph nodes were graded 1–4 for the intensity of various inflammatory cell infiltrates and tissue characteristics. Corrosion damage of the taper surfaces was assessed using visual scoring and quantitated with an optical coordinate measuring machine. SEM analysis was used to determine the acting corrosion mode. Polyethylene wear was assessed optically. The majority of tapers had minimal to mild damage characterized by local plastic deformation of machining line peaks. Imprinting of the stem topography onto the head taper surface was observed in 18 cases. Column damage on the head taper surface occurred in three cases. All taper surfaces scored moderate or severe exhibited local damage features of fretting and/or pitting corrosion. Moderate or severe corrosion of the head and/or trunnion was present in nine hips. In one asymptomatic patient with bilateral hips, lymphocyte-dominated tissue reactions involving perivascular infiltrates of lymphocytes and plasmacytes were observed. In this patient, mild, focal lymphocytic infiltrates were also present in the liver and kidneys, and there was focal histiocytosis and necrosis of the para-aortic lymph nodes. These two implants, which had been in place for 58.6 and 60.1 months, had severe intergranular corrosion of the CoCrMo trunnion, and column damage and imprinting on the head taper. In the other 41 hips, macrophage responses in the joint pseudocapsule to metallic and/or polyethylene wear particles ranged widely from minimal to marked. Focal necrosis in the pseudocapsules of 12 arthroplasties was related to high concentrations of CoCrMo, TiAl4V, TiO, BaSO4 and polyethylene wear particles. High concentrations of these particles were also detected in para-aortic lymph nodes. Rare to mild macrophages were observed in liver and spleen. This is a comprehensive study of wear and corrosion within well-functioning postmortem retrieved THRs, and the resulting local and distant tissue reactions. One of eight patients with moderate or severe corrosion did have a subclinical inflammatory response dominated by lymphocytes after five years. To what extent such an inflammatory process might progress to become symptomatic is not known. Ionic and particulate products generated by corrosion disseminated systemically. The minor lymphocytic infiltrate in the liver and kidneys of one subject with bilateral severely corroded head-neck junctions might suggest possible metal toxicity. The diagnosis of adverse tissue reactions to corrosion of modular junctions can be challenging. Postmortem retrieval studies add to our understanding of the nature and progression of lymphocyte-dominated adverse local and potentially systemic tissue reactions to corrosion of modular junctions


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 78 - 78
1 Aug 2017
Lachiewicz P
Full Access

Uncemented metal-on-polyethylene total hip arthroplasties (THAs) have had a modular cobalt-chrome alloy head since their introduction in the early 1980's. Retrieval analysis studies and case reports in the early 1990's first reported corrosion between the femoral stem trunnion (usually titanium alloy) and cobalt-chrome alloy femoral head. However, then this condition seemed to disappear for about two decades? There are now numerous recent case series of this problem after metal-on-polyethylene THA, with a single taper or dual taper modular femoral component. Metal ion elevation, corrosion debris, and effusion are caused by mechanically assisted crevice corrosion (MACC). These patients present with diffuse hip pain, simulating trochanteric bursitis, iliopsoas tendinitis, or even deep infection. Trunnion corrosion, with adverse local tissue reaction, is a diagnosis of exclusion, after infection, loosening, or fracture. The initial lab tests recommended are: ESR, CRP, and serum cobalt and chromium ions. With a metal-on-polyethylene THA, a cobalt level > 1ppb is abnormal. Plain radiographs are usually negative, but may show calcar osteolysis or acetabular erosion or cyst. MARS MRI may be the best imaging study to confirm the diagnosis. Hip aspiration for culture and cell-count may be necessary. The operative treatment is empiric, with debridement, and head exchange with a ceramic head-titanium sleeve (or oxidised zirconium head) placed on the cleaned trunnion. The femoral component may have to be removed if there is “whole trunnion failure”. This usually relieves the symptoms, but the complication rate of this procedure may be high


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 146 - 146
1 Jul 2014
Wyss U Dyrkacz R Ojo O Turgeon T Brandt J
Full Access

Summary. Corrosion and fretting damage at the head-neck interface of artificial hip joints is more severe with larger head sizes. This is a concern, as the release of metal particles and ions can cause adverse tissue reactions, similar to those observed high wear metal-on-metal articulations. Introduction. In the last few years corrosion was increasingly observed at head-neck interfaces of artificial hip joints, especially in joints with larger heads. There has always been evidence of some corrosion at modular junctions of artificial joints, but except for few designs, it was not seen as a real problem. It is important to better understand the factors contributing to corrosion at modular interfaces, so that necessary improvements can be made to minimise or completely avoid corrosion, in order to avoid possible adverse tissue reactions. Methods. Over 100 retrieved stems and heads of 28, 32, 36, 40 and larger heads with metal-on-polyethylene (MoP) and metal-on-metal (MoM) articulations were scored for corrosion and fretting damage, in order to get a better picture of the magnitude of the problem. For some of the head sizes it was possible to assess the fretting and corrosion damage separately from implants from two different manufacturers. The tapers of the stem and head were subdivided into eight regions each, and scored for the severity of fretting and corrosion damage, as well as of the affected area within each sub-section. The scoring was undertaken by three persons with a fair intraclass correlation. The fretting and corrosion scores were also assessed based on the location of the center of the head with respect to the center of the taper. The distance between these two centers influences the toggling motion between the head and neck, as the main load is about 30 degrees out of axis during walking and other activities of daily living. Results. It was found that head-neck interfaces of two manufacturers of 36mm heads had significantly more corrosion than 28mm heads. There is a significant relationship between head and neck fretting damage, and between corrosion and fretting damage. There is also more corrosion damage in 32, 40 and larger heads, but these groups were from different manufacturers, so that it was not possible to perform statistical tests. More corrosion was observed when the centre of the head was at a larger distance from the centre of the head, leading to an increased toggling moment due to the out-of-axis loading. Discussion. It is of some concern that more corrosion is being observed with larger heads. Corrosion generally gets worse over time, which could negatively impact on the long-term behavior of these hip joints. Furthermore, it is possible that the metal particle and ion release due to corrosion and fretting could have adverse soft tissue reactions, similar to those observed at some MoM articulations. The fact that there are significant differences in the observed corrosion and fretting damage between the head-neck interfaces of two companies, indicates that even subtle changes in the geometry and the machined taper surface are important. A better understanding of these factors is required to make sure that the corrosion and fretting damage is minimised, or even better eliminated for all heads of artificial joints


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 22 - 22
1 Jan 2017
Pacha-Olivenza M García-Alonso M Tejero R Escudero M Gallardo Moreno A González-Martín M
Full Access

Adhered bacteria on titanium surfaces are able to decrease its corrosion potential and impedance values at the lowest frequencies. This result points to the detrimental influence of the biofilm on the passive film formed on the surfaces, independently on the surface finishes. Titanium is one of the most used metallic biomaterials for biological and implant applications. The spontaneous formation of a protective passive film around 2–5 nm thick, make titanium unique as a biomaterial for implants. Its composition has been described by a three-layer model: TiO2/Ti2O3/TiO and its stability is ultimately responsible for the success of osseointegrated titanium implants. The cases of breakdown of the protective passive film are associated with highly acidic environments induced by bacterial biofilms and/or inflammatory processes that lead to localized corrosion of titanium and, in extreme cases, implant failure. Bearing in mind that the surface design of a titanium implant is a key element involved in the healing mechanisms at the bone-implant interface, the surface modifications have sought to enhance the biomechanical anchorage of the implant and promote osseointegration at the cell-biomolecular level. However, little attention has been paid to the effects of these surface modifications in the microbiologically induced corrosion (MIC). The aim of this work is to evaluate the potential for MIC of titanium in the short term under viable bacterial cells of Streptococcus mutansas a representative microorganism of oral biofilm considered to be a highly cariogenic pathogen. Discs of 64 mm. 2. surface area of commercially pure titanium, grade 4, were supplied by Biotechnology Institute (BTI, Vitoria, Spain). Four surface treatments were studied: two acid etchings (low roughness, opN and high roughness, opV). In addition, acid etched plus anodic oxidation (opNT). For comparative purposes, two surface finishes have been included: high roughness – corresponding with sandblasting-large grit plus acid (SLA); and, as-machined titanium (mach). The oral strain used for assessing the biofilm formation on the corrosion behavior of Ti surfaces was Streptococus mutansATCC 25175, obtained from the Spanish Type Culture Collection (CECT). The study of MIC from Streptococcus mutanson surfaces of Ti was carried out in an electrochemical cell specifically designed and patented by some of the present authors [1]. A three set up configuration of the electrochemical cell was used in the experiments. The measurement of the corrosion potential and electrochemical impedance was performed at different periods of incubation of bacteria: 2, 7, 15, 21 and 28 days. Out Slight but continuous decrease in the corrosion potential and impedance values at the lowest frequencies indicate the deleterious influence of the biofilm on the passive film formed on the surfaces, independently on the surface finishes. This research suggests that the most appropriate surface modification for the dental implant portion at the bone level would be the acid etched of high roughness (opV) surface


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 132 - 132
1 Feb 2017
MacDonald D Chen A Lee G Klein G Cates H Mont M Rimnac C Kurtz S
Full Access

Introduction. During revision surgery with a well-fixed stem, a titanium sleeve can be used in conjunction with a ceramic head to achieve better stress distribution across the taper surface. Previous studies have observed that the use of a ceramic head can mitigate the extent of corrosion damage at the taper. Moreover, in vitro testing suggests that corrosion is not a concern in sleeved ceramic heads [1]; however, little is known about the in vivo fretting corrosion of the sleeves. The purpose of this study was to investigate fretting corrosion in sleeved ceramic heads. Materials and Methods. Thirty sleeved ceramic heads (Biolox Option: CeramTec) were collected during revision surgery as part of a multi-center retrieval program. The sleeves were used in conjunction with a zirconia-toughened alumina femoral head. The femoral heads and sleeves were implanted between 0.0 and 3.25 years (0.8±0.9, Figure 1). The implants were revised predominantly for instability (n=14), infection (n=7), and loosening (n=5). Fifty percent of the retrievals were implanted during a primary surgery, while 50% had a history of a prior revision surgery. Fretting corrosion was scored using a previously described 4-point, semi-quantitative scoring system proposed by Higgs [2]. Results. Among the sleeved ceramic heads, mild-to-moderate fretting corrosion scores (Score = 2–3) were observed in 96% of internal tapers, 26% of external tapers, and 82% of the stems. On the internal taper surface, 5 sleeves had moderate fretting corrosion data (Score = 3, Figure 2). None of sleeves had severe (Score = 4) at any taper surface. Fretting corrosion scores were higher at the internal taper surface than the external taper. Implantation time was the main predictor of increased fretting-corrosion of the external sleeve tapers. Discussion. For the sleeved ceramic heads, we found that fretting corrosion can occur in these components, particularly on the internal surface of the sleeve. However, the fretting corrosion scores were predominantly mild, and lower than fretting scores of CoCr heads in metal on polyethylene bearings. Because the sleeves are Ti alloy, the corrosion products are considered to be less cytotoxic than Co and Cr. The primary limitation to this study is the short-term follow-up of these retrievals. As the fretting corrosion process is often associated with in vivo duration, future studies with longer-term implants are necessary to elucidate the long-term performance of these devices


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 142 - 142
1 Apr 2019
Higgs G Rimnac C Mihalko W Gilbert J Kurtz S
Full Access

Introduction. Corrosion at modular junctions of total hip replacements has been identified as a potential threat to implant longevity, resulting in efforts to determine appropriate countermeasures. Visual scoring and volumetric material loss measurements have been useful tools to elucidate various clinical and design factors associated with corrosion damage. However, corrosion involves electron exchange that results in chemical changes to biomedical alloys, and electrochemical assessment may therefore be a more appropriate approach to understand the phenomenon. The purpose of this pilot study was to electrochemically distinguish the severity of corrosion in retrieved femoral heads. A secondary goal was to identify the potential of electrochemical impedance spectroscopy (EIS) as a method to identify different forms of corrosion damage. Methods. Twenty femoral heads were identified from a larger study of total hip replacements, obtained as part of an ongoing multi- center IRB-approved retrieval program. Using a previously established 4-point scoring method, components were binned by taper damage: 10 components were identified as having severe damage, 7 with moderate damage and 2 with mild damage. One (1) unimplanted control was included to represent minimal corrosion damage. All components were then characterized using electrochemical impedance spectroscopy under the frequency domain: a 10 mV sinusoidal voltage, ranging from 20 kHz to 2 mHz, was applied to the taper of a femoral head (working electrode) filled with a 1M solution of PBS, a platinum counter electrode and a chlorided silver reference electrode. Absolute impedance at 2 mHz (|Z. 0.002. |), and max phase angle (θ) were assessed relative to taper damage severity. After least-squares fitting of the EIS data to a Randles circuit with a constant phase element, circuit elements: polarization resistance (Rp), CPE-capacitance, and CPE-exponent were also evaluated. The seven (7) most severely corroded components were further examined with scanning electron microscopy to identify corrosion modes. For all statistical analyses, significance was determined at alpha=0.05. Results. Taper damage was strongly correlated with both |Z. 0.002. | (ρ = −0.857, p<0.001) and CPE-capacitance (ρ=0.913, p<0.001). Taper damage was moderately associated with max phase angle (ρ= −0.483, p=0.031), CPE-exponent (ρ= −0.653, p=0.002) and Rp (ρ=0.556, p=0.011). Log-log plots of the strongest predictors of taper damage (|Z. 0.002. | and CPE- capacitance) identified some clustering among severely corroded components. SEM analysis identified evidence of grain/phase boundary corrosion on four components, all with log CPE-capacitance ≥ −4.4. Discussion. The results of this pilot study highlight that electrochemical impedance spectroscopy is useful in determining corrosion severity in retrieved femoral heads, and may also identify intergranular corrosion attack. For an undamaged taper, the self- passivating behavior of CoCrMo creates a surface that opposes charge transfer, but greater corrosion appears to compromise this barrier. The observed trend of low impedance but high capacitance for severely corroded components with intergranular corrosion may signal charge storage at the boundaries of individual grains. Additional work is underway to characterize this behavior


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 147 - 147
1 Feb 2017
Grostefon J Nelson W
Full Access

Introduction. The corrosion of modular taper junctions in hip implants is becoming an area of increased research focus. Many design factors have been hypothesized to contribute to this kind of corrosion. The authors' previous research indicated femoral stem taper roughness may influence taper corrosion. The purpose of this study is to determine whether taper roughness significantly affects taper performance. Methods. A 2. 2. design of experiment was conducted with Ti6Al4V 12/14 taper coupons coupled with CoCrMo 12/14 taper 28mm+12 heads (DePuy Synthes, Warsaw, IN) with n=3 samples per test run for a total of 12 samples. The femoral heads and taper coupons were manufactured with “smooth” finishes ranging from R. t. 100–200 µin and “rough” finishes ranging from R. t. 900–1000 µin. Test components were assembled wet (dipped in saline solution and drained) and pressed together with a 4400 N assembly force. The assemblies were immersed in phosphate buffered saline and a potentiostat was used to maintain the potential of the specimen at −50mV vs. Ag/AgCl. Incrementally larger cyclic loads were applied vertically to the head at 3Hz until a 4000N maximum load was reached, then this cyclic load was maintained for an additional 1 million cycles. Results. The long-term average corrosion test results ranged from 0.26 to 2.98 µA among the groups. The “Rough Head – Rough Stem” (Group 1) resulted in the highest average corrosion currents of 1.53 ± 0.75 µA. The “Smooth Head – Smooth Stem” (Group 4) showed the lowest average corrosion currents of 0.20 ± 0.05 µA. ANOVA analysis revealed significant differences between the groups (p>0.05), Tukey-Kramer post-hoc analysis showed a significant difference between groups 1 and 4 only. Discussion. Femoral heads and femoral stems with a smoother taper roughness specification resulted in less measured corrosion compared to components with higher taper roughness specifications under the specified test conditions. Significance. This study demonstrates taper surface roughness is a relevant design factor which could influence taper corrosion


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 12 - 12
1 Apr 2019
Campbell P Kung MS Park SH
Full Access

Background. Distal femoral replacements (DFR) are used in children for limb-salvage procedures after bone tumor surgery. These are typically modular devices involving a hinged knee axle that has peripheral metal-on-polyethylene (MoP) and central metal-on-metal (M-M) articulations. While modular connections and M-M surfaces in hip devices have been extensively studied, little is known about long-term wear or corrosion mechanisms of DFRs. Retrieved axles were examined to identify common features and patterns of surface damage, wear and corrosion. Methods. The cobalt chromium alloy axle components from 13 retrieved DFRs were cleaned and examined by eye and with a stereo microscope up to 1000× magnification. Each axle was marked into 6 zones for visual inspection: the proximal and distal views, and the middle (M-M) and 2 peripheral (MoP) zones. The approximate percentage of the following features were recorded per zone: polishing, abrasion or scratching, gouges or detectable wear, impingement wear (i.e. from non- intentional articulation), discoloration and pitting. Results. In each case, the middle M-M zones showed more damage features compared with peripheral MoP zones. Brown discoloration, presumably due to tribofilm deposits, was the predominant M-M area feature, particularly at the junction between the MoP and M-M zones. Higher magnification showed areas of polishing underlying the discoloration, suggesting repetitive removal of the surface metal and re-deposition of tribofilms (Fig 2B). 9 cases demonstrated reflective patches resembling “thumbprint” or “fish scale” markings, which, under higher magnification, showed signs of scratching and grooving in a radial pattern (Figs 2D, 3A). Pits were occasionally present but appeared to be from third-body damage as signs of corrosion were absent. Features that resembled carbides, sometimes with associated “comet” patterns of scratching were apparent under higher magnification in some areas. The MoP zones showed variable scratching, abrasion and wear polishing. The MoP to M-M junctional areas were demarcated by a distinct band corresponding, in some cases, to a narrow wear groove or gouge. 3 axles showed evidence of severe impingement wear on one proximal end. Discussion. This study of retrieved axle components demonstrated varying types of surface wear damage but no clear evidence of corrosion. This is presumably because these parts are in nearly constant motion during gait. Third-body damage may have resulted from the breakdown of surface carbides, leading to scratching, abrasion and wear polishing under high contact stress. Severe impingement wear presumably occurred after catastrophic damage to the polyethylene bushings, allowing eccentric loading and extensive metal wear. The components were revised for a range of clinical reasons including aseptic loosening and the need to expand the prosthesis during growth. With the exception of the few cases with severe impingement, it is unlikely that the wear features seen here contributed to the need for revision. While it was reassuring that corrosion was not a prominent feature of these modular M-M articulations, retrieval analysis of DFR components should be continued to confirm this finding, better document the in vivo wear processes and point to design features that might be improved for future patients. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 127 - 127
1 Mar 2013
Cross MB Esposito C Sokolova A Jenabzadeh R Molloy D Munir S Zicat B Walter WK Walter WL
Full Access

Introduction. Modularity is being increasingly used throughout the world for both primary and revision total hip arthroplasty. Recently there have been concerns of increased corrosion and fretting at the modular junctions. In the SROM® modular hip system, two modular junctions are the head-neck taper junction and the stem-sleeve taper junction. The aim of this study was to investigate corrosion at these junctions with the use of different bearing materials. Methods. Between 1994 and 2012, fourty-two patients were revised with SROM® stems. Reasons for revision included aseptic loosening of the cup or stem (11), periprosthetic fracture (2), osteolysis (8), dislocation (13) and other reasons (7). One was revised for stem breakage, and this was excluded from this study. We examined 41 retrieved S-ROM® comprised of 6 metal-on-metal (MOM), 12 metal-on-polyethylene (MOP), 7 ceramic-on-polyethylene (COP) and 16 ceramic-on-ceramic (COC). The orientation for all components was marked at the time of revision surgery. Both the proximal sleeve/stem and the femoral head-neck modular junctions were examined under 10X magnification, and graded by two independent observers. The head tapers were divided into 4 regions, and graded using a previously published 3 point scoring system for fretting and corrosion damage (Goldberg et al, Kop et al), for a total corrosion damage score of 12. The SROM stems were also assessed at the sleeve/stem taper junction. Each stem was divided into 8 quadrants, and graded for corrosion and fretting using the same system as the taper. In addition to severity, we also quantified area of corrosion damage of the stem at the sleeve-stem junction from 0–3, which was multiplied by the severity of damage, to give a score out of 9 for each quadrant (maximum total score of 72 for the stem). The bearing type was unknown to the investigators, so the grading was done in a blinded fashion. Corrosion scores were divided by time to account for differences in time to revision. Results. Corrosion at the head-neck taper junction was higher for 17 stems with metal heads compared to 23 stems with ceramic heads (p=0.008). The average corrosion rate at the stem-sleeve taper junction in hips with hard-on-hard bearings (COC and MOM) was higher than polyethylene (MOP and COP) bearings, but this was not significant (p=0.07). Conclusions. Corrosion at the head-neck modular junction of hips with metal heads was greater than ceramic heads, likely due to galvanic corrosion in a mixed-metal system. Greater corrosion was found at the stem-sleeve taper junction in stems with hard-on-hard bearings. This may be related to friction in the bearings


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 62 - 62
1 May 2016
Munir S Bertollo N Pelletier M Walsh W
Full Access

Introduction. Modern hip replacements all have encapsulated the design concept of proximal modularity. The factors contributing to the increased wear and corrosion at the taper junction are trunnion geometry, surface characteristics, head size, impaction forces, and material coupling. This study maps the inferior and superior region of the trunnion and bore to provide a visual identification of the corrosion severity. The corrosion/wear generated inferiorly and superiorly at the bore and trunnion will be quantified to understand how corrosion is affected by mechanical stresses in relation to anatomical orientation. Methodology. Three neck tapers generated from bar stock containing a threaded trunnion Ti-6Al-4V and 3× 32mm femoral heads (Co-Cr-Mo) with a +4 offset manufactured by Signature Orthopaedics were used within this study. Rectangular Rozzette strain gauges (Tokyo Sokki Kenkyujo Co., Ltd.) were adhered onto the inferior and superior sections of the neck section. The tapers were fatigued in accordance to ISO 7206 at 5Hz for 5 million cycles at 37 degrees Celsius in phosphate buffered saline. The tapers were sectioned from the center of the femoral head to split both trunnion and bore into superior and inferior components. SEM imaging of all surface areas for each component, per taper (4) was done under ×100 magnification. The images were used to quantify the corrosion present across the surface area using a MATLAB based program called Histomorph. To obtain a visual observation of the variation of corrosion across the bore and trunnion the proximal, medial, and distal regions were mapped together for both the superior and inferior sections. Results. The superior region of the trunnion had a dominant tensile strain in comparison to the inferior region, which had a dominant compressive strain. Corrosion/wear of the inferior section of the trunnion was significantly higher (p<0.05) in comparison to the superior section (Figure 1). The bore had more corrosion/wear on the superior side in comparison to the inferior side however the difference was not significant. The mapping of the trunnion shows corrosion/wear along the whole length of the inferior side and dominantly at the distal region for the superior side (Figure 2 & 3). The superior section of the trunnion had higher corrosion/wear damage across the center and distal regions of the trunnion. The subdivision of the superior section reveals that the majority of the distal section contains higher wear/corrosion damage. However the central region also has sufficient corrosion/wear extending across the width of the bore. Conclusion. The corroded regions have shown that the type of stress present on the regions of the taper junction determines the severity of corrosion. The inferior section of the trunnion under compressive stress has significantly (p<0.05) higher corrosion/wear in comparison to the superior section dominated by tensile stress


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 89 - 89
1 Apr 2019
Hall D Pourzal R Wright J McCarthy S Jacobs J Urban R
Full Access

Introduction. Little is known about the relationship between head-neck corrosion and its effect on periprosthetic tissues and distant organs in the majority of patients hosting apparently well-functioning devices. We studied the degree and type of taper damage and the histopathologic response in periprosthetic tissue and distant organs. Methods. A total of 50 contemporary THRs (34 primary, 16 revision) retrieved postmortem from 40 patients after 0.4–26 years were studied. Forty-three femoral stems were CoCrMo and 7 were Ti6Al4V. In every case, a CoCrMo-alloy head articulated against a cementless polyethylene cup (19 XLPE and 31 UHMWPE). H&E and IHC sections of the joint pseudocapsules and liver were graded 1–4 for the intensity of various inflammatory cell infiltrates and tissue necrosis. The nature of the tissue response in the joint capsule, liver, spleen, kidneys and lymph nodes was assessed. Wear and corrosion products in the tissues were identified using SEM and EDS. Taper surfaces were graded for corrosion damage using modified Goldberg scoring and examined by SEM to determine the acting corrosion mode. Correlations between damage scores and the histologic variables were generated using the Spearman test. Results. No correlation was seen between taper damage scores and the macrophage response in the joint pseudocapsule. The distribution of corrosion scores for heads and femoral trunnions is shown in Figure 1. Moderate or severe corrosion of the head and/or trunnion was present in 9 hips (8 CoCr/CoCr and 1 CoCr/TiAlV). One patient with bilateral hips had local ALVAL-like lymphocyte-dominated tissue reactions (Figure 2) and mild focal lymphocytic infiltrates in the liver and kidneys (Figure 3). This was associated with severe intergranular corrosion of the CoCrMo trunnion and column damage on the head taper. Particle-laden macrophages in pseudocapsules were significantly correlated with liver macrophages (r=.382, p=0.012) and liver lymphocytes (r=.367, p=0.013). Pseudocapsule macrophage responses to metallic and/or polyethylene wear particles ranged widely from minimal to marked. Focal tissue necrosis was related to high concentrations of particulate wear debris. A minimal number of metallic particle-laden macrophages were also detected in the liver and spleen; and macrophage granulomas were present in para-aortic lymph nodes, especially in revision cases. DISCUSSION. The generation of metal ions and particulates at corroded CoCrMo heads and CoCrMo or Ti6Al4V trunnions was a significant contributor to the presence of perivascular lymphocytes within the joint pseudocapsule, with 1 patient showing a histologic pattern consistent with ALVAL. Patient factors and the rate of corrosion are among variables influencing whether an ALVAL-type reaction will develop and whether or not it will become symptomatic. Macrophages in the joint pseudocapsules were positively correlated with inflammatory cells in the liver. In this study, the intensity of inflammatory infiltrates in distant organs was mild. However, several cases of organ dysfunction have been reported in association with catastrophic wear of CoCrMo components. It continues to be essential to minimize the generation of metal ions and particulates and to improve strategies for identifying and managing patients exposed to high levels of degradation products. For any figures or tables, please contact the authors directly