header advert
Results 1 - 37 of 37
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 78 - 78
1 Apr 2019
Dessinger G Mahfouz M Fatah EEA Johnson J Komistek R
Full Access

Introduction

At present, orthopaedic surgeons utilize either CT, MRI or X-ray for imaging a joint. Unfortunately, CT and MRI are quite expensive, non weight-bearing and the orthopaedic surgeon does not receive revenue for these procedures. Although x-rays are cheaper, similar to CT scans, patients incur radiation. Also, all three of these imaging modalities are static. More recently, a new ultrasound technology has been developed that will allow a surgeon to image their patients in 3D. The objective of this study is to highlight the new opportunity for orthopaedic surgeons to use 3D ultrasound as alternative to CT, MRI and X-rays.

Methods

The 3D reconstruction process utilizes statistical shape atlases in conjunction with the ultrasound RF data to build the patient anatomy in real-time. The ultrasound RF signals are acquired using a linear transducer. Raw RF data is then extracted across each scan line. The transducer is tracked using a 3D tracking system. The location and orientation for each scan line is calculated using the tracking data and known position of the tracker relative to the signal. For each scan line, a detection algorithm extracts the location on the signal of the bone boundary, if any exists. Throughout the scan process, a 3D point cloud is created for each detected bone signal. Using a statistical bone atlas for each anatomy, the patient specific surface is reconstruction by optimizing the geometry to match the point cloud. Missing regions are interpolated from the bone atlas.

To validate reconstructed models output models are then compared to models generated from 3D imaging, including CT and MRI.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 532 - 532
1 Dec 2013
Sharma A Carr C Cheng J Mahfouz M Komistek R
Full Access

Mathematical modeling provides an efficient and easily reproducible method for the determination of joint forces under in vivo conditions. The need for these new modeling methodologies is needed in the lumbar spine, where an understanding of the loading environment is limited. Few studies using telemetry and pressure sensors have directly measured forces borne by the spine; however, only a very small number of subjects have been studied and experimental conditions were not ideal for giving total forces acting in the spine. As a result, alternative approaches for investigating the lumbar spine across different clinical pathologies are essential. Therefore, the objective of this study was to develop of an inverse dynamic mathematical model for theoretically deriving in-vivo contact forces as well as musculotendon forces in patients having healthy, symptomatic, pathological and post-operative conditions of the lumbar spine.

Fluoroscopy and 3D-to-2D image registration were used to obtain kinematic data for patients performing flexion-extension of the lumbar spine. This data served as input into the multi-body, mathematical model. Other inputs included patient-specific bone geometries, recreated from CT, and ground reaction forces. Vertebral bones were represented as rigid bodies, while massless frames symbolized the lower body, torso and abdominal wall (Figure 1). In addition, ligaments were selected and modeled as linear spring elements, along with relevant muscle groups. The muscles were divided into individual fascicles and solved for using a pseudo-inverse algorithm which enabled for decoupling of the derived resultant torques defining the desired kinetic trajectory for the muscles.

The largest average contact forces in the model for healthy, symptomatic, pathological, and post-operative lumbar spine conditions occurred at maximum flexion at L4L5 level and were predicted to be 2.47 BW, 2.33 BW, 3.08 BW, and 1.60 BW, respectively. The FE rotation associated with these theoretical force values was 43.0° in healthy, 40.5° in symptomatic, 44.4° in pathological, and 22.8° in post-operative patients. The smallest forces occurred as patients approached the upright, standing position, followed by slight increases in the contact force at full extension. The theoretically derived muscle forces exhibited similar contributory force profiles in the intact spine (healthy, symptomatic, and pathologic); however, surgically implanted spines experienced an increase in the contribution of the external oblique muscles accompanied with decreased slope gradients in the muscle force profiles (Figure 2).

These altered force patterns may be associated with the decrease in the predicted contact forces in post-operative patients. In addition, the decreased slope gradients in surgically implanted patients corresponds with the observed difficulty of performing the prescribed motion, possibly due to improper muscle firing, thereby leading to slower motion cycles and less ranges-of-motion. On the contrary, patients having an intact spine performed the activity at a faster speed and to greater ranges-of-motion, which corresponds with the higher contact forces derived in the model. In conclusion, this research study presented the development of a mathematical modeling approach utilizing patient-specific data to generate theoretical in-vivo joint forces. This may serve to help progress the understanding for the kinetic characteristics of the native and surgically implanted lumbar spine.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 279 - 279
1 Dec 2013
Komistek R Mahfouz M Wasielewski R De Bock T Sharma A
Full Access

INTRODUCTION:

Previous modalities such as static x-rays, MRI scans, CT scans and fluoroscopy have been used to diagnosis both soft-tissue clinical conditions and bone abnormalities. Each of these diagnostic tools has definite strengths, but each has significant weaknesses. The objective of this study is to introduce two new diagnostic, ultrasound and sound/vibration sensing, techniques that could be utilized by orthopaedic surgeons to diagnose injuries, defects and other clinical conditions that may not be detected using the previous mentioned modalities.

METHODS:

A new technique has been developed using ultrasound to create three-dimensional (3D) bones and soft-tissues at the articulating surfaces and ligaments and muscles across the articulating joints (Figure 1). Using an ultrasound scan, radio frequency (RF) data is captured and prepared for processing. A statistical signal model is then used for bone detection and bone echo selection. Noise is then removed from the signal to derive the true signal required for further analysis. This process allows for a contour to be derived for the rigid body of questions, leading to a 3D recovery of the bone. Further signal processing is conducted to recover the cartilage and other soft-tissues surrounding the region of interest. A sound sensor has also been developed that allows for the capture of raw signals separated into vibration and sound (Figure 2). A filtering process is utilized to remove the noise and then further analysis allows for the true signal to be analyzed, correlating vibrational signals and sound to specific clinical conditions.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 51 - 51
1 Mar 2013
De Bock T Zingde S Leszko F Tesner R Wasielewski R Mahfouz M Komistek R
Full Access

Introduction

The low-cost, no-harm conditions associated with vibroarthography, the study of listening to the vibrations and sound patterns of interaction at the human joints, has made this method a promising tool for diagnosing joint pathologies. This current study focuses on the knee joint and aims to synchronize computational models with vibroarthographic signals via a comprehensive graphical user interface (GUI) to find correlations between kinematics, vibration signals, and joint pathologies. This GUI is the first of its kind to synchronize computational models with vibroarthographic signals and gives researchers a new advantage of analyzing kinematics, vibration signals, and pathologies simultaneously in an easy-to-use software environment.

Methods

The GUI (Figure 1) has the option to view live or previously captured fluoroscopic videos, the corresponding computational model, and/or the pre- or post-processed vibration signals. Having more than one signal axes available allows for comparison of different filtering techniques to the same signal, or comparison of signals coming from different sensor placements (ex: medial vs. lateral femoral condyle). Using computational models derived using fluoroscopic data synchronized with the vibration signals, the areas of contact between articulating surfaces can be mapped for the in vivo signal (figure 2). This new method gives the opportunity to find correlations between the different sensor signals and contact maps with the diagnosis and cartilage degeneration map, provided by a surgeon, during arthroscopy or TKA implantation (figure 3).


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 371 - 371
1 Mar 2013
Zingde S Leszko F Sharma A Howser C Meccia B Mahfouz M Dennis D Komistek R
Full Access

INTRODUCTION

In-vivo data pertaining to the actual cam-post engagement mechanism in PS and Bi-Cruciate Stabilized (BCS) knees is still very limited. Therefore, the objective of this study was to determine the cam-post mechanism interaction under in-vivo, weight-bearing conditions for subjects implanted with either a Rotating Platform (RP) PS TKA, a Fixed Bearing (FB) PS TKA or a FB BCS TKA.

METHODS

In-vivo, weight-bearing, 3D knee kinematics were determined for eight subjects (9 knees) having a RP-PS TKA (DePuy Inc.), four subjects (4 knees) with FB-PS TKA (Zimmer Inc.), and eight subjects (10 knees) having BCS TKA (Smith&Nephew Inc.), while performing a deep knee bend. 3D-kinematics was recreated from fluoroscopic images using a previously published 3D-to-2D registration technique (Figure 1). Images from full extension to maximum flexion were analyzed at 10° intervals. Once the 3D-kinematics of implant components was recreated, the cam-post mechanism was scrutinized. The distance between the interacting surfaces was monitored throughout flexion and the predicted contact map was calculated.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 332 - 332
1 Mar 2013
Smith J Sharma A Mahfouz M Komistek R
Full Access

Introduction

While fluoroscopic techniques have been widely utilized to study in vivo kinematic behavior of total knee arthroplasties, determination of the contact forces of large population sizes has proven a challenge to the biomedical engineering community. This investigation utilizes computational modeling to predict these forces and validates these with independent telemetric data for multiple patients, implants, and activities.

Methods

Two patients with telemetric implants, the first of which was studied twice with the reexamination occurring 8 years after the first, were studied. Three-dimensional models of the patients' bones were segmented from CT and aligned with the design models of the telemetric implants. Fluoroscopy was collected for gait, deep knee bend, chair rise, and stair activities while being synchronized to the ground reaction force (GRF) plate, telemetric forces, knee flexion angles, electromyography (EMG), and vibration sensors. Registration of the implants and bones to the 2-D fluoroscopy provided the 6 degree of freedom kinematic data for each object. Orientation and position of the components, the GRFs, ligament properties, and muscle attachment locations were the only inputs to the Kane's dynamics inverse solution. Dynamic contact mapping and pseudo-inverse solution method were incorporated to output the predicted muscle forces of the vastus lateralis, rectus femoris, vastus medialis, biceps femoris long head, and gastrocnemius and contact forces at the patellofemoral and medial and lateral tibiofemoral. While every major muscle of the lower limb was incorporated into the model, these five were used in the validation process. EMG signals were processed to determine the neural excitation, muscle activation, and using the dynamic muscle length from the kinematics, the tension generated by these muscles.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 52 - 52
1 Mar 2013
De Bock T Orekhov G Stephens S Dennis D Mahfouz M Komistek R
Full Access

Introduction

Previous fluoroscopy studies have been conducted on numerous primary-type TKA, but minimal in vivo data has been documented for subjects implanted with revision TKA. If a subject requires a revision TKA, most often the ligament structures at the knee are compromised and stability of the joint is of great concern. In this present study, subjects implanted with a fixed or mobile bearing TC3 TKA are analyzed to determine if either provides the patient with a significant kinematic advantage.

Methods

Ten subjects are analyzed implanted with fixed bearing PFC TC3 TKA and 10 subjects with a mobile bearing PFC TC3 TKA. Each subject underwent a fluoroscopic analysis during four weight bearing activities: deep knee bend (DKB), chair rise, gait, and stair descent. Fluoroscopic images were taken in the sagittal plane at 10 degree increments for the DKB, 30 degree increments for chair rise, and at heel strike, toe off, 33% and 66% cycle gait and stair descent.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 333 - 333
1 Mar 2013
De Bock T Smith J Dennis D Mahfouz M Komistek R
Full Access

Introduction

Electromyography (EMG) is the best known method in obtaining in vivo muscle activation signals during dynamic activities, and this study focuses on comparing the EMG signals of the quadriceps muscles for different TKA designs and normal knees during maximum weight bearing flexion. It is hypothesized that the activation levels will be higher for the TKA groups than the normal group.

Methods

Twenty-five subjects were involved in the study with 11 having a normal knee, five a rotating platform (RP) posterior stabilized (PS) TKA, and nine subjects with a PFC TC3 revision TKA. EMG signals were obtained from the rectus femoris, vastus medialis, and vastus lateralis as the patients performed a deep knee bend from full extension to maximum flexion. The data was synchronized with the activity so that the EMG data could be set in flexion-space and compared across the groups. EMG signals were pre-processed by converting the raw signals into neural excitations and normalizing this data with the maximum voluntary contraction (MVC) performed by the subject. The signals were then processed to find the muscle activations which, normalized by MVC, range from 0 to 1.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 27 - 27
1 Sep 2012
Carr C Tadross R Mahfouz M
Full Access

Introduction

Kinematics tracking is the process by which the motion of the joints is studied. This motion consists of relative rotation and translation of the joint bones. Joint motion analysis is used in diagnosis of joint pathology, as well as studying the normal joint function. Currently, fluoroscopy is used in joint kinematics tracking. We are researching the use of pulse-echo A-mode ultrasound for the bone motion tracking instead of the fluoroscopy to avoid its radiation. In this work we performed feasibility study using simulation, and concluded that it is feasible to perform knee motion tracking with accuracy of 2 mm.

Methods

The idea of the proposed system is to attach a number of single-element ultrasound transducers to a brace as shown in Figure 1. This brace will have a commercially available optical or electromagnetic tracking system's probe attached to it to track the global motion of the brace. The ultrasound transducers will be responsible for transcutaneously detecting points over the surface of the bone. The bone's echo extracted from each signal at each transducer will be registered in the optical or electromagnetic tracker's coordinate frame to create a set of points acquired over the surface of the bone. These points represent the bone's position at that point of time. A 3D model of the bone is then registered to these points using the iterative closest point method (ICP) to estimate the bone's position. At each tracking step, the 3D model will be at a position close to the new position of the points set, because this process will be repeated at a rate of 100 Hz or more in order to ensure that the change in the bone's position between every two successive tracking steps is small enough to guarantee high tracking accuracy. In this work we simulated the mentioned process using real kinematics data obtained for a patient using fluoroscopy. 3D models of the proximal tibia and distal femur were segmented from CT scans of the patient's knee. These models were then moved using the kinematic data in incremental steps. Simulated points over the surface of the bones (simulating the points on the bone's surface to be acquired using ultrasound) were used to track the bones' simulated motion using another set of the bones 3D models which move only according to the registration with the simulated points. In other words, the tracking models follow the simulated points' motion. Simulation was performed using deep knee bend kinematics data.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 137 - 137
1 Sep 2012
Parratte S Lesko F Zingde S Anderle M Mahfouz M Komistek R Argenson J
Full Access

Introduction

Previous fluoroscopic studies compared total knee arthroplasty (TKA) kinematics to normal knees. It was our hypothesis that comparing TKA directly to its non-replaced controlateral knee may provide more realistic kinematics information. Using fluoroscopic analysis, we aimed to compare knee flexion angles, femoral roll-back, patellar tracking and internal and external rotation of the tibia.

Material and methods

15 patients (12 women and 3 men) with a mean age of 71.8 years (SD=7.4) operated by the same surgeon were included in this fluoroscopic study. For each patient at a minimum one year after mobile-bearing TKA, kinematics of the TKA was compared to the controlateral knee during three standardized activities: weight-bearing deep-knee bend, stair climbing and walking. A history of trauma, pain, instability or infection on the non-replaced knee was an exclusion criteria. A CT-scan of the non-replaced knee was performed for each patient to obtain a 3-D model of the knee. The Knee Osteoarthitis Outcome Score (KOOS) was also recorded.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 225 - 225
1 Sep 2012
Zingde S Leszko F Mueller JK Mahfouz M Dennis D Komistek R
Full Access

INTRODUCTION

Posterior stabilized (PS) total knee arthroplasty (TKA) provides posterior stability with the use of a cam-post mechanism which performs the function of the posterior cruciate ligament. The tibial post engages with the femoral cam, prevents the femur from sliding anteriorly and provides the posterior femoral rollback necessary for achieving deep flexion of the knee. However, these designs do not substitute the resection of the anterior cruciate ligament. In order to overcome this deficit, other TKA designs have been recently introduced to provide dual support, with the help of dual cam-post engagement mechanism. Various studies conducted on the PS TKA have suggested that the cam-post mechanism does not engage as designed, resulting in tibial post wear and increased stresses resulting in backside wear of the polyethylene insert component. Also, the in vivo data pertaining to the actual cam-post engagement mechanism in bi-cruciate stabilized knees is still very limited. Therefore, the objective of this study was to determine the cam-post mechanism interaction under in vivo, weight bearing conditions for subjects implanted with either a Rotating Platform (RP) Posterior Stabilized (PS) TKA or a bi-cruciate stabilizing TKA (BCS).

METHODS

In-vivo, weight-bearing, 3D knee kinematics were determined for eight subjects (9 knees) having a RP-PS TKA (DePuy Inc.) and eight subjects (10 knees) having BCS TKA (Smith&Nephew Inc.), while performing a deep knee bend. 3D kinematics was recreated from the fluoroscopic images using a previously published 3D-to-2D registration technique (Figure 1). Images from full extension to maximum flexion were analyzed at 10° intervals. Once the 3D kinematics of all implant components was recreated, the cam-post mechanism was scrutinized. The distance between the interacting surfaces was monitored throughout the flexion and the predicted contact map was calculated. The instances, when the minimum distance between the cam and post surfaces dropped to zero was considered to indicate the engagement of the mechanism. This analysis was carried out for both the, anterior and posterior cam-post engagement sites.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 39 - 39
1 Sep 2012
Leszko F Zingde S Argenson J Dennis D Wasielewski R Mahfouz M Komistek R De Bock T
Full Access

Anterior knee pain is one of the most frequently reported musculoskeletal complaints in all age groups. However, patient's complaints are often nonspecific, leading to difficulty in properly diagnosing the condition. One of the causes of pain is the degeneration of the articular cartilage. As the cartilage deteriorates, its ability to distribute the joint reaction forces decreases and the stresses may exceed the pain threshold. Unfortunately, the assessment of the cartilage condition is often limited to a detailed interview with the patient, careful physical examination and x-ray imaging. The X-ray screening may reveal bone degeneration, but does not carry sufficient information of the soft tissues' conditions. More advanced imaging tools such as MRI or CT are available, but these are expensive, time consuming and are only suitable for detection of advanced arthritis. Arthroscopic surgery is often the only reliable option, however due to its semi-invasive nature, it cannot be considered as a practical diagnostic tool. However, as the articular cartilage degenerates, the surfaces become rougher, they produce higher vibrations than smooth surfaces due to higher friction during the interaction. Therefore, it was proposed to detect vibrations non-invasively using accelerometers, and evaluate the signals for their potential diagnostic applications.

Vibration data was collected for 75 subjects; 23 healthy and 52 subjects suffering from knee arthritis. The study was approved by the IRB and an Informed Consent was obtained prior to data collection. Five accelerometers were attached to skin around the knee joint (at the patella, medial and lateral femoral condyles, tibial tuberosity and medial tibial plateau). Each subject performed 5 activities; (1) flexion-extension, (2) deep knee bend, (3) chair rising, (4) stair climbing and (5) stair descent. The vibration and motion components of the signals were separated by a high pass filter. Next, 33 parameters of the signals were calculated and evaluated for their discrimination effectiveness (Figure 1). Finally the pattern recognition method based on Baysian classification theorem was used for classify each signal to either healthy or arthritic group, assuming equal prior probabilities.

The variance and mean of the vibration signals were significantly higher in the arthritic group (p=2.8e-7 and p=3.7e-14, respectively), which confirms the general hypothesis that the vibration magnitudes increase as the cartilage degenerates. Other signal features providing good discrimination included the 99th quantile, the integral of the vibration signal envelope, and the product of the signal envelope and the activity duration. The pattern classification yielded excellent results with the success rate of up to 92.2% using only 2 features, up to 94.8% using 3 (Figure 2), and 96.1% using 4 features.

The current study proved that the vibrations can be studied non-invasively using a low-cost technology. The results confirmed the hypothesis that the degeneration of the cartilage increases the vibration of the articulating bones. The classification rate obtained in the study is very encouraging, providing over 96% accuracy. The presented technology has certainly a potential of being used as an additional screening methodology enhancing the assessment of the articular cartilage condition.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 108 - 108
1 Sep 2012
Meccia B Spencer E Zingde S Sharma A Lesko F Mahfouz M Komistek R
Full Access

INTRODUCTION

Total shoulder arthroplasty (TSA) implants are used to restore function to individuals whose shoulder motions are impaired by osteoarthritis. To improve TSA implant designs, it is crucial to understand the kinematics of healthy, osteoarthritic (OA), and post-TSA shoulders. Hence, this study will determine in vivo kinematic trends of the glenohumeral joints of healthy, OA, and post-TSA shoulders.

Methods

In vivo shoulder kinematics were determined pre and post-operatively for five unilateral TSA subjects with one healthy and a contralateral OA glenohumeral joint. Fluoroscopic examinations were performed for all three shoulder categories (healthy, OA, and post-TSA) for each subject shoulder abduction and external rotation. Then, three-dimensional (3D) models of the left and right scapula and humerus were constructed using CT scans. For post-operative shoulders, 3D computer-aided design models of the implants were obtained. Next, the 3D glenohumeral joint kinematics were determined using a previously published 3D to 2D registration technique. After determining kinematics, relative Euler rotation angles between the humerus and scapula were calculated in MATLAB® to determine range of motion (ROM) and kinematic profiles for all three shoulder categories. The ROMs for each category were compared using paired t-tests for each exercise.

Also, the location of the contact point of the humerus on the glenoid was found. This allowed the vertical translation from the most superior to most inferior contact point (SI contact range) to be calculated as well as the horizontal translation from the most anterior to most posterior contact point (AP contact range). The SI and AP contact ranges for all shoulder categories were compared using paired t-tests for each exercise.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 26 - 26
1 Sep 2012
Carr C Cheng J Sharma A Mahfouz M Komistek R
Full Access

Introduction

Numerous studies have been conducted to investigate the kinematics of the lumbar spine, and while many have documented its intricacies, few have analyzed the complex coupled out-of-plane rotations inherent in the low back. Some studies have suggested a possible relationship between patients having low back pain (LBP) or degenerative conditions in the lumbar region and various degrees of restricted, excessive, or poorly-controlled lumbar motion. Conversely, others in the orthopedic community maintain there has been no distinct correlation found between spinal mobility and clinical symptoms. The objective of this study was to evaluate both the in-plane and coupled out-of-plane rotational magnitudes about all three motion axes in both symptomatic and asymptomatic patients.

Methods

Ten healthy, 10 LBP, and 10 degenerative patients were CT scanned and evaluated under fluoroscopic surveillance while performing flexion/extension of the lumbar spine. Three-dimensional, patient-specific bone models were created and registered to fluoroscopic images using a 3D-to-2D model fitting algorithm. In vivo kinematics were derived at specified increments and the overall in-plane flexion/extension and coupled out-of-plane rotations were analyzed using two techniques. The first method derived the maximal absolute rotational magnitude (MARM) at each level by subtracting the rotational motion in the increment exhibiting the most negative or least amount of rotation from the increment having the greatest amount of rotation. The second method was designed to isolate the path of rotation (POR) of the vertebrae at each level while performing the prescribed flexion/extension activity. By tracking the rotational path of the cephaled vertebrae as it articulated upon the more caudal vertebrae and summing the absolute rotation between each increment about each axis the POR was calculated over the entire flexion/extension activity.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 40 - 40
1 Sep 2012
De Bock T Tadross R Mahfouz M Wasielewski R
Full Access

Introduction

In this work, we present the first real-time fully automatic system for reconstruction of patient-specific 3D knee bones models using ultrasound raw RF data. The system was experimented on two cadaveric knees, and reconstruction accuracy of 2 mm was achieved.

Methods

To use the highest available contrast and spatial resolution in the ultrasound data, the raw RF signals were used directly to automatically extract the bone contours from the ultrasound scans. Figure 1 shows a sample ultrasound B-mode image for cadaver's distal femur, showing some of the scan lines raw RF signals as well as the final extracted contour using our method.

An ultrasound machine (SonixRP, Ultrasonix Inc) was used to scan the knee joint and the RF data of the scans are acquired by custom-built (using Visual C++) software running on the ultrasound machine. An optical tracker (Polaris Spectra, Northern Digital Inc) was attached to the ultrasound probe to track its motion while being used in scanning.

The scanning of the knee was performed at two flexion angles (full extension, and deep knee bend). At each position, the knee was fixed in order to collect scans that represent a partial surface of the bone (which will be later mutually registered to represent the whole bone's surface). Figure 4 shows fluoroscopy images of a patient's knee, showing the different articulating surfaces of the knee bones visible to the ultrasound at different flexion angles. Figure 5 shows a dissected cadaver's knee showing the articulating surfaces visible to ultrasound at 90 degrees flexion.

The custom-built software collects the RF data synchronized with the probe tracking data for each ultrasound frame. Each frame of the RF data is then processed to extract the bone contour. The bone contours are automatically extracted from the RF data frame with frame rate of 25 frames per second. Figure 2 shows a flowchart for the contour extraction process.

The extracted bone contours were then used by the our software, along with the ultrasound probe's tracking data, to reconstruct point clouds representing the bones' surfaces. These point clouds were then aligned to the mean model of the bone's atlas using ICP and integrated together to form 3D point cloud of the bone's surface. A 3D model of the bone is then reconstructed by morphing the mean model to match the point cloud. Figure 3 shows a flowchart for the point cloud and 3D model reconstruction process.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 467 - 467
1 Nov 2011
Kuhn M Mahfouz M
Full Access

Wireless technologies and their use in the medical field have become much more widespread and important in the last decade. Whether it is a doctor carrying a personal digital assistant, the hospital WLAN, RFID asset tracking systems, telemetry-based Point-of-Care systems, or implanted wireless devices, wireless systems play an important role in the underlying technologies utilized by a hospital. Conversely, wireless technologies are not widely used in computer assisted orthopaedic surgery (CAOS), mainly due to their poor performance in the operating room (OR). The large amount of metallic interference found in the OR can severely degrade wireless signals. This can cause failure in wireless digital communication and large errors in 3-D tracking when using wireless signals for 3-D positioning.

We have developed a wireless positioning system based on ultra wideband (UWB) technology which achieves mm-range 3-D dynamic accuracy and can be used for intraoperative tracking in CAOS systems. This system can be used to track smart surgical tools in the OR and also for registration of bones and conventional (non-smart) surgical tools. UWB technology also has the potential for high data rate digital communication. The potential of highly accurate 3-D tracking combined with high data rate digital communication make UWB an attractive wireless technology for future CAOS systems and provides a strong backbone for smart surgical tools.

We have run various experiments with our UWB system in an OR both during orthopaedic surgeries and when the OR was empty. We have obtained time domain and frequency domain data, which has been analyzed to show the effects of transmitting UWB wireless signals in the OR. The implications of the OR environment on 3-D positioning accuracy and also high data rate digital communication will be presented. The final conclusions show the potential of UWB for wireless smart surgical tools which can be tracked in real-time with mm-range and even sub-mm range 3-D accuracy.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 445 - 445
1 Nov 2011
Haas B Mueller J Dowd J Komistek R Anderle M Mahfouz M
Full Access

Subjects having a posterior cruciate ligament sacrificing (PCLS) mobile bearing TKA seem to experience less translation during gait, but often achieve less weight-bearing flexion. More recently, posterior stabilisation has been added to PCLS mobile bearing TKA, hoping to increase flexion. Therefore, the objective of this multi-center study was to determine the in vivo kinematics for subjects implanted with a mobile bearing PS TKA that attempts to maintain high contact area.

Subjects with 10 TKA from 2 surgeons were asked to perform maximum weight-bearing flexion (deep knee bend (DKB)) and gait while under fluoroscopic surveillance. During weight bearing flexion, the 3-D kinematics of the TKA were determined by analyzing fluoroscopic images in the sagittal plane at 30 degree increments. Fluoroscopic images taken in the frontal plane from four increments during the stance phase of gait were analyzed.

The average weight-bearing flexion was 116 degrees and the average medial and lateral anteriorposterior (AP) translation was posterior with −1.9 mm and −5.4 mm, respectively, from full extension to maximum weight-bearing flexion.

The average femorotibial axial rotation from full extension to maximum weight-bearing flexion was 3.9 degrees. During the stance phase of treadmill gait, patients experienced 0.8 mm (0.1 mm to 2.3 mm, SD=0.8 mm) of “pure” mediolateral translation of the femur relative to the tibia. The femorotibial axial rotation was 4.6 degrees from heel-strike to toe-off (Table 3).

The posterior femoral rollback and axial rotation patterns were similar to the normal knee, albeit experiencing less overall motion. More noticeably, subjects in this study experienced a significantly greater weight-bearing flexion than previous subjects analyzed with a mobile bearing PCLS TKA and more reproducible “fan-like” patterns, where the lateral condyle rolled greater posteriorly than the medial condyle.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 447 - 448
1 Nov 2011
Anderle M Zingde S Komistek R Dennis DA Mahfouz M
Full Access

All over the world, obesity rates are on the rise. Medical complications and increased health risks are often associated with being overweight or obese, but a thorough understanding of in vivo motions for obese, overweight and normal weight subjects does not exist. Therefore, the objective of this study was to compare knee kinematics in TKA subjects by body mass index (BMI).

In vivo knee kinematics were determined for 253 TKA subjects during a Deep Knee Bend (DKB) from full extension to maximum flexion using a 3D to 2D image registration technique. Each of these subjects was then classified into one of three BMI categories: obese (BMI greater than or equal to 30), overweight (BMI greater than or equal to 25 and less than 30) and normal weight (BMI less than 25 and greater than or equal to 18.5). Subjects were provided by 11 surgeons using ten different TKA devices. All subjects were deemed clinically successful.

On average, weight bearing range of motion (ROM) for the obese (n=79), overweight (n=113) and normal weight (n=61) groups were 107.7° (range: 74° to 136°, standard deviation (σ) =14.9°), 109.6° (60° to 150°, σ=17.5°) and 114.1° (72° to 147°, σ=14.4), respectively. ROM of 90° or less was seen in 16.5% of the obese subjects, 14.2% of the overweigh subjects and 6.6% of the normal weight subjects. ROM of 125° or more was seen in 15.2% of the obese subjects, 16.8% of the overweight subjects and 23.0% of the normal weight subjects.

From full extension to maximum flexion the obese, overweight and normal weight groups averaged 8.65° (−5.14° to 22.51°, σ=6.22°), 7.58° (−2.85° to 24.72°, σ=5.71°) and 5.72° (−4.84° to 19.43°, σ=5.65°) of axial rotation. Axial rotation of 3° or less was seen in 20.25% of the obese subjects, 23.01% of the overweight subjects and 39.34% of the normal weight subjects. Axial rotation of greater than 9° was seen in 51.90% of the obese subjects, 35.40% of the overweight subjects and 26.23% of the normal weight subjects. Opposite axial rotation was seen in 8.86% of the subjects in the obese group, 9.73% of the overweight group and 9.84% of the normal weight group.

On average, from full extension to maximum flexion, the medial condyle for the obese, overweight and normal weight groups experienced −5.44mm (−22.20mm to 8.04mm, σ=7.9mm), −6.30mm (−25.22mm to 5.35mm, σ=7.36mm) and −4.78mm (−20.79mm to 5.49mm, σ=6.68mm) of posterior femoral rollback (PFR), respectively. The obese, overweight and normal weight groups averaged −12.66 mm (−34.57mm to 0.34mm, σ=9.32mm), −12.38mm (−36.72mm to 1.83mm, σ=10.33mm) and −9.39 mm (−34.55mm to 0.35mm, σ=8.98mm) of lateral PFR, respectively.

Condylar lift-off of greater than 1mm was seen in 16.46% of obese subjects, 10.62% of overweight subjects and 11.48% of normal weight subjects.

Various statistical differences were seen across the groups. The normal weight subjects had significantly higher ROM that the obese subjects (p=0.0184), while there was no difference seen between the normal weight and overweight groups or the overweight and obese groups. The obese and the overweight groups had significantly more axial rotation than the normal weight group from 0° to 90°, 0° to maximum flexion, 30° to 90°, 30° to maximum flexion and 60° to 90°. There were a significantly higher number of cases of condylar lift-off for obese subjects when compared to both normal weight and overweight groups.

It can be concluded that body mass index does play a factor in TKA kinematics.


Full Access

Technological advances and economic trends are shaping the future of orthopaedics, where a clinical solution encompasses all phases of surgery. Minimally invasive surgery (MIS) continues to become more popular and important in modern-day orthopaedics, but brings added complexity to the operating room. Computer assisted surgery (CAS) has the potential to provide greater reliability, repeatability, and control to orthopedic surgeries, although limitations in the technologies currently available for minimally invasive CAS procedures leave much to be desired. Despite new techniques and modern technologies, improvements are needed to achieve consistency of optimal patient outcomes in orthopaedic surgery. Healthcare markets are moving to emphasize the value of patient-specific intervention with reliable, custom solutions.

We are developing a framework for orthopedic CAS which utilizes new technologies and a cohesive approach in providing a robust solution for the future of orthopaedics. Through the use of surgical preplanning, intra-operative guidance, and post-operative gait analysis, a full analysis and design cycle is used to ensure optimal patient outcome by focusing on the combination of the three surgical phases. In order to realize this comprehensive framework, a system-level design approach combined with cutting-edge technology is needed, catering to patient-specific anatomical reconstruction.

In the pre-operative phase, X-ray images are used in the 3-D reconstruction of patient-specific models of the targeted anatomy. This is combined with automated morphometric measurements to provide automatic cutting plane alignment and a complete design suite for patient-specific implants. In the intraoperative phase, new wireless navigation technologies provide robust performance where optical and electromagnetic tracking systems fall short. MEMS capacitive sensor array technology provides accurate and real-time pressure sensing feedback for ligament balancing, and new software frameworks virtualize surgical protocols. Extensive gait analysis including X-ray fluoroscopy provides 3-D kinematic data in the post-operative phase to provide valuable feedback on implant performance for improved implant design.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 450 - 450
1 Nov 2011
Tadross R Mahfouz M
Full Access

Computer assisted knee arthroplasty systems provide the surgeon with tools for planning the femoral and tibial cuts, automatic implant sizing, and precise guidance for the bone milling and sawing tools. These systems require 3D models of the patient’s proximal tibial epiphysis, and distal femoral epiphysis. Currently preoperative CT scans are used to construct these models. The high irradiation, financial and time cost of the CT motivated the research for an alternative. In this work we developed a system for reconstructing a 3D bone model from a set of points localized by the surgeon intra-operatively on the bone surface using an optical localizer.

A training set of 314 dry femurs, and 314 dry tibias (200 males, and 114 females) of Caucasian ethnicity was CT scanned, and segmented to create 3D models for these bones. These models were then used to extract the modes of variation for the femurs and tibias within each gender. Using these modes of variation along with the average model for the training set, a new femoral or tibial epiphysis model can be reconstructed. This reconstruction is performed by optimizing the average model’s morphology along the modes of variation to create a 3D model that matches the point cloud localized on the surface of the bone.

A set of 77 male and 71 female dry femur and tibia pairs was used to digitize a sparse point cloud on the knee joint using an optical localizer. These point clouds were then used to reconstruct their corresponding models using the aforementioned algorithm. An average error of 0.42 between the reconstructed and the CT models was obtained.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 441 - 442
1 Nov 2011
Glaser D Dennis D Komistek R Deaderick S Mahfouz M
Full Access

In vivo kinematic analyses of total hip arthroplasty (THA) have determined femoral head separation from the medial aspect of the acetabular component can occur. Various bearing materials are currently used in THA today. The objective of this study was to determine if differences in the incidence and magnitude of femoral head separation exist among various bearing surfaces for THA during different weight-bearing activities.

205 clinically successful subjects implanted with either metal-on-metal (MOM), metalon-polyethylene (MOP), ceramic-on-ceramic (COC) or ceramic-on-polyethylene (COP) materials were analyzed using video-fluoroscopy. Each patient performed either gait on a treadmill or an abduction-adduction activity. The fluoroscopic information was then analyzed using a computer aided 3D model fitting technique to determine the incidence and magnitude of hip separation. Additional variables analyzed included femoral head diameter, follow-up duration, and type of surgical approach utilized.

Less separation was noted with increasing femoral head diameter during abductionadduction.

Increased separation was observed during gait as follow-up duration increased. Hip separation was greater during gait when a posterolateral surgical approach was used but was greater in abduction-adduction if a antero-lateral approach was selected. The incidence and magnitude of hip separation during gait was least in subjects with COC THA and least with COC and MOM THA when analyzed during abduction-adduction.

It’s been proposed that THA patients are subject to femoral head separation due to alterations in the soft tissue supporting structures during THA that affect constraint of the joint.

The current analysis demonstrates lower magnitudes and incidence of THA separation occur when hard-on-hard bearing surfaces are selected and can vary based on femoral head diameter, follow-up duration, and surgical approach used. Potential detrimental effects resulting from THA separation include premature polyethylene wear, component loosening (secondary to impulse loading conditions) and hip instability.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 466 - 466
1 Nov 2011
Pritchard E Mahfouz M
Full Access

Ligament balancing can be difficult to perfect in total knee arthoplasty (TKA), where current surgical practice is subjective and highly dependent on the individual surgeon. Proper ligament balancing contributes to postoperative stability, prosthetic alignment, and proprioception. Conversely, imbalance is linked to increased wear rates of the polyethylene component within the implant and, in turn, early surgical revision. With the end goal of quantification of joint compartmental pressures, pressure sensor arrays have been designed to quantify contact stresses within the knee during TKA.

Flexible, capacitive pressure sensors are designed as simple parallel plates, enabling a robust solid state design. Modification of cleanroom microfabrication processes enable realization of these arrays on polyimide (common in microdevices), and polyethylene (common in joint replacements). Readout circuitry implements an Analog Devices capacitance to digital chip and output is compared to direct LCR meter data. Testing verifies the highly linear response of the sensors with applied normal loads corresponding to pressure magnitudes present in passive (intraoperative) knee flexion. Spatial resolution of the arrays is 0.5 mm, with a critical dimension of 25 micrometers, allowing the magnitude and location of forces to be accurately recorded.

The MEMS pressure sensors are mounted on a tibial trial, with the body of the trial housing all circuitry. The sensors are read sequentially, and the data undergoes analog to digital conversion prior to wireless data transmission at 2.4 GHz. An Instron machine is used for compressive loading for laboratory calibration and testing. This paper outlines device fabrication, readout circuit implementation, and preliminary results.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 405 - 405
1 Nov 2011
Blumenfeld T Glaser D Bargar W Komistek R Langston G Mahfouz M
Full Access

Previous in vivo studies pertaining to THA performance have focused on the analysis of gait. Unfortunately, higher demand activities have not yet been analyzed. Therefore, the objective of the present study was to determine the in vivo kinematics for THA patients, using fluoroscopy, while they performed four higher demand activities.

The 3D in vivo kinematics of 10 THA patients were analyzed during the following activities: pivoting (PI), tying a shoe (SHOE), sitting down (SDOWN) and standing up (SUP) with and without the aid of handrails. Patients were matched for age, height, weight, body mass index, diagnosis and femoral head diameter to control for confounding variables possibly having influence on the hip performance and kinematics of the various activities.

The largest amount, incidence and variation of separation (femoral head sliding in the acetabular cup) were achieved during the PI with 1.5mm (SD 1.1) and 9 of 10 (90%) subjects experiencing separation. For the SHOE, SDOWN and SUP activities the average separation values were 1.1, 1.2 and 0.7mm, respectively. Femoral head separation was observed in 8 of 10 subjects (80%) during SHOE, in 9 (90%) during SDOWN, and in only one of 6 (60%) during SUP.

In this present study, subjects demonstrated hip separation during the high demand subjects, which could be a concern because these same activities are subjected to higher bearing surface forces. Also, the presence of hip separation leads to reduced contact area between the femoral head and the acetabular cup, possibly leading to higher contact stresses.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 450 - 450
1 Nov 2011
Mahfouz M Kuhn M
Full Access

Wireless technologies applied to the medical field have grown both in prevalence and importance in the past decade. Various applications and technologies exist underneath the telemedicine umbrella including Point-of-Care systems where electrocardiographs, blood pressure, temperature, and medical image data are recorded and transmitted wirelessly, which enables remote patient monitoring from inside hospitals, personal residences, and virtually any location with access to satellite communication. Another widespread application for wireless systems in hospitals is asset tracking, typically done with RFID technology. Wireless technologies have not been widely used in computer assisted orthopaedic surgery (CAOS) because of the limitations in terms of overall 3-D accuracy.

We have developed a wireless positioning system based on ultra wideband technology (UWB) which achieves mm-range 3-D dynamic accuracy and can be used for intraoperative tracking in CAOS systems. Current intraoperative tracking technologies include optical and electromagnetic tracking systems. The main limitations with these systems include the need for line-of-sight in optical systems and the limited view volume and susceptibility to metallic interference in electromagnetic tracking systems. UWB indoor positioning does not suffer from these effects. Until this point, the main limitation of UWB indoor positioning systems was its limitation in 3-D real-time dynamic accuracy (10–15 cm as opposed to the required 1–2 mm).

We have developed a UWB indoor positioning system which achieves dynamic 3-D accuracy in the range of 5–6 mm for a non-coherent approach and 0.5–1 mm for a coherent approach (transmitter and receiver use the same clock signal). The integration of this tracking system with smart surgical tools opens up a plethora of exciting intraoperative applications including picking landmarks, 3-D bone and instrument registration, real-time wireless pressure sensing used for ligament balancing in TKA, and real-time A-mode ultrasound bone morphing. The UWB tracking system will be presented along with its integration into smart surgical tools and surgical navigation.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 442 - 443
1 Nov 2011
Carr C Komistek R Cheng J Mahfouz M Mitchell J
Full Access

Low back pain (LBP) in the region of the lumbar spine is a significant problem among individuals, and efforts focused on treating both the symptoms and causes of LBP have proven to be difficult. Aside from conservative treatments, the predominant surgical approach for treating degenerative spine conditions has been to fuse the vertebral bodies at the symptomatic level. Even today, surgical fusion and its effect on adjacent levels are still not fully understood. Therefore, the objective of this study was to use fluoroscopy and mathematical modeling techniques to identify the in vivo kinematics and kinetics in subjects having either a normal, degenerative or fused condition of the lumbar spine.

Twenty-five subjects (ten normal, ten degenerative, and five fusion) were evaluated under fluoroscopic surveillance while performing flexion/extension of the lumbar spine. Subjects within the normal and degenerative groups were analyzed only once, while subjects from the fusion group were analyzed both pre-operatively and at a minimum of six months post-operative. The fusion group consisted of three subjects symptomatic at L4/L5, with the remaining two subjects symptomatic at L5/S1. In vivo kinematics data were derived using a 3D-to-2D model fitting algorithm and served as input into a 3D mathematical model of the lumbar spine. The parametric, inverse dynamics mathematical model was created to allow for the determination of the bearing surface contact and muscle forces at each level of the lumbar spine.

Three-dimensional kinematics analyses revealed that subjects classified as having a normal lumbar spine experienced a more uniform motion pattern compared to those observed in the degenerative and fusion groups. Alternatively, the degenerative and fusion subjects demonstrated a more coupled motion pattern in order to perform in plane flexion/extension. Compared to the normal group, rotations in the sagital plane decreased by an average of 28% at the pathological level in the degenerative group, while in the fusion group segmental motions slightly increased at the adjacent levels. Results from the mathematical model also revealed higher out-of-plane forces and increased loading at symptomatic and adjacent levels in both the degenerative and fused groups compared to forces observed in the normal spine.

The abnormal motion patterns, which result from decreased or loss of motion at pathological levels in the degenerative and fusion groups, are believed to result in higher resultant forces in the spine. This may be subjecting the intervertebral discs to increased stresses, and as a consequence may be linked to more rapid degeneration at levels where the abnormal kinematics are occurring.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 475 - 475
1 Nov 2011
Pritchard E Mahfouz M
Full Access

Force profiles across the foot yield information on abnormal kinematics and may be used to indicate pathological changes in the lower limb. However, current technology is limited to tethered systems using wired sensors. This paper outlines a wireless prototype that allows force profile measurement and through an in-shoe monitoring device utilizing custom high-accuracy sensors.

Direct measurement of the ground reaction force using a force plate is common practice for use in kinematic studies and is used as an input for mathematical models to predict forces across joints of interest during various activities. Force plates are reasonably accurate but are bulky and only allow one net force measurement at a single location and are not portable. Thus natural patient motion may be modified, intentionally or unintentionally, in order for heelstrike to occur on the force plate. In addition to force magnitude, it is useful to record force location to correlate with kinematics; abnormal kinematics will cause weight-bearing forces to shift across the foot. Current in-shoe pressure measurement devices on the market are plagued by errors up to 30% and require a cumbersome cable out of the shoe to read sensor data. By eliminating all wires, our device enables in-shoe monitoring in a research or clinical environment.

The device uses microelectromechanical system (MEMS) capacitive pressure sensors fabricated in a flexible array that attaches to a shoe insole or orthotic. The sensors are concentrated at the heel and forefoot in the prototype design and they exhibit a highly linear response to loading, eliminating the need for constant recalibration. Electronics embedded in the shoe read the entire array of 256 sensors at a rate of 60 Hz. The data is transmitted via Bluetooth at 2.4 GHz to the receiving computer for visualization and analysis. The paper assesses current technology in in-shoe sensing, outlines the device design, and reports initial stages of testing.

The prototype developed in this study shows promise for wireless monitoring of ground reaction forces for biomechanics analysis without restricting activity or impeding natural motion.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 429 - 429
1 Nov 2011
Kuhn M Mahfouz M Anderle M Komistek R Dennis D Nachtrab D
Full Access

Many nonoperative techniques exist to alleviate pain in unicompartmental osteoarthritic knees including physical therapy, heel wedges and off-loading knee braces [1]. Arthritic knee braces are particularly effective since they can be used on a regular basis at home, work, etc. Previous knee brace studies focused on their ability to stabilize anterior cruciate ligament (ACL) deficient knees. A standard technique for analyzing brace effectiveness is the use of an athrometer to look at the range-of-motion. Although this is helpful, it is more useful to use X-ray or fluoroscopy techniques to analyze the in vivo 3-D conditions of the femur and tibia. One method for doing this is Roentgen Steroephotogrammetric Analysis, which uses a calibration object and two static X-rays to perform 3-D registration of the femur and tibia. This technique is limited to static and typically non-weight bearing analysis.

We have analyzed five patients with moderate to severe osteoarthritis in both step up and step down activities with two different knee braces and also without a knee brace. Fluoroscopy of the five patients performing these activities was obtained as well as a CT scan of the knee joint for each patient. 3-D models of the femur and tibia were obtained from manual segmentation and overlaid to the fluoroscopy images using a novel 3-D to 2-D registration method [2]. This allowed analysis of 3-D in vivo weight bearing conditions. This work builds off of an analysis where 15 patients were analyzed in vivo during gait with and without knee braces [3].

All five patients experienced substantially less pain when performing the step up and step down activities with a knee brace versus without a knee brace. It should be noted that none of the five patients were obese, which can limit brace effectiveness. Preliminary results show that medial condyle separation was increased by 1.4–1.6 mm when using a knee brace versus not using a knee brace during the heel-strike and 33% phases of step up and step down activities. Also, the condylar separation angle was reduced by an average of 1.5–2.5°. Finally, consistently less condylar separation was seen during step down versus step up activities (0.5–1 mm), which can be attributed to a greater initial impact force on the knee joint during step down versus step up activities.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 401 - 401
1 Nov 2011
Johnson JM Mahfouz M
Full Access

Accurate segmentation of bone structures is an important step in surgical planning. Patient specific 3D bone models can be reconstructed using statistical atlases with submillimeter accuracy. By iteratively projecting noisy models onto the bone atlas, we can utilize the statistical variation present in the atlas to accurately segment patient specific distal femur and proximal tibia models from the CT data.

Our statistical atlas for the knee consists of 199 male distal femur models and 71 male proximal tibia models. We performed an initial registration between the average model from the atlas and the volume space before beginning the segmentation algorithm. Intensity profiles were linearly interpolated along the direction normal to the surface of the current model. The profiles were then smoothed via a low-pass filter. A point-tonearest peak gradient was calculated for each profile, and then weighted by a Gaussian window centered about the originating vertex. The flesh-to-bone edge locations are taken as the maximum of the weighted gradient. The detected locations were then projected onto the atlas using a subset of the available principal components (PC’s). The amount of variation is increased by projecting the edge locations onto a larger subset of PC’s. The process is repeated until 99.5% of the statistical variation is represented by the PC’s. Though our dataset is much larger, we initially performed bone segmentation on 5 male knee joints. The knee joint was considered to be the distal femur and proximal tibia. We used manually segmented models to determine ground truth. Initial results on the 5 knee joints (distal femur and proximal tibia) had a mean RMS error of 1.192 mm, with a minimum of 1.010 mm. Segmentation on the distal femur achieved a mean RMS error of 1.213 mm, and the results for the tibia had a mean RMS error of 1.264 mm.

Our results suggest that our atlas-based segmentation is capable of producing patient-specific 3D models with high accuracy, though patient-specific degeneration was often not well represented. To achieve more accurate patient-specific models, we must incorporate local deformations into the final model.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 401 - 401
1 Nov 2011
Cates H Barnett R Zingde S Schmidt M Komistek R Anderle M Mahfouz M
Full Access

Previous fluoroscopic analyses of Total Hip Arthroplasty (THA) determined that the femoral head slides within the acetabular cup, leading to separation of certain aspects of the articular geometries. Although separation has been well documented, it has not been correlated to clinical complications or a more indepth understanding of the cause and effect. Surgical technique is one of the important clinical factors when considering THA procedures, and it is hypothesized, that it could affect the magnitude and occurrence of femoral head separation (sliding) in THAs. Hence, the objective of this study was to determine and compare in-vivo THA kinematics for subjects implanted with a THA using two different surgical approaches.

Thirty seven subjects, each implanted with one of two types of THA were analysed under in vivo, weight-bearing conditions using video fluoroscopy while performing a sit-to-stand activity. Ten subjects were implanted by Surgeon 1 using a long incision postero-lateral approach (G1); while a further 10 subjects were implanted by the same surgeon using a short incision posterolateral approach (G2). The remaining 17 subjects were implanted using the anterolateral approach; 10 by Surgeon 2 (G3) and seven by Surgeon 3 (G4). All patients with excellent clinical results, without pain or functional deficits were invited to participate in the study (HHS > 90). 3D kinematics of the hip joint was determined, with the help of a previously published 2D-to-3D registration technique. From a completely seated position to the standing position, four frames of the fluoroscopy video were analysed.

Subjects in all groups experienced some degree of femoral head separation at all increments of the sit-to-stand activity that were analysed. The magnitude and frequency of separation greater than 1.0mm varied between each surgeon group, between incision types, between incision lengths and between the two types of THA that were analysed. The average maximum separation was 1.3, 1.1, 1.3 and 1.4mm for G1, G2, G3 and G4 respectively. Though there was no difference in the average maximum separation values for the 4 groups, the maimum separation varied significantly. While the maximum separation in G2 was 1.8mm, the maximum separation in G4 was 3.0mm. G1 and G3 had maximum separation values of 2.3mm and 2.4mm respectively.

This study suggests that there may be a correlation between incision lengths and surgical approach with femoral head separation in THAs. The maximum separation that was seen among all groups was a subject with a traditional long incision, while the short incision group had less incidence of separation. Results from this study may give researchers and implant developers a better understanding of kinematics around the hip joint and how they vary with respect to different surgical techniques. Further analysis is being conducted on the subjects before definitive conclusions can be made.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 468 - 468
1 Nov 2011
El Dakhakhni H Mahfouz M
Full Access

An accurate geometrical three-dimensional (3D) model of human bone is required in many medical procedures including Total Knee Arthroplasty (TKA) and computer-assisted surgical navigation. Segmentation of Computed Tomography (CT) datasets is commonly used to obtain such models. However, such a method is expensive and time consuming. We herein propose a novel method for patient specific bone model reconstruction using standard x-ray fluoroscopy, a cheaper and widely available imaging alternative.

Fluoroscopic images are taken at multiple arbitrary viewpoints to provide sufficient information for bone reconstruction. The viewpoints can be obtained by either rotating the imaging source and detector or the patient’s limb of interest. The bone’s pose within the radiological scene in each of the captured images can be estimated by tracking a set of metallic calibration markers within a calibration target, rigidly attached to the limb of interest. Having acquired the required calibration data, a complex iterative scheme is executed to optimize a statistical bone atlas of the bone of interest and the relative pose between the bone and the calibration target.

In order to verify our method, we performed a cadaveric study. A set of rigidly attached fiducial markers were attached to a cadaveric leg. The leg was imaged using x-ray fluoroscopy while being rotated axially to provide us with the images required for bone model reconstruction. Distal femur and proximal tibia bone models were reconstructed from the fluoroscopy images. Furthermore, the leg was CT-scanned and segmented to provide us with the ground-truth required for reconstruction accuracy assessment. Results show the adequacy of the proposed method for surgical applications.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 443 - 443
1 Nov 2011
Leszko F Zingde S Argenson J Mahfouz M Komistek R
Full Access

Previosuly, Komistek et al. have shown that the kinematics of the patellofemoral joint is altered after a TKA surgery. Specifically the implanted patella experiences significantly less rotation than the natural patella. Also, in early flexion, the patellofemoral contact positions differed significantly between implanted and non-implanted patellae. It was also found that some of TKA subjects experience patellofemoral separation. These kinematical differences may lead to adverse mechanical conditions and increase fatigue or cause loosening of the implant components. This study’s objective was to determine the three-dimensional patellofemoral kinematics and correlate it with the in vivo sound (vibrations) detected using accelerometers for subjects having a TKA and a non-implanted knee under in vivo, weight bearing conditions. The correlation of the knee mechanical conditions with the vibration data may indicate new parameters that may be used to diagnose the condition of the articular cartilage or implant components.

Fifteen subjects (average age 71.8 ±7.4years) having one implanted knee (mobile bearing Hi-Flex PS) and the healthy contralateral knee, performed

deep knee bend to maximum flexion,

chair rise and

stair climb activities under fluoroscopic surveillance.

Three miniature, piezoelectric, three-axial accelerometers were attached to the patella and femoral epicondyle. The study was approved by the Institutional Review Board and informed consent was obtained from all subjects. The sensors detected the vibration magnitudes and frequencies of the articulating patellofemoral joint surfaces. The signals were amplified and low-pass filtered at 5 kHz by a signal conditioner. The 3D tibiofemoral and patellofemoral kinematics were derived for both knees using a previously published 3D-to-2D registration technique. The 3D bone models were recovered from CT scans, while implant models were obtained from the manufacturer. The patellofemoral rotations were described using the Grood and Suntay convention. The kinematics and sound data were synchronized and recorded under fluoroscopic surveillance, for 10 patients. Then a subset of seven subjects having a TKA was re-analyzed for their contralateral (non-implanted) knee. The vibration signal was then converted to audible sound and correlated with the 3D kinematics.

On average, the subjects achieved more flexion with their TKA (103.4°±15.9°) than with their contralateral knee (96.3°±18.3°). The patellofemoral kinematics varied between the TKA and nonimplanted patella groups; the resurfaced patella experienced less flexion, less medial rotation and less tilt than the contralateral patella. The patellar flexion results were consistent with previously reported literature for both TKA and non-implanted patellae. Also, the resurfaced patellae contacted the femur more proximally than healthy patellae. Audible signals were found for both groups of subjects. The frequency analysis demonstrated that specific frequencies were in similar range for both groups, but the magnitudes and variations were different for the TKA and contralateral knees.

This study correlated 3D patellofemoral kinematics with sound under in vivo conditions for three different activities. Variable audible signals were detected for TKA and non-implanted knees. Vibration magnitude and frequency identification, under in vivo conditions, for TKA may lead to a better understanding of wear and failure modes with respect to the patellofemoral mechanics, more specifically, the patellar insert. Currently this initial study is being expanded to degenerated knee joints and failed TKAs for possible applications of the vibration analysis to the early diagnosis of knee arthritis, detection of implant loosening or wear and monitoring of implant osteointegration progress.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 451 - 451
1 Nov 2011
Leszko F Hovinga K Mahfouz M Lerner A Anderle M Komistek R
Full Access

Previous in vivo studies have not documented if ethnicity or gender influence knee kinematics for the healthy knee joint. Other measurements, such as hip-knee-ankle alignment have been previously shown to be significantly different between females and males, as well as Japanese and Caucasian populations in the young healthy knee [1]. Differences in knee kinematics in high flexion positions may relate to both etiology of osteoarthritis and success in knee replacement designs. Although differences in knee anatomy have been identified, their significance in knee function has not yet been clarified. Therefore, the objective of this study was to determine the 3D, in vivo normal knee kinematics for various subjects from different gender and ethnic backgrounds, and to identify significant differences, if any, between populations.

The 3D, in vivo, weight bearing normal knee kinematics was determined for 79 healthy subjects, including 48 Caucasians, 24 Japanese, 42 males, and 37 females. Each participant performed deep knee bend activity from a standing (full extension) to squatting to a lunge motion, until maximum knee flexion was reached. The study was approved by the Institutional Review Board and informed consent form was obtained from all subjects. The 3D bone models, created by segmentation from MR images, were used to recreate the 3D knee kinematics using the previously described fluoroscopic and 3D-to-2D registration techniques (Fig. 1) [2,3]. Tibiofemoral rotations were described using the ISB recommended Grood and Suntay convention [4,5]. Anterior-posterior translations of the centers of the posterior femoral condyles were normalized due to significantly different anthropometry in the subjects. Anterior cruciate ligament (ACL) laxity was also measured using a KT-1000 device for 72 of these subjects. Statistical analysis was performed using the Student’s t-test, set at the 95% confidence interval.

Most subjects achieved very high flexion, however substantial variability occurred in all groups. Range of motion (ROM) varied from 117° to 177°, while average external rotation was 31°± 9.9° for all subjects. Japanese and female subjects achieved greater ROM than Caucasian (p=0.048) and male (p=0.014) subjects. From full extension to 140° of flexion (which 87% of subjects achieved), few significant differences between any of the populations were observed. At deeper flexion, the external rotation was higher for female than for male subjects, however not statistically significant (p=0.0564 at 155°). Also at deep flexion, the adduction was significantly higher for female subjects. The translations of the lateral condyle were very similar between respective groups, but at deep flexion, the medial condyle remained significantly more anterior for females, leading to greater axial rotation and ROM. As ACL laxity increased, flexion/extension ROM significantly increased (r2=0.184, p< 0.001). In addition, ACL laxity was also higher for females (6.8 mm) compared to males (5.6 mm, p=0.011), as well as Japanese (7.5 mm) compared to Caucasian (5.6 mm, p=0.0002) subjects.

High variability and ROM in knee kinematics were similar to those seen in previous studies of healthy subjects during a deep knee bending activity [6]. Subjects in this study achieved much greater axial rotation and ROM than previously analyzed TKA patients. A relationship was found between greater axial rotation and increased ROM, and may be related in part to increased ACL laxity in the knee. Significant differences in ROM and laxity were identified between genders and ethnic groups. Also the medial condyle remaining significantly more anterior for females than for males in deep flexion may explain higher external rotation and consequently higher flexion experienced by women. However, understanding the causes for variability within each group may be the key to improved implant design.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 475 - 475
1 Nov 2011
To G Mahfouz M
Full Access

Body motion tracking for kinematic study is typically done with optical sensors. The user wears markers and the cameras track them to compute the transformation of the motion frame by frame. This method requires a set up of multiple motion capturing cameras and it can only be done within the specific area. The goal of this project is to create a tracking unit that does not require expensive overhead and can be done in any location.

The advancement in micro-machined microelectromechanical system (MEMS) sensors such as accelerometer, gyroscope and magnetometers can be used for human motion tracking.

The unit is attached to a body segment or an external housing unit such as a knee brace. The orientation of the unit can be calculated based on the data from all 3 of the sensors. A complementary filter is used to fuse the data together to generate a single Euler angle matrix.

Relative motion between the joint can be calculated from the output of 2 of the measuring units.

The sensors are calibrated with an average static orientation error of +/−0.7 degree and standard deviation of 1.8 degrees. The dynamic orientation error of rotating around a single axis is 2.38, 0.15 and 0.517 degrees with standard deviation of 0.99, 0.98 and 0.7 degree for roll, pitch and yaw respectively.

The initial design shows good result for human body motion tracking. The performance of the unit can be further improved with optimizing the filter and using the data from different type of the sensors to compensate each other.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_II | Pages 359 - 359
1 May 2010
Parratte S Mahfouz M Booth R Argenson J
Full Access

Introduction: morphological analysis of the general shape of the bones and of their particular variations according to the patient age, gender and pathology is an important step to improve the orthopedic management. We aimed to performed a gender specific analysis of the bi and tridimensional anatomy of the distal femur in vitro and in vivo.

Materials and Methods: in vitro data were obtained from CT-scan performed on 92 dry men femurs and 52 dry women femurs. Using a manual contouring method and a segmentation method, tridimensional reconstructions were obtained and according to two different algorithms, the regions of discrepancies between men and women were determined. An automatic calculation of 59 defined measurements was then performed. In vivo data providing from 59 CT-scans of men femur and 73 CT-scan of women femurs were acquired. Standardized bidimensional measurements at the level of the trochlear cut were performed.

Results: in vivo, statistically significant differences were observed for the: medio-lateral distance (M-Ld women=7.4±0.4cm vs M-Ld men=8.4±0.5cm; p< 0.0001), anteroposterior distance (A-Pd women=5.9±0,4cm vs A-Pd men= 6.4±0.4cm; p< 0.0001) and for the ratio anterior-posterior distance/medio-lateral distance (p< 0.0001). The trochlear groove angle was comparable in the two groups. In vitro, the tridimensional shape of the distal femur was more trapezoidal in women than in men. Medio-lateral distances were also statistically greater in men than in women (p< 0.01), the ratio anterior-posterior distance/medio-lateral distance was also statistically greater in men than in women (p< 0.01) and the Q angle more open in women than in men (p< 0.01).

Discussion: Three types of differences between men and women were observed in this gender specific evaluation of the distal femur anatomy. First, for a same anteroposterior distance, the medio-lateral distance was smaller in women. Second, the global shape of the distal femur was more trapezoidal in women and third the Q angle was more open in women. This gender specific anatomy should be clinically considered when performing total knee arthroplasty in women and gender specific implants may be required.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 73 - 73
1 Mar 2009
Gustke K Mahfouz M
Full Access

Frequently surgeons performing total knee replacements are faced with the dilemma of whether to notch the anterior cortex or overhang the medial and/or lateral cortices when implanting the femoral component. This is almost always seen in female patients. There is also a higher incidence of patellar alignment problems in female patients post total knee replacement. A unique 3D to 3D matching study of 202 cadaveric femurs has demonstrated a significant difference in the average comparable shapes of male versus female distal femoral anatomy. For the same AP dimension, female distal femurs are more than 5mm narrower. Also the angle formed between the anterior condyles and the posterior condyles are significantly different with the female being more trapezoidal in shape.

Most existing total knee femoral component designs follow the ratio similar to that found in the average male distal femur. Options for management of this gender variability have been either utilizing instrumentation that references the anterior cortex to avoid notching or placing additional flexion on the distal femoral cut to allow downsizing. Both techniques are potentially problematic. Total knee implants systems are now utilizing this anthropomorphic data to redesign for separate male and female femoral components taking into consideration the relatively narrower female distal condylar width, lower medial anterior femoral condyle, and greater patellofemoral Q-angle.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 111 - 111
1 Mar 2006
Argenson J Komistek R Mahfouz M Walker S Aubaniac J Dennis D
Full Access

Introduction: Deep flexion may affect both femorotibial contact pattern and patellofemoral interface. The objective of this study was to conduct the first in vivo kinematic analysis that determines the 3D motions of the femorotibial and patellofemoral joints, simultaneously from full extension into deep flexion.

Methods: Three-dimensional femorotibial and patello-femoral kinematics were evaluated during a deep knee bend using fluoroscopy for five subjects having a normal knee, five having an ACL-deficient knee and 20 subjects having a TKA designed for deep flexion.

Results: The average weight-bearing range-of-motion was 125 degrees, significantly higher than in previous studies. On average, subjects experienced 4.9o of normal axial rotation and only three subjects experienced an opposite rotation pattern. On average, subjects experienced −9.7 mm of posterior femoral rollback (PFR) and all subjects experienced at least −4.4 mm of PFR. These subjects experienced less patellofemoral translation than the normal knee, but the average motion was similar in pattern to the normal knee. On average, the subjects having a TKA experienced patella tilt angles that were similar to the normal knee.

Discussion: It is assumed that femorotibial kinematics can play a major role in patellofemoral kinematics. Altering the patella motion and/or the patellar ligament rotation could lead to much higher forces at the patel-lofemoral interface. In this study, these subjects experienced kinematic patterns that were very similar to the normal knee and it can be deducted that forces acting on the patella were not significantly increased for TKA subjects compared with the normal subjects.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_IV | Pages 407 - 407
1 Apr 2004
Komistek R Dennis D Mahfouz M Hoff W Haas B Anderson D
Full Access

Introduction: Understanding the in vivo motions of human joints has become increasingly important. Researchers have used in vitro (cadavers), non-invasive (gait labs), and in vivo (RSA, fluoroscopy) approaches to assess human knee motion. The objective of this study was to use fluoroscopy and computer tomography (CT) to accurately determine the 3D, in vivo, weight-bearing kinematics of normal knees.

Methods: Five normal knees clinically assessed as having no pain or ligamentous laxity were analyzed. Using CT scanning, slices were obtained six inches proximal to the joint line on the femur and six inches of the proximal tibia. Three-dimensional CAD models of each subject’s femur, tibia and patella were recreated from the 3D bone density data. Each subject was then asked to perform five weight-bearing activities while under fluoroscopic surveillance: (1) deep knee bend, (2) normal gait, (3) chair rise, (4) chair sit, and (5) stair descent. The computer-generated 3D models of each subject’s femur and tibiaon (> 1