Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

3D ULTRASOUND: A NOVEL NEW IMAGING OPPORTUNITY FOR ORTHOPAEDIC SURGEONS

International Society for Technology in Arthroplasty (ISTA) 31st Annual Congress, London, England, October 2018. Part 1.



Abstract

Introduction

At present, orthopaedic surgeons utilize either CT, MRI or X-ray for imaging a joint. Unfortunately, CT and MRI are quite expensive, non weight-bearing and the orthopaedic surgeon does not receive revenue for these procedures. Although x-rays are cheaper, similar to CT scans, patients incur radiation. Also, all three of these imaging modalities are static. More recently, a new ultrasound technology has been developed that will allow a surgeon to image their patients in 3D. The objective of this study is to highlight the new opportunity for orthopaedic surgeons to use 3D ultrasound as alternative to CT, MRI and X-rays.

Methods

The 3D reconstruction process utilizes statistical shape atlases in conjunction with the ultrasound RF data to build the patient anatomy in real-time. The ultrasound RF signals are acquired using a linear transducer. Raw RF data is then extracted across each scan line. The transducer is tracked using a 3D tracking system. The location and orientation for each scan line is calculated using the tracking data and known position of the tracker relative to the signal. For each scan line, a detection algorithm extracts the location on the signal of the bone boundary, if any exists. Throughout the scan process, a 3D point cloud is created for each detected bone signal. Using a statistical bone atlas for each anatomy, the patient specific surface is reconstruction by optimizing the geometry to match the point cloud. Missing regions are interpolated from the bone atlas.

To validate reconstructed models output models are then compared to models generated from 3D imaging, including CT and MRI.

Results

3D ultrasound, which now has FDA approval in the United States, is presently available for an orthopaedic surgeon to use. Error analyses have been conducted in comparison to MRI and CT scans and revealed that 3D ultrasound has a similar accuracy of less than 1.0 mm in the creation of a 3D bone and soft-tissues. Unlike CT and MRI scans that take in excess of 2–3 weeks to create human bones, 3D ultrasound creates bones in 4–6 minutes. Once the bones are created, the surgeon can assess bone quality, ligament and cartilage conditions, assess osteophytes, fractures and guide needles into the 3D joint space. The creation of 3D bones has been accurately assessed for the spine, shoulder, knee, hip and ankle joints. A 3D joint pre-operative planning module has also been developed for a surgeon to size and position components before surgery.

Discussion

3D ultrasound is an exciting new imaging technology available for orthopaedic surgeons to use in their practice. Existing CPT codes are readily available for 3D ultrasound procedures. A surgeon can now evaluate and diagnose bone and soft- tissue conditions, in 3D, using ultrasound, which is safer and is an easier procedure compared to CT, MRI and X-rays. This new ultrasound technology is a highly accurate imaging technique that will allow a surgeon to diagnose bone and soft-tissue concerns in 3D, under weight-bearing, dynamic conditions and guide needle injections to correct location, in 3D.


Email: