header advert
Results 1 - 75 of 75
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 68 - 68
11 Apr 2023
Turnbull G Picard F Clarke J Shu W
Full Access

As arthroplasty demand grows worldwide, the need for a novel cost-effective treatment option for articular cartilage (AC) defects tailored to individual patients has never been greater. 3D bioprinting can deposit patient cells and other biomaterials in user-defined patterns to build tissue constructs from the “bottom-up,” potentially offering a new treatment for AC defects. The aim of this research was to create bioinks that can be injected or 3D bioprinted to aid osteochondral defect repair using human cells.

Novel composite bioinks were created by mixing different ratios of methacrylated alginate (AlgMA) with methacrylated gelatin (GelMA). Chondrocytes or mesenchymal stem cells (MSCs) were then encapsulated in the bioinks and 3D bioprinted using a custom-built extrusion bioprinter. UV and double-ionic (BaCl2 and CaCl2) crosslinking was deployed following bioprinting to strengthen bioink stability in culture. Chondrocyte and MSC spheroids were also produced via 3D culture and then bioprinted to accelerate cell growth and development of ECM in bioprinted constructs.

Excellent viability of chondrocytes and MSCs was seen following bioprinting (>95%) and maintained in culture over 28 days, with accelerated cell growth seen with inclusion of MSC or chondrocyte spheroids in bioinks (p<0.05). Bioprinted 10mm diameter constructs maintained shape in culture over 28 days, whilst construct degradation rates and mechanical properties were improved with addition of AlgMA (p<0.05). Composite bioinks were also injected into in vitro osteochondral defects (OCDs) and crosslinked in situ, with maintained cell viability and repair of osteochondral defects seen over a 14-day period. In conclusion we developed novel composite AlgMA/GelMA bioinks that can be triple-crosslinked, facilitating dense chondrocyte and MSC growth in constructs following 3D bioprinting. The bioink can be injected or 3D bioprinted to successfully repair in vitro OCDs, offering hope for a new approach to treating AC defects.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 108 - 108
11 Apr 2023
Turnbull G Picard F Clarke J Li B Shu W
Full Access

As arthroplasty demand grows worldwide, the need for a novel cost-effective treatment option for articular cartilage (AC) defects tailored to individual patients has never been greater. 3D bioprinting can deposit patient cells and other biomaterials in user-defined patterns to build tissue constructs from the “bottom-up,” potentially offering a new treatment for AC defects. The aim of this research was to create bioinks that can be injected or 3D bioprinted to aid osteochondral defect repair using human cells.

Novel composite bioinks were created by mixing different ratios of methacrylated alginate (AlgMA) with methacrylated gelatin (GelMA). Chondrocytes or mesenchymal stem cells (MSCs) were then encapsulated in the bioinks and 3D bioprinted using a custom-built extrusion bioprinter. UV and double-ionic (BaCl2 and CaCl2) crosslinking was deployed following bioprinting to strengthen bioink stability in culture. Chondrocyte and MSC spheroids were also bioprinted to accelerate cell growth and development of ECM in bioprinted constructs.

Excellent viability of chondrocytes and MSCs was seen following bioprinting (>95%) and maintained in culture over 28 days, with accelerated cell growth seen with inclusion of MSC or chondrocyte spheroids in bioinks (p<0.05). Bioprinted 10mm diameter constructs maintained shape in culture over 28 days, whilst construct degradation rates and mechanical properties were improved with addition of AlgMA (p<0.05). Composite bioinks were also injected into in vitro osteochondral defects (OCDs) and crosslinked in situ, with maintained cell viability and repair of osteochondral defects seen over a 14-day period.

In conclusion we developed novel composite AlgMA/GelMA bioinks that can be triple-crosslinked, facilitating dense chondrocyte and MSC growth in constructs following 3D bioprinting. The bioink can be injected or 3D bioprinted to successfully repair in vitro OCDs, offering hope for a new approach to treating AC defects.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_7 | Pages 20 - 20
1 Jul 2022
Chuntamongkol R Burt J Zaffar H Habbick T Picard F Clarke J Gee C
Full Access

Abstract

Introduction

There is a longstanding presumed association between obesity, complications, and revision surgery in primary knee arthroplasty. This has more recently been called into question, particularly in centres where a high volume of arthroplasty is performed. We investigated the correlation between Body Mass Index (BMI), mortality, and revision surgery.

Method

This was a cohort study of at least 10 years following primary knee arthroplasty from a single high volume arthroplasty unit. Mortality and revision rates were collected from all patients who underwent primary knee arthroplasty between 2009 and 2010. Kaplan Meier analysis was performed.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_6 | Pages 6 - 6
1 Jun 2022
Turnbull G Shu W Picard F Clarke J
Full Access

As arthroplasty demand grows worldwide, the need for a novel cost-effective treatment option for articular cartilage (AC) defects tailored to individual patients has never been greater. 3D bioprinting can deposit patient cells and other biomaterials in user-defined patterns to build tissue constructs from the “bottom-up,” potentially offering a new treatment for AC defects.

Novel composite bioinks were created by mixing different ratios of methacrylated alginate (AlgMA) with methacrylated gelatin (GelMA) and collagen. Chondrocytes and mesenchymal stem cells (MSCs) were then encapsulated in the bioinks and 3D bioprinted using a custom-built extrusion bioprinter. UV and double-ionic (BaCl2 and CaCl2) crosslinking was deployed following bioprinting to strengthen bioink stability in culture. Chondrocyte and MSC spheroids were also bioprinted to accelerate cell growth and development of ECM in bioprinted constructs.

Excellent viability of chondrocytes and MSCs was seen following bioprinting (>95%) and maintained in culture, with accelerated cell growth seen with inclusion of cell spheroids in bioinks (p<0.05). Bioprinted 10mm diameter constructs maintained shape in culture over 28 days, whilst construct degradation rates and mechanical properties were improved with addition of AlgMA (p<0.05). Composite bioinks were also injected into in vitro osteochondral defects and crosslinked in situ, with maintained cell viability and repair of osteochondral defects seen over a 14-day period.

In conclusion, we developed novel composite bioinks that can be triple-crosslinked, facilitating successful chondrocyte and MSC growth in 3D bioprinted scaffolds and in vitro repair of an osteochondral defect model. This offers hope for a new approach to treating AC defects.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_6 | Pages 3 - 3
1 Jun 2022
Chuntamongkol R Burt J Zaffar H Habbick T Picard F Clarke J Gee C
Full Access

There is a longstanding presumed association between obesity, complications, and revision surgery in primary knee arthroplasty. This has more recently been called into question, particularly in centres where a high volume of arthroplasty is performed. We investigated the correlation between Body Mass Index (BMI), mortality, and revision surgery.

This was a cohort study of at least 10 years following primary knee arthroplasty from a single high volume arthroplasty unit. Mortality and revision rates were collected from all patients who underwent primary knee arthroplasty between 2009 and 2010. Kaplan Meier analysis was performed.

There were 1161 female and 948 male patients with a mean age of 69 (21 to 97). All cause survivorship excluding mortality was 97.2% up to 13yrs with a minimum of 10 years. The revision rate in this series was 2.8% with no significant difference in revision rates after 10 year between patients with BMI above and below 40 (p=0.438). There was no significant difference in 10–year mortality between patients above and below a BMI of 40 (p=0.238).

This study shows no significant difference in the long term survival of total knee replacement between patients with normal and high BMI. Careful consideration should be given before rationing surgery based on BMI alone.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_7 | Pages 7 - 7
1 May 2019
Turnbull G Ning E Faulds K Riches P Shu W Picard F Clarke J
Full Access

Antimicrobial resistance (AMR) is projected to result in 10 million deaths every year globally by 2050. Without urgent action, routine orthopaedic operations could become high risk and musculoskeletal infections incurable in a “post-antibiotic era.” However, current methods of studying AMR processes including bacterial biofilm formation are 2D in nature, and therefore unable to recapitulate the 3D processes within in vivo infection.

Within this study, 3D printing was applied for the first time alongside a custom-developed bioink to bioprint 3D bacterial biofilm constructs from clinically relevant species including Staphylococcus aureus (MSSA), Methicillin-resistant staphylococcus aureus (MRSA), Escherichia coli and Pseudomonas aeruginosa. Bacterial viability and biofilm formation in bioprinted constructs was excellent, with confocal laser scanning microscopy (CSLM) used to demonstrate biofilm production and maturation over 28 days. Bioprinted 3D MRSA and MSSA biofilm constructs had greater resistance to antimicrobials than corresponding two-dimensional (2D) cultures. Thicker 3D E.coli biofilms had greater resistance to tetracycline than thinner constructs over 7 days of treatment. Raman spectroscopy was also adapted in a novel approach to non-invasively diagnose 3D bioprinted biofilm constructs located within a joint replacement model.

In conclusion, mature bacterial biofilm constructs were reproducibly 3D bioprinted for the first time using clinically relevant bacteria. This methodology allows the study of antimicrobial biofilm penetration in 3D, and potentially aids future antimicrobial research, replicating joint infection more closely than current 2D culture models. Furthermore, by deploying Raman spectroscopy in a novel fashion, it was possible to diagnose 3D bioprinted biofilm infections within a joint replacement model.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_18 | Pages 1 - 1
1 Dec 2018
Turnbull G Shu W Picard F Riches P Clarke J
Full Access

Bone is the second most commonly transplanted tissue worldwide, with over four million operations using bone grafts or bone substitute materials annually to treat bone defects. However, significant limitations affect current treatment options and clinical demand for bone grafts continues to rise due to conditions such as trauma, cancer, infection and arthritis. The need for a novel, cost effective treatment option for osteochondral defects has therefore never been greater.

As an emerging technology, three-dimensional (3D) bioprinting has the capacity to deposit cells, extracellular matrices and other biological materials in user-defined patterns to build complex tissue constructs from the “bottom up”. Through use of extrusion bioprinting and fused deposition modelling (FDM) 3D printing, porous 3D scaffolds were successfully created in this study from hydrogels and synthetic polymers. Mesenchymal stem cells (MSCs) seeded onto polycaprolactone scaffolds with defined pore sizes and porosity maintained viability over a 7-day period, with addition of alginate hydrogel and scaffold surface treatment with NaOH increasing cell adhesion and viability. MSC-laden alginate constructs produced via extrusion bioprinting also maintained structural integrity and cell viability over 7 days in vitro culture. Growth within osteogenic media resulted in successful osteogenic differentiation of MSCs within scaffolds compared to controls (p<0.001). MSC spheroids were also successfully created and bioprinted within a novel, supramolecular hydrogel with tunable stiffness.

In conclusion, 3D constructs capable of supporting osteogenic differentiation of MSCs were biofabricated via FDM and extrusion bioprinting. Future work will look to increase osteochondral construct size and complexity, whilst maintaining cell viability.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 68 - 68
1 Dec 2017
Deep K Picard F Shankar S Ewen A
Full Access

Background

The literature quotes up to 20% dissatisfaction rates for total knee replacements (TKR). Swedish registry and national joint registry of England and Wales confirm this with high volumes of patients included. This dissatisfaction rate is used as a basis for improving/changing/modernising knee implant designs by major companies across the world.

Aim

We aimed to compare post TKR satisfaction rates for navigated and non navigated knees.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 29 - 29
1 Oct 2016
Komaris DS Govind C Riches P Murphy A Ewen A Picard F Clarke J
Full Access

Patients with osteoarthritis (OA) of the knee commonly alter their movement to compensate for deficiencies. This study presents a new numerical procedure for classifying sit-to-walk (STW) movement strategies.

Ten control and twelve OA participants performed the STW task in a motion capture laboratory. A full body biomechanical model was used. Participants were instructed to sit in a comfortable self-selected position on a stool height adjusted to 100% of their knee height and then stand and pick up an object from a table in front of them. Three matrices were constructed defining the progression of the torso, feet and hands in the sagittal plane along with a fourth expressing the location of the hands relative to the knees. Hierarchical clustering (HC) was used to identify different strategies. Trials were also classified as to whether the left (L) and right (R) extremities used a matching strategy (bilateral) or not (asymmetrical). Fisher's exact test was used to compare this between groups.

Clustering of the torso matrix dichotomised the trials in two major clusters; subjects leaning forward (LF) or not. The feet and hands matrices revealed sliding the foot backward (FB) and moving an arm forward (AF) strategies respectively. Trials not belonging in the AF cluster were submitted to the last HC of the fourth matrix exposing three additional strategies, the arm pushing through chair (PC), arm pushing through knee (PK) and arm not used (NA). The control participants used the LF+FBR+PK combination most frequently whereas the OA participants used the AFR+PCL. OA patients used significantly more asymmetrical arm strategies, p=0.034.

The results demonstrated that control and OA participants favour different STW strategies. The OA patients asymmetrical arm behaviour possibly indicates compensating for weakness of the affected leg. These strategy definitions may be useful to assess post-operative outcomes and rehabilitation progress.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 28 - 28
1 Oct 2016
Holloway N Deakin A Picard F
Full Access

Since the publication by Berger in 1993, many total knee replacements (TKR) have been measured using his technique to assess component rotation. Whereas the femoral landmarks have been showed to be accurate and precise, the use of the tibial tuberosity to ascertain the true tibial orientation is more controversial. The goal of this study was to identify a new anatomical landmark to measure tibial component rotation.

211 CTs performed after TKR were reviewed. The authors noticed that the lateral cortex of the tibia below the tibial plateau component was flat over a depth of approximately 10mm. A protocol to measure tibial rotation in relation to this landmark was developed: the slice below the tibial plateau was identified; a primary line was drawn over the straight lateral cortex of the tibia; a perpendicular to this line defined the reference axis (A); the posterior tibial component axis was drawn (B); the angle between A and B was measured with internal rotation being negative and external positive. Two independent observers measured 31 CTs twice each and Intraclass Correlation Coefficients (ICC) were calculated for intra- and inter-observer error. The 211CTs were measured according to Berger's and this protocol.

Intra-observer ICCs were 0.812 for Observer1 and 0.806 for Observer2. The inter-observer ICCs were 0.699 for Reading1 and 0.752 for Reading2. The Berger protocol mean tibial rotation was 9.7°±5.5° (−29.0° to 5.2°) and for the new landmark 0°±5.4° (−18.6° to 14°).

This new tibial landmark appeared easy to identify and intra- and inter-observer errors were acceptable. The fact that the mean tibial rotation was 0° makes this landmark attractive. A consistent easily identified landmark for tibial rotation may allow for improvement in component rotation and the diagnosis of dissatisfaction after TKR. Further studies are under way to confirm the relevance of this landmark.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_5 | Pages 20 - 20
1 Feb 2016
Alho R Henderson F Rowe P Deakin A Clarke J Picard F
Full Access

The knee joint displays a wide spectrum of laxity, from inherently tight to excessively lax even within the normal, uninjured population. The assessment of AP knee laxity in the clinical setting is performed by manual passive tests such as the Lachman test. Non-invasive assessment based on image free navigation has been clinically validated and used to quantify mechanical alignment and coronal knee laxity in early flexion. When used on cadavers the system demonstrated good AP laxity results with flexion up to 40°. This study aimed to validate the repeatability of the assessment of antero-posterior (AP) knee joint laxity using a non-invasive image free navigation system in normal, healthy subjects.

Twenty-five healthy volunteers were recruited and examined in a single centre. AP translation was measured using a non-invasive navigation system (PhysioPilot) consisting of an infrared camera, externally mounted optical trackers and computer software. Each of the volunteers had both legs examined by a single examiner twice (two registrations). The Lachman test was performed through flexion in increments of 15°. Coefficients of Repeatability (CR) and Interclass Correlation Coefficients (ICC) were used to validate AP translation. The acceptable limits of agreement for this project were set at 3mm for antero-posterior tibial translation.

The most reliable and repeatable AP translation assessments were at 30° and 45°, demonstrating good reliability (ICC 0.82, 0.82) and good repeatability (CR 2.5, 2.9). The AP translation assessment at 0°, 15°, 75° and 90° demonstrated moderate reliability (ICC ≤ 0.75), and poor repeatability (CR ≥3.0mm).

The non-invasive system was able to reliably and consistently measure AP knee translation between 30° and 45° flexion, the clinically relevant range for this assessment. This system could therefore be used to quantify abnormal knee laxity and improve the assessment of knee instability and ligamentous injuries in a clinic setting.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_5 | Pages 33 - 33
1 Feb 2016
Gregori A Smith J Picard F Lonner J Jaramaz B
Full Access

Utilisation of unicondylar knee arthroplasty (UKA) has been limited due in part to high revision rates. Only 8% of knee arthroplasty surgeries completed in England and Wales are UKAs. It is reported that the revision rate at 9 years for Total Knee Arthroplasty (TKA) was 3% compared to 12% for UKAs. In the last decade semi active robots have been developed to be used for UKA procedures. These systems allow the surgeon to plan the size and orientation of the tibial and femoral component to match the patient's specific anatomy and to optimise the balancing the soft tissue of the joint. The robotic assistive devices allow the surgeon to execute their plan accurately removing only ‘planned’ bone from the predefined area. This study investigates the accuracy of an imageless navigation system with robotic control for UKA, reporting the errors between the ‘planned’ limb and component alignment with the post-operative limb and component alignment using weight bearing long leg radiographs. We prospectively collected radiographic data on 92 patients who received medial UKA using an imageless robotic assisted device across 4 centres (4 surgeons). This system is CT free, so relies on accurate registration of intra-operative knee kinematic and anatomic landmarks to determine the mechanical and rotational axis systems of the lower limb. The surface of the condylar is based on a virtual model of the knee created intra-operatively by ‘painting’ the surface with the tip of a tracked, calibrated probe. The burring mechanism is robotically controlled to prepare the bone surface and remove the predefined volume of bone. The study shows the 89% of the patients' post-operative alignment recorded by the system was within 30 of the planned coronal mechanical axis alignment. The RMS error was 1.980. The RMS errors between the robotic system's implant plan and the post-operative radiographic implant position was; femoral coronal alignment (FCA) 2.6o, tibial coronal alignment (TCA) 2.9o and tibial slope (TS) 2.9o. In conclusion, the imageless robotic surgical system for UKA accurately prepared the bone surface of the tibia and femur which resulted in low errors when comparing planned and achieved component placement. This resulted in a high level of accuracy in the planned coronal mechanical axis alignment compared to that measured on post-operative radiographs.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_12 | Pages 50 - 50
1 Nov 2015
Ewen A Almustafa M Clarke J Picard F
Full Access

Introduction

Surgical site infection (SSI) remains a concern following total hip arthroplasty (THA). We aimed to identify risk factors for post-operative SSI in THA.

Patients/Materials & Methods

All primary THAs performed in our institution during 2009–2010 were included, giving 1832 cases in 1716 patients. Cohort demographics were mean age 67.9 years (SD10.2), mean BMI 29.6 (SD5.3), 60% female and 90.2% primary indication of osteoarthritis. Post-operative SSI within one year was identified either through hospital infection control records or from Information Services Division (NHS Scotland). Demographic and peri-operative data for known or suspected risk factors for SSI were collected from clinical records. Groups were compared using independent t-tests and chi-squared tests as appropriate.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 13 - 13
1 Oct 2014
Wallace D Gregori A Picard F Bellemans J Lonner J Marquez R Smith J Simone A Jaramaz B
Full Access

Unicondylar knee arthroplasty (UKA) is growing in popularity with an increase in utilisation. As a less invasive, bone preserving procedure suitable for knee osteoarthritic patients with intact cruciate ligaments and disease confined to one compartment of the knee joint. The long term survival of a UKA is dependent on many factors, including the accuracy of prosthesis implantation and soft tissue balance. Robotic assisted procedures are generally technically demanding, can increase the operation time and are associated with a learning curve. The learning curve for new technology is likely to be influenced by previous experience with similar technologies, the frequency of use and general experience performing the particular procedure. The purpose of this study was to determine the time to achievement of a steady state with regards to surgical time amongst surgeons using a novel hand held robotic device.

This study examined consecutive UKA cases which used a robotic assistive device from five surgeons. The surgeons had each performed at least 15 surgeries each. Two of the surgeons had previous experience with another robotic assistive device for UKA. All of the surgeons had experience with conventional UKA. All of the surgeons have used navigation for other knee procedures within their hospital. The system uses image free navigation with infrared optical tracking with real time feedback. The handheld robotic assistive system for UKA is designed to enable precision of robotics in the hands of the surgeon. The number of surgeries required to reach ‘steady state’ surgical time was calculated as the point in which two consecutive cases were completed within the 95% confidence interval of the surgeon's ‘steady state’ time.

The average surgical time (tracker placement to implant trial acceptance phase) from all surgeons across their first 15 cases was 56.8 minutes (surgical time range: 27–102 minutes). The average improvement was 46 minutes from slowest to quickest surgical times. The ‘cutting’ phase was reported as decreasing on average by 31 minutes. This clearly indicates the presence of a learning curve. The surgeons recorded a significant decrease in their surgical time where the most improvement was in the process of bone cutting (as opposed to landmark registration, condyle mapping and other preliminary or planning steps). There was a trend towards decreasing surgical time as case numbers increase for the group of five surgeons. On average it took 8 procedures (range 5–11) to reach a steady state surgical time. The average steady state surgical time was 50 minutes (range 37–55 minutes).

In conclusion, the average operative time was comparable with clinical cases reported using other robotic assistive devices for UKA. All five surgeons using the novel handheld robotic-assisted orthopaedic system for UKA reported significant improvement in bone preparation and overall operative times within the first 15 cases performed, reaching a steady state in surgical times after a mean of 8 cases. Therefore, this novel handheld device has a similar learning curve to other devices on the market.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 12 - 12
1 Oct 2014
Smith J Picard F Lonner J Hamlin B Rowe P Riches P Deakin A
Full Access

Knee osteoarthritis results in pain and functional limitations. In cases where the arthritis is limited to one compartment of the knee joint then a unicondylar knee arthroplasty (UKA) is successful, bone preserving option. UKA have been shown to result in superior clinical and functional outcomes compared to TKA patients. However, utilisation of this procedure has been limited due primarily to the high revision rates reported in joint registers. Robotic assisted devices have recently been introduced to the market for use in UKA. They have limited follow up periods but have reported good implant accuracy when compared to the pre-operative planned implant placement.

UKA was completed on 25 cadaver specimens (hip to toe) using an image-free approach with infrared optical navigation system with a hand held robotically assisted cutting tool. Therefore, no CT scan or MRI was required. The surface of the condylar was mapped intra operatively using a probe to record the 3 dimensional surface of the area of the knee joint to be resurfaced. Based on this data the size and orientation of the implant was planned. The user was able to rotate and translate the implant in all three planes. The system also displays the predicted gap balance graph through flexion as well as the predicted contact points on the femoral and tibial component through flexion. The required bone was removed using a bur. The depth of the cut was controlled by the robotically controlled freehand sculpting tool.

Four users (3 consultant orthopaedic surgeon and a post-doctoral research associate) who had been trained on the system prior to the cadaveric study carried out the procedures. The aim of this study was to quantify the differences between the ‘planned’ and ‘achieved’ cuts. A 3D image of the ‘actual’ implant position was overlaid on the ‘planned’ implant image. The errors between the ‘actual’ and the ‘planned’ implant placement were calculated in three planes and the three rotations. The maximum femoral RMS angular error was 2.34°. The maximum femoral RMS translational error across all directions was up to 1.61mm. The maximum tibial RMS angular error was 2.60°. The maximum tibial RMS translational error across all directions was up to 1.67mm.

In conclusion, the results of this cadaver study reported low RMS errors in implant position placement compared to the plan. The results were comparable with those published from clinical studies investigating other robotic orthopaedic devices. Therefore, the freehand sculpting tool was shown to be a reliable tool for cutting bone in UKA and the system allows the surgeon to plan the placement of the implant intra operatively and then execute the plan successfully.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 25 - 25
1 Oct 2014
Picard F Gregori A Bellemans J Lonner J Smith J Gonzales D Simone A Jaramaz B
Full Access

For patients suffering from osteoarthritis confined to one compartment of the knee joint, a successful unicondylar knee arthroplasty (UKA) has demonstrated an ability to provide pain relief and restore function while preserving bone and cruciate ligaments that a total knee arthroplasty (TKA) would sacrifice. Long-term survival of UKA has traditionally been inconsistent, leading to decreased utilisation in favour of alternative surgical treatment. Robot-assisted UKA has demonstrated an ability to provide more consistent implantation of UKA prosthesis, with the potential to increase long-term survivorship.

This study reports on 65 patients undergoing UKA using an image-free, handheld robotic assistive navigation system. The condylar surface was mapped by the surgeon intra-operatively using a probe to capture a 3-dimensional representation of the area of the knee joint to be replaced. The intra operative planning phase allows the surgeon to determine the size and orientation of the femoral and tibial implant to suit the patients’ anatomy. The plan sets the boundaries of the bone to be removed by the robotic hand piece. The system dynamically adjusts the depth of bone being cut by the bur to achieve the desired result. The planned mechanical axis alignment was compared with the system's post-surgical alignment and to post-operative mechanical axis alignment using long leg, double stance, weight bearing radiographs.

All 65 knees had knee osteoarthritis confined to the medial compartment and UKA procedures were completed using the handheld robotic assistive navigation system. The average age and BMI of the patient group was 63 years (range 45–82 years) and 29 kg/m2 (range 21–37 kg/m2) respectively. The average pre-operative deformity was 4.5° (SD 2.9°, Range 0–12° varus). The average post-operative mechanical axis deformity was corrected to 2.1° (range 0–7° varus). The post-operative mechanical axis alignment in the coronal plane measured by the system was within 1° of intra-operative plan in 91% of the cases. 3 out of 6 of the cases where the post-operative alignment was greater than 1° resulted due to an increase in the thickness of the tibia prosthesis implanted. The average difference between the ‘planned’ mechanical axis alignment and the post-operative long leg, weight bearing mechanical axis alignment was 1.8°. The average Oxford Knee Score (old version) pre and post operation was 38 and 24 respectively, showing a clinical and functional improvement in the patient group at 6 weeks post-surgery.

The surgical system allowed the surgeons to precisely plan a UKA and then accurately execute their intra operative plan using a hand held robotically assisted tool. It is accepted that navigation and robotic systems have a system error of about 1° and 1mm. Therefore, this novel device recorded accurate post-operative alignment compared to the ‘planned’ post-operative alignment. The patients in this group have shown clinical and functional improvement in the short term follow up. The importance of precision of component alignments while balancing existing soft-tissue structures in UKA has been documented. Utilisation of robotic-assisted devices may improve the accuracy and long-term survivorship UKA procedure.


Bone & Joint Research
Vol. 2, Issue 11 | Pages 233 - 237
1 Nov 2013
Russell DF Deakin AH Fogg QA Picard F

Objectives

We performed in vitro validation of a non-invasive skin-mounted system that could allow quantification of anteroposterior (AP) laxity in the outpatient setting.

Methods

A total of 12 cadaveric lower limbs were tested with a commercial image-free navigation system using trackers secured by bone screws. We then tested a non-invasive fabric-strap system. The lower limb was secured at 10° intervals from 0° to 60° of knee flexion and 100 N of force was applied perpendicular to the tibia. Acceptable coefficient of repeatability (CR) and limits of agreement (LOA) of 3 mm were set based on diagnostic criteria for anterior cruciate ligament (ACL) insufficiency.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 74 - 74
1 Aug 2013
Jaramaz B Picard F Gregori A
Full Access

NavioPFS™ unicondylar knee replacement (UKR) system combines CT-free planning and navigation with robotically assisted bone preparation. In the planning procedure, all relevant anatomic information is collected under navigation, either directly with the point probe or by kinematic manipulation. In addition to key anatomic landmarks and the maps of the articulating surfaces of the femur and tibia, kinematic assessment of the joint laxity is performed. Relative positions of femur and tibia are collected through the flexion/extension range, with the pressure applied to fully stretch the collateral ligament on the operative side.

The planning procedure involves three stages: (1) the implant sizing and initial placement,(2) balancing of the gap on the operative side and (3) evaluating the contact points for the recorded flexion data and the planned placement of implants. In the gap balancing stage, the implants are repositioned until they allow for a positive gap, preferably uniform, throughout the entire range of flexion. UKR was planned and prepared on six cadaver knees with the help of NavioPFS system. All knees were normal without any signs of osteoarthritis. Two surgeons have performed medial UKR (4+2), and the bones were prepared using the NavioPFS handheld robotic tool.

Postoperatively, we have re-used the data collected during the planning procedure to compare the kinematic (gap balancing) performance of the used implant with three different commercial implant designs. All implants were placed in the orientation recommended by the respective manufacturer, sized to best fit the original bone geometry, and repositioned optimally balance the gap curve through the entire flexion range, without any negative gaps (overlaps). Since these were nonarthritic cadaver knees, the intent was to restore the original preoperative varus/valgus in neutral (zero) flexion.

The three implant designs demonstrated variable degree of capability to uniformly balance the knee gap over the entire range of flexion. The first implant (A) required a gap larger than 2 mm in one case out of six, the second (B) was capable of producing the positive gap curve under 2mm of gap in all six cases, and the third (C) required a gap larger than 2 mm in 3 (50%) of cases. All three designs exhibit the reduced gap space in mid (30°–90°) flexion.

Despite the best attempts, the artificial implants do not fully replicate the healthy knee kinematics. This is manifested by increased tightness in the mid flexion. In order to balance the gap in mid flexion, additional laxity has to be allowed in full flexion, extension, or both. NavioPFS allows for patient specific planning that takes into account this information, only available intraoperatively. This kind of evaluation on a patient specific basis is a very important planning tool and it allows the insight on the implant performance in mid flexion, typically not available using conventional planning techniques. It can also help in improving kinematic performance of future implant designs.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 79 - 79
1 Aug 2013
Sciberras N Deakin A Picard F
Full Access

The Columbus® knee system was designed as a standard knee implant that allows high flexion without the need for additional bone resection. The aim of this retrospective study was to investigate the correlation between the maximum flexion achieved at five years and the slope of the tibial component. The hypothesis was that increased slope would give increased flexion.

The study design was a retrospective cohort study at a single centre. The inclusion criterion was having had a navigated cemented Columbus primary TKA implanted between March 2005 and December 2006 using the image free OrthoPilot® navigation system (Aesculap, Tuttlingen, Germany) in our institution. Follow-up had been carried out at review clinics by an independent arthroplasty team. Patient-related data had been recorded either in case notes, the departmental proprietary database or as radiographic images. In addition to demographics, five-year follow-up range of motion (ROM) was collected. All available radiographs on the national Picture Archiving and Communication System (Eastman Kodak Company, 10.1_SP1, 2006), whether taken at our institution or at the patient's local hospital, were analysed by a trainee orthopaedic surgeon (NCS) who was independent of the patients' care. Component position according to the Knee Society TKA scoring system was determined from the five-year review lateral x-ray. The tibial slope was calculated as 90° minus the angle of the tibial component so giving a posterior slope as a positive number and an anterior slope as a negative number. The correlation between maximum flexion angle and tibial slope was calculated. Further to this a subgroup of only CR prostheses and patients with BMI <35 were analysed for a relationship. The tibial slope of the group of patients having 90° or less of flexion (poor flexion) was compared to those having 110° or more (good flexion) using a t-test, as was the flexion of the those with BMI <30 to those with BMI > 35.

A total of 219 knees in 205 patients were identified. 123 had five-year radiograph and maximum flexion measurement available. Cohort demographics were mean age 68(8.6), mean BMI 32.0(5.9) and mean maximum flexion at five years of 101°(11°). The tibial slope angle showed variation around the mean of 2°(2.8°). There was no correlation between tibial slope and maximum flexion for either that whole cohort (r=-0.051, p=0.572, Figure 1b) or the subgroup of CR and BMI <35 patients (n=78, r = −0.089, p=0.438). The mean tibial slope of those patients having poor flexion was 2° (SD2.6°) and this was not significantly different to the mean for those with good flexion, 3° (SD3.1°) p=0.614. The mean flexion of those with BMI <30 was 100° (SD8.7°) and this was not significantly different to those with BMI >35, mean 101° (SD11.4°).

This study did not find any correlation between the tibial slope and maximum flexion angle in 123 TKAs at five year follow up. Further studies with a more accurate measurement of tibial slope should be carried out to confirm whether a relationship exists in the clinical setting.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 92 - 92
1 Aug 2013
Russell D Deakin A Fogg Q Picard F
Full Access

Non-invasive assessment of lower limb mechanical alignment and assessment of knee laxity using navigation technology is now possible during knee flexion owing to recent software developments. We report a comparison of this new technology with a validated commercially available invasive navigation system.

We tested cadaveric lower limbs (n=12) with a commercial invasive navigation system against the non-invasive system. Mechanical femorotibial angle (MFTA) was measured with no stress, then with 15Nm of varus and valgus moment. MFTA was recorded at 10° intervals from full knee extension to 90° flexion. The investigator was blinded to all MFTA measurements. Repeatability coefficient was calculated to reflect each system's level of precision, and agreement between the systems; 3° was chosen as the upper limit of precision and agreement when measuring MFTA in the clinical setting based on current literature.

Precision of the invasive system was superior and acceptable in all conditions of stress throughout flexion (repeatability coefficient <2°). Precision of the non-invasive system was acceptable from extension until 60° flexion (repeatability coefficient <3°), beyond which precision was unacceptable. Agreement between invasive and non-invasive systems was within 1.7° from extension to 50° flexion when measuring MFTA with no varus / valgus applied. When applying varus / valgus stress agreement between the systems was acceptable from full extension to 20° & 30° knee flexion respectively (repeatability coefficient <3°). Beyond this the systems did not demonstrate sufficient agreement.

These results indicate that the non-invasive system can provide reliable quantitative data on MFTA and laxity in the range relevant to knee examination.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_31 | Pages 17 - 17
1 Aug 2013
Russell D Deakin A Fogg Q Picard F
Full Access

Conventional computer navigation systems using bone fixation have been validated in measuring anteroposterior (AP) translation of the tibia. Recent developments in non-invasive skin-mounted systems may allow quantification of AP laxity in the out-patient setting.

We tested cadaveric lower limbs (n=12) with a commercial image free navigation system using passive trackers secured by bone screws. We then tested a non-invasive fabric-strap system. The lower limb was secured at 10° intervals from 0° to 60° knee flexion and 100N of force applied perpendicular to the tibial tuberosity using a secured dynamometer. Repeatability coefficient was calculated both to reflect precision within each system, and demonstrate agreement between the two systems at each flexion interval. An acceptable repeatability coefficient of ≤3 mm was set based on diagnostic criteria for ACL insufficiency when using other mechanical devices to measure AP tibial translation.

Precision within the individual invasive and non-invasive systems measuring AP translation of the tibia was acceptable throughout the range of flexion tested (repeatability coefficient ≤1.6 mm). Agreement between the two systems was acceptable when measuring AP laxity between full extension and 40° knee flexion (repeatability coefficient ≤2.1 mm). Beyond 40° of flexion, agreement between the systems was unacceptable (repeatability coefficient >3 mm).

These results indicate that from full knee extension to 40° flexion, non-invasive navigation-based quantification of AP tibial translation is as accurate as the standard invasive system, particularly in the clinically and functionally important range of 20° to 30° knee flexion. This could be useful in diagnosis and post-operative follow-up of ACL pathology.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 93 - 93
1 Aug 2013
Russell D Deakin A Fogg Q Picard F
Full Access

Conventional computer navigation systems using bone fixation have been validated in measuring anteroposterior (AP) translation of the tibia. Recent developments in non-invasive skin-mounted systems may allow quantification of AP laxity in the out-patient setting.

We tested cadaveric lower limbs (n=12) with a commercial image free navigation system using passive trackers secured by bone screws. We then tested a non-invasive fabric-strap system. The lower limb was secured at 10° intervals from 0° to 60° knee flexion and 100N of force applied perpendicular to the tibial tuberosity using a secured dynamometer. Repeatability coefficient was calculated both to reflect precision within each system, and demonstrate agreement between the two systems at each flexion interval. An acceptable repeatability coefficient of ≤3mm was set based on diagnostic criteria for ACL insufficiency when using other mechanical devices to measure AP tibial translation.

Precision within the individual invasive and non-invasive systems measuring AP translation of the tibia was acceptable throughout the range of flexion tested (repeatability coefficient ≤1.6mm). Agreement between the two systems was acceptable when measuring AP laxity between full extension and 40° knee flexion (repeatability coefficient ≤2.1mm). Beyond 40° of flexion, agreement between the systems was unacceptable (repeatability coefficient >3mm).

These results indicate that from full knee extension to 40° flexion, non-invasive navigation-based quantification of AP tibial translation is as accurate as the standard invasive system, particularly in the clinically and functionally important range of 20° to 30° knee flexion. This could be useful in diagnosis and post-operative follow-up of ACL pathology.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 68 - 68
1 Aug 2013
Smith J Picard F Rowe P Deakin A Riches P
Full Access

Unicondylar knee arthroplasty (UKA) is a treatment for osteoarthritis when the disease only affects one compartment of the knee joint. The popularity in UKA grew in the 1980s but due to high revision rates the usage decreased. A high incidence of implant malalignment has been reported when using manual instrumentation. Recent developments include surgical robotics systems with navigation which have the potential to improve the accuracy and precision of UKA.

UKA was carried out using an imageless navigation system – the Navio Precision Freehand Sculpting system (Blue Belt Technologies, Pittsburgh, USA) with a medical Uni Knee Tornier implant (Tornier, Montbonnot Saint Martin, France) on nine fresh frozen cadaveric lower limbs (8 males, 1 females, mean age 71.7 (SD 13.3)). Two users (consultant orthopaedic surgeon and post doctoral research associate) who had been trained on the system prior to the cadaveric study carried out 4 and 5 implants respectively. The aim of this study was to quantify the differences between the planned and achieved cuts.

A 3D image of the ‘actual’ implant position was overlaid on the planned implant image. The errors between the ‘actual’ and the planned implant placement were calculated in three planes and the three rotations. The maximum femoral implant rotational error was 3.7° with a maximum RMS angular error of 2°. The maximum femoral implant translational error was 2.6mm and the RMS translational error across all directions was up to 1.1mm. The maximum tibial implant rotational error was 4.1° with a maximum RMS angular error was 2.6°. The maximum translational error was 2.7mm and the RMS translational error across all directions was up to 2.0mm.

The results were comparable to those reported by other robotic assistive devices on the market for UKA. This technology still needs clinical assessment to confirm these promising results.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_30 | Pages 9 - 9
1 Aug 2013
Wilson W Deakin A Picard F Riches P Clarke J
Full Access

This study aimed to overcome the subjective nature of routine assessment of knee laxity and develop a repeatable, objective method using a hand-held force application device (FAD).

Eighteen clinicians (physiotherapists, consultants, trainees) volunteered to measure the coronal angular deviation of the right knee of a healthy volunteer using a validated non-invasive infrared measuring system. Effort was taken to ensure the knee flexion angle (∼2°) and hand positions were constant during testing. Three varus and valgus stress tests were conducted, in which maximum angular deviation was determined and subsequently averaged, in the following order of conditions: manual stress without the FAD up to a perceived end-point (before); with the FAD to apply a moment of 18 Nm; and again without the FAD (after). A repeated measures ANOVA was used to analyse the results.

All three groups of clinicians produced measurements of valgus laxity with consistent mean values and standard deviations (<1°) for each condition. For varus mean values were consistent but standard deviations were larger.

Valgus deviations varied significantly between conditions (p < 0.01), with deviations achieved using the FAD greater than both before (p < 0.01) and after (p < 0.05) indicating that the perceived endpoints were less than that achieved at 18 Nm. However varus perceived endpoints were no different to that achieved at 18 Nm, suggesting that clinicians usually apply a greater valgus moment than varus. Furthermore, the non-significant increase in valgus deviation between before and after (p = 0.123) is suggestive of a training trend, especially for trainees.

Our standardised knee laxity assessment may have a role in improving the balancing techniques of TKA and the diagnosis of collateral ligament injuries. Also, by quantifying the technique of senior clinicians, and with use of the FAD, the perceptive skills of more junior trainees may be enhanced.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 80 - 80
1 Aug 2013
Sankar B Venkataraman R Changulani M Sapare S Deep K Picard F
Full Access

In arthritic knees with severe valgus deformity Total Knee Arthroplasty (TKA) can be performed through medial or lateral parapatellar approaches. Many orthopaedic surgeons are apprehensive of using the lateral parapatellar approach due to lack of familiarity and concerns about complications related to soft tissue coverage and vascularity of the patella and the overlying skin. However surgeons who use this approach report good outcomes and no added complications. The purpose of our study was to compare outcomes following TKA performed through a medial parapatellar approach with those performed through a lateral parapatellar approach in arthritic knees with severe valgus deformity.

We conducted a retrospective review of patients from two consultants using computer navigation for all their TKAs. All patients with severe valgus deformities (Ranawat 2 & 3 grades) operated on between January 2005 and December 2011 were included. 66 patients with 67 TKAs fulfilled the inclusion criteria. Patients were group by approach; Medial = 34TKAs (34 patients) or Lateral = 33 TKAs (32 patients). Details were collected from patients' records, AP hip-knee-ankle (HKA) radiographs and computer navigation files. Outcome measures included lateral release rates, post-operative range of knee movements, long leg mechanical alignment measurements, post-operative Oxford scores at six weeks and one year, patient satisfaction and any complications. Comparisons were made between groups using t-tests.

The total cohort had a mean age of 69 years [42–82] and mean BMI of 29 [19–46]. The two groups had comparable pre-operative Oxford scores (Medial 41[27–56], Lateral 44 [31–60]) and pre-operative valgus deformity measured on HKA radiographs (Medial 13° [10°–27.6°], Lateral 12° [6°–22°]). Three patients in the Medial group underwent intra-operative lateral patellar release to improve patellar tracking. Seven patients in the Lateral group had a lateral condyle osteotomy for soft tissue balancing (one bilateral). There was no statistically significant difference between groups at one year follow up for maximum flexion (Medial 100° [78°–122°], Lateral 100° [85°–125°], p=0.42), fixed flexion deformity (Medial 1.2° [0°–10°], Lateral 0.9° [0°–10°], p=0.31) or Oxford score (Medial 23 [12–37], Lateral 23 [16–41], p=0.49). Similarly there was no difference in the patient satisfaction rates between the two groups at one year follow up. However there was a statistically significant difference in the mean radiographic post-operative alignment angle measurement (Medial 1.8° valgus [4° varus to 10° valgus], Lateral 0.3° valgus [5° varus to 7° valgus], p=0.02). One patient in the Medial group had a revision to hinged knee prosthesis for post-operative instability. There was no wound breakdown or patellar avascular necrosis noted in either of the groups.

The lateral parapatellar approach resulted in slightly better valgus correction on radiographs taken six weeks post-operatively. We found no major complications in the Lateral parapatellar approach group. Specifically we did not encounter any difficulties in closing the deep soft tissue envelope around the knee and there were no cases of patellar avascular necrosis or skin necrosis. Hence we conclude that lateral parapatellar approach is a safe and reliable alternative to the medial parapatellar approach for correction of severe valgus deformity in TKA.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_31 | Pages 43 - 43
1 Aug 2013
Changulani M Sankar B Deakin A Picard F
Full Access

Distal femur resection for correction of flexion contractures in total knee arthroplasty (TKA) can lead to joint line elevation, abnormal knee kinematics and patellofemoral problems. The aim of this retrospective study was to establish the contribution of soft tissue releases and bony cuts in the change in maximum knee extension in TKA.

Data were available for 211 TKAs performed by a single surgeon using a medial approach. Intra-operatively pre- and post-implant extension angles and the size of bone resection were collected using a commercial navigation system. The thickness of polyethylene insert and the extent of soft tissue release performed (no release, moderate and extensive release) were collected from the patient record. A linear model was used to predict change in maximum extension from pre- to post-implant.

The analysis showed that bone cuts (p<0.001), soft tissue release (p=0.001) and insert thickness (p=0.010) were all significant terms in the model (r2adj=0.170). This model predicted that carrying out a TKA with 19 mm bone cuts, 10 mm insert and no soft tissue release would give 4.2° increase in extension. It predicted that a moderate release would give a further 2.8° increase in extension with an extensive release giving 3.9°. For each mm increase in bone cuts the model predicted an 0.8° increase in extension and for each mm increase in insert size a decrease extension by 1.1°.

The modelling results show that in general to increase maximum extension by the same as an extensive soft tissue release that bone cuts would have to be increased by 4–5 mm. However this model only accounted for 17% of the variation in change in extension pre- to post-implant so may not be accurate at predicting outcomes for specific patients.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 78 - 78
1 Aug 2013
Picard G Blair M Picard F
Full Access

The amount of time spent in theatre by trainees is decreasing and therefore it seems crucial to fully optimis e these to enable adequate training. Trainees at the beginning of their practice, despite their exposure to surgery, cannot always take advantages of the surgical procedure they are assisting with. An obvious example of this is total hip replacement during posterior approach. Although the posterior approach and less invasive or minimally invasive approaches are certainly beneficial for patients, they are very difficult for a young trainee to comprehend, as they spend most of the time hanging onto the retractor without or rarely seeing the important anatomic steps of the procedure. Our goal was to develop a tool that would help a trainee to fully see and understand the surgical steps of total hip replacement during a posterior approach.

To enable visualisation of the operation from the senior surgeon's perspective we developed a device to film the surgery and output the video feed to a screen. The prototype used an HD Replay XD1080 camera connected to a WDHI Xenta transmitting dongle (transmitting frequency −5.8 GHz), with an onboard 6600 mAh external Li-Mh battery providing 1A of current to the system. The Replay camera was fixed to the surgeon's ventilation helmet, and took its power from the battery supplying both the fan system and the transmitting unit. The surgeon can then clip both of these items to his belt and the connecting wires and cables run up his back. The device provided a Full HD video output of the surgery from the surgeon's perspective. The receiving unit used a Xenta WHDI wireless receiver with HDMI and DVI-I/D connections allowing the video to be displayed on any screen in the operating room with these connections.

The prototype has been trialled by the senior author and was successful in allowing the direct surgeon's view of the procedure to be displayed on a screen in the theatre so that other staff involved in the operation could see it.

Although the use of virtual training, presentations and video are essential to training, surgical training still relies greatly upon surgical assistance. The introduction of an intra-operative video feedback device would enable trainees to observe the operation from a first-person perspective which could lead to a considerable reduction in the amount of training time required, as well as a better understand of the specific surgical steps in a procedure. This would be particularly use for operations where a trainee assists the surgeon from the opposite side of the operating table, for example when undergoing total hip replacement during posterior approach. We can also envision this device also being used by surgeons to monitor their trainees when operating, and perhaps to keep a record of the operations undertaken in an establishment for archiving or assessment.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_30 | Pages 56 - 56
1 Aug 2013
Sciberras N Deakin A Picard F
Full Access

The Columbus is a relatively new implant with no published medium or long term follow-up. Its extensive use within our department led to this study to review the five-year clinical outcomesof patients who had a navigated Columbus primary total knee arthroplasty (TKA) implanted between March 2005 and December 2006.

Case notes, departmental and hospital databases and PACS were used to identify patients and collect routine five-year review data. Information Services Division was approached for all cases of re-admission and associated complications anywhere in Scotland.

219 (90 male, 116 left) patients were identified. Mean age was 69 years (48–89) and mean BMI 32.2 (SD 5.8). Of the 219 patients operated on, twenty-one had a complication; ten still had intermittent mild to moderate pain, three had wound problems, one had a washout, one had DVT/PE within ninety days and one was diagnosed with patellar clunk syndrome. The remaining five patients had revision TKA (revision rate 2.3%), four for infection and only one due to aseptic loosening (revision rate excluding infection 0.5%). 115 patients returned to clinic at five years. Of these 96.4% were satisfied with their operation. The mean Oxford knee score had reduced from 42.5 (SD 8.2) pre-operatively to 23.6 (SD 9.2). Mean fixed flexion was 1° (SD 2.8°, range 0° to 15°) with four patients having a fixed flexion of 6° or more. Mean maximum flexion was 100° (SD 10.2°, range 60° to 120°) with two patients having flexion less than 80°. X-ray analysis showed that fourteen patients had a radiolucent line. Nine of these were not present at one year, six being at the tibial component.

These results are satisfactory. The revision rate is similar to that cited by the National Joint Registry report 2011 (2.5%). Furthermore, the revision rate excluding infection is very low.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_31 | Pages 18 - 18
1 Aug 2013
Russell D Deakin A Fogg Q Picard F
Full Access

Non-invasive assessment of lower limb mechanical alignment and assessment of knee laxity using navigation technology is now possible during knee flexion owing to recent software developments. We report a comparison of this new technology with a validated commercially available invasive navigation system.

We tested cadaveric lower limbs (n=12) with a commercial invasive navigation system against the non-invasive system. Mechanical femorotibial angle (MFTA) was measured with no stress, then with 15 Nm of varus and valgus moment. MFTA was recorded at 10° intervals from full knee extension to 90° flexion. The investigator was blinded to all MFTA measurements. Repeatability coefficient was calculated to reflect each system's level of precision, and agreement between the systems; 3° was chosen as the upper limit of precision and agreement when measuring MFTA in the clinical setting based on current literature.

Precision of the invasive system was superior and acceptable in all conditions of stress throughout flexion (repeatability coefficient <2°). Precision of the non-invasive system was acceptable from extension until 60° flexion (repeatability coefficient <3°), beyond which precision was unacceptable. Agreement between invasive and non-invasive systems was within 1.7° from extension to 50° flexion when measuring MFTA with no varus / valgus applied. When applying varus / valgus stress agreement between the systems was acceptable from full extension to 30° knee flexion (repeatability coefficient <3°). Beyond this the systems did not demonstrate sufficient agreement.

These results indicate that the non-invasive system can provide reliable quantitative data on MFTA and laxity in the range relevant to knee examination.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 77 - 77
1 Aug 2013
Changulani M Deakin A Picard F
Full Access

Distal femur resection for correction of flexion contractures in total knee arthroplasty (TKA) can lead to joint line elevation, abnormal knee kinematics and patellofemoral problems. The aim of this retrospective study was to establish the contribution of soft tissue releases and bony cuts in the change in maximum knee extension in TKA.

Data were available for 209 navigated TKAs performed by a single surgeon using a medial approach. All patients had the same cemented implant, either CR or PS, which both required a minimum thickness of 10 mm for the tibial and 9mm for the femoral component. Intra-operatively pre- and post-implant extension angles and the size of bone resection were collected using a commercial navigation system. The thickness of polyethylene insert and the extent of soft tissue release performed (no release, moderate and extensive release) were collected from the patient record. A univariate linear regression model was used to predict change in maximum extension from pre- to post-implant.

The mean bone resection was 19mm (15 to 28 mm) (Figure 1).79% of polyethylene inserts were 10mm thick (10 to 16 mm). 71% of knees had no soft tissue release. The mean increase in extension was 5° (11° decrease to 23° increase) (Figure 1). The analysis showed that bone cuts (p<0.001), soft tissue release (p=0.001) and insert thickness (p=0.010) were all significant terms in the model (r2adj=0.170). This model predicted that carrying out a TKA with 19mm bone cuts, 10mm insert and no soft tissue release would give 4.2° increase in extension. It predicted that a moderate release would give a 2.8° increase in extension compared to no release, with an extensive release giving 3.9° increase over no release. For each mm increase in bone cuts the model predicted a 0.8° increase in extension and for each mm increase in insert size a decrease extension by 1.1°.

Preoperative FFC contracture is a frequent condition in TKA that the surgeon has to address either by resecting more bone or by extending soft tissue release to increase the extension gap to fit the knee implant. This analysis of 209 navigated knee arthroplasty showed that both options are suitable to increase the extension gap. The modelling results show that in general to increase maximum extension by the same as an extensive soft tissue release that bone cuts would have to be increased by 4–5mm. However this model only accounted for 17% of the variation in change in extension pre- to post-implant so is poor at predicting outcomes for specific patients. The large variation in actual FFC correction indicates that this relies on factors other than bone cuts and soft tissue releases as quantified in this study.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_30 | Pages 28 - 28
1 Aug 2013
Quinn M Deakin A McDonald D Cunningham I Payne A Picard F
Full Access

Local infiltration analgesia is a relatively novel technique developed for effective pain control following total knee replacement, reducing requirements of epidural or parenteral post-operative analgesia. The study aimed to investigate the anatomical spread of Local Infiltration Analgesia (LIA) used intra-operatively in total knee arthroplasty (TKA) and identify the nerve structures reached by the injected fluid.

Six fresh-frozen cadaveric lower limbs were injected with 180ml of a solution of latex and India ink to enable visualisation. Injections were done according to our standardised LIA technique. Wounds were closed and limbs were placed flat in a freezer at −20°C for two weeks. Limbs were then either sliced or dissected to identify solution locations.

Injected solution was found from the proximal thigh to the middle of the lower leg. The main areas of concentration were the popliteal fossa, the anterior aspect of the femur and the subcutaneous tissue of the anterior aspect of the knee. There was less solution in the lower popliteal fossa. The solution was found to reach the majority of the terminal branches of the tibial, fibular and obturator nerves.

Overall, there was good infiltration of nerves supplying the knee. The lack of infiltration into the lower popliteal fossa suggests more fluid or a different injection point could be used. The solution that travelled distally to the extensor muscles of the lower leg probably has no beneficial analgesic effect for a TKA patient. This LIA technique reached most nerves that innervate the knee joint which supports the positive clinical results from this LIA technique. However, there may be scope to optimise the injection sites.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_31 | Pages 62 - 62
1 Aug 2013
Soon V Chirputkar K Gaheer R Corrigan N Picard F
Full Access

Component malrotation in total knee arthroplasty (TKA) is a reason for early failure and revision. Assessment of possible component malrotation using computed tomography (CT) might be useful when other differentials have been excluded. The aims of our study were to determine the proportion of symptomatic patients with component malrotation on CT, and review the subsequent management of such patients.

A retrospective review of case notes was performed locally for all patients who had a CT scan for a painful TKA. Measurements of the femoral and tibial component rotations were done according to the standard Berger protocol, giving net degrees of either external rotation (ER) or internal rotation (IR). Any subsequent surgery was noted, and patients were followed up as per local practice.

Between 2007 and April 2012, 69 knees in 68 patients had CT scans. There were 25 males and 43 females, and mean age at primary surgery was 65.03 years. The mean femoral component rotation for all knees was 0.1° ER (range 7.0° ER – 6.7° IR), and the mean tibial component rotation for all knees was 19.1° IR (6.6° ER – 37.0° IR). No statistically significant difference was found comparing the mean femoral and tibial component rotations between patients with and without further surgery. Further surgery was performed on 39 (56.5%) knees.

Overall, there were ten cases (14.5%) of isolated femoral malrotation, 26 tibial malrotation (37.7%), and two cases (2.9%) had malrotation of both components. Out of these 38 cases, secondary surgery was performed in 22 knees (57.9%), of which a satisfactory outcome was achieved in fifteen cases (68.1%).

It is impossible to establish component malrotation as the only cause of pain following TKA, however, our study does show that the Berger protocol has its uses when other causes have been excluded.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_25 | Pages 2 - 2
1 May 2013
Russell D Deakin A Fogg Q Picard F
Full Access

Conventional computer navigation systems using bone fixation have been validated in measuring anteroposterior (AP) translation of the tibia. Recent developments in non-invasive skin-mounted systems may allow quantification of AP laxity in the out-patient setting.

We tested cadaveric lower limbs (n=12) with a commercial image free navigation system using passive trackers secured by bone screws. We then tested a non-invasive fabric-strap system. The lower limb was secured at 10° intervals from 0° to 60° knee flexion and 100N of force applied perpendicular to the tibial tuberosity using a secured dynamometer. Repeatability coefficient was calculated both to reflect precision within each system, and demonstrate agreement between the two systems at each flexion interval. An acceptable repeatability coefficient of ≤3mm was set based on diagnostic criteria for ACL insufficiency when using other mechanical devices to measure AP tibial translation.

Precision within the individual invasive and non-invasive systems measuring AP translation of the tibia was acceptable throughout the range of flexion tested (repeatability coefficient ≤1.6 mm). Agreement between the two systems was acceptable when measuring AP laxity between full extension and 40° knee flexion (repeatability coefficient ≤2.1 mm). Beyond 40° of flexion, agreement between the systems was unacceptable (repeatability coefficient >3 mm).

These results indicate that from full knee extension to 40° flexion, non-invasive navigation-based quantification of AP tibial translation is as accurate as the standard invasive system, particularly in the clinically and functionally important range of 20° to 30° knee flexion. This could be useful in diagnosis and post-operative follow-up of ACL pathology.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_20 | Pages 13 - 13
1 Apr 2013
Goudie S Deep K Picard F
Full Access

Introduction

The success of total hip replacement (THR) is closely linked to the positioning of the acetabular component. Malalignment increases rates of dislocation, impingement, acetabular migration, pelvic osteolysis, leg length discrepancy and polyethylene wear. Many surgeons orientate the cup to inherent anatomy of the acetabulum. Detailed understanding of the anatomy and orientation of the acetabulum in arthritic hips is therefore very important. The aim of this study was to describe the anteversion and inclination of the inherent acetabulum in arthritic hips and to identify the number that fall out with the ‘safe zone’ of acetabular position described by Lewinnek et al. (anteversion 15°±10°; inclination 40°±10°).

Materials and Methods

A series of 65 hips all with symptomatic osteoarthritis undergoing THR were investigated. Patients with dysplastic hips were excluded. All patients had a navigated THR as part of their normal clinical treatment. A commercially available non image based computer navigation system (Orthopilot BBraun Aesculap, Tuttlingen, Germany) was used. Anterior pelvic plane was registered using the two anterior superior iliac spines and pubic symphysis. Inner size of the empty acetabulum was sized with cup trials and appropriately size trial fixed with a computer tracker was then aligned in the orientation of the natural acetabulum as defined by the acetabular rim ignoring any osteophytes. The inclination and anteversion were calculated by the software.

The acetabular inclination in all hips was also measured on pre-operative anteroposterior pelvic digital radiographs. Acetabular inclination was measured using as the angle between a line passing through the superior and inferior rim of the acetabulum and a line parallel to the pelvis as identified by the tear drops, using the method described by Atkinson et al.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_10 | Pages 13 - 13
1 Feb 2013
Venkataraman R Picard F
Full Access

Post operative warfarinisation of elective arthroplasty patients delays their discharge. We retrospectively analysed all patients who required warfarinisation post surgery from April to September 2011. We identified the number of extra days stayed for the sole purpose of warfarinisation (i.e. after discharge by Physiotherapy and Occupational Therapy) and estimated the cost implications of this extended stay.

76 patients were warfarinised post operation, mean age 70.6 years (50–87) with 42 females and 34 males, 37 THR and 33 TKR.

The mean extra days stayed was 3.1 (range 0 to 9). Atrial fibrillation and previous venous thromboembolism (DVT/PE) were the most common indication, 78%, followed by a current episode of DVT/PE, 11%. The nature of joint replacement made no difference to the extra days stayed (3.1 for THR and 2.9 for TKR) or the INR (2.27 in both groups) at discharge. Random loading dose instead of the recommended 5 mg of warfarin resulted in prolonged stay, 4.5 days compared to 3 days otherwise.

The approximate cost per inpatient day is £500 (£137 nursing, £163 medical and £200 for facilities). From our results this amounts to £1500 per patient and £228,000 a year. In addition, there is a loss of income as the bed occupancy means not being able to undertake another arthroplasty surgery (£3,600 per patient) and possible failure to achieve waiting time targets.

We conclude that substantial financial and resource savings can be made if warfarinisation is undertaken at the community level.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 62 - 62
1 Oct 2012
Deep K Menna C Picard F
Full Access

The aim of the study was to investigate rotational behaviour of the arthritic knee before (preimplant) and after (postimplant) total knee replacement (TKR) using (image-free navigation system as a measurement tool which recorded the axial plane alignment between femur and tibia, in addition to the coronal and sagittal alignment as the knee is flexed through the range of motion. The data on the rotation of the arthritic knee was collected after the knee exposure and registration of the lower limb (preimplant data). The position of rotation between the femur and tibia was recorded in 30° flexion, 45°, 60°, 90° and maximum degrees of flexion of the knee. The data was divided into subsets of varus and valgus knees and these were analysed pre and postimplant for their rotational position using SPSS for statistics.

The system was used in 117 knees of which 91 had full data set available (43 male 48 female). These included 71 varus knees, 16 valgus knees and 4 neutral knees to start in extension. Preimplant data analysis revealed there is tendency for the arthritic knees to first go in internal rotation in the initial part of flexion to 30 degrees and then the rotation is reversed back. This happens irrespective of the initial starting rotational relationship between femur and tibia in full extension. This happens in both varus as well as valgus arthritic knees. This trend of internal rotation in this initial part of flexion is followed in TKR as well implanted with fixed bearing CR knees irrespective of the preoperative deformity. Also noteworthy was the difference in rotation at 30°, 60° and 90 degrees of flexion between preimplant and postimplant knees (irrespective of varus and valgus groups).

When calculated at different points of flexion, there was statistically significant difference in the change of rotation at each point of flexion except 45 degree of flexion. The pre-operative values of change in rotation (internal being positive) at each step from the extended position being 5.4° (SD 4.5°) at 30 ° flexion, 4.7°(5.2°) at 45°, 3.6°(6.1°) at 60°, 3.5°(7.2°) at 90° and 4.2°(8.3°) at maximum flexion. Corresponding post-operative rotations were 2.2°(4.8°), 4.1°(6.4°), 6.6°(7.3°), 9.9°(8.8°) and 7.7°(8.9°). There was also an increase in the total range of rotation that the knee goes through after it has been implanted with prosthesis although it may not happen in every knee. This is statistically significant (p value <0.001) and seems more so in valgus group. The rotational movements and interrelationship of the femur and tibia is a complex issue, especially in the arthritic knees. Preimplant arthritic knee behaved generally similarly to normal knees according to the literature. Normal gait pattern demonstrates that the tibia moved through a 4° to 8° arc of internal rotation relative to the femur. The overall range (10.2° =/−4.2°) of knee rotation in this study greater than 8° might be explained by preimplant data acquired after the knee was approached and therefore releasing knee soft tissue envelop. This study confirmed that during the first 30° both varus and valgus knees moved internally. In our study there is increased range of total rotation postimplant (14° =/−6.8°) which may be explained by the fact that the anterior cruciate ligament is lost in all the TKRs and the posterior cruciate ligament may be dysfunctional as well. Thus the constraints on the knee rotation are decreased postimplant leading to increased rotation. We found some difference between varus and valgus post implant knees in that internal rotation seen in initial 30 degrees of flexion is much more pronounced in valgus knees as compared to varus knees (p value <0.001). This study confirmed knee internal rotation in initial stages of flexion, preimplant in arthritic knees during a passive knee flexion assessment. Varus and valgus knee seemed to behave similarly. This mimics the normal knee rotation. Postimplant knees in TKR behave differently.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 52 - 52
1 Oct 2012
Wilson W Deakin A Picard F Riches P Clarke J
Full Access

Clinical laxity tests are frequently used for assessing knee ligament injuries and for soft tissue balancing in total knee arthroplasty (TKA). Current routine methods are highly subjective with respect to examination technique, magnitude of clinician-applied load and assessment of joint displacement. Alignment measurements generated by computer-assisted technology have led to the development of quantitative TKA soft tissue balancing algorithms. However to make the algorithms applicable in practice requires the standardisation of several parameters: knee flexion angle should be maintained to minimise the potential positional variation in ligament restraining properties; hand positioning of the examining clinician should correspond to a measured lever arm, defined as the perpendicular distance of the applied force from the rotational knee centre; accurate measurement of force applied is required to calculate the moment applied to the knee joint; resultant displacement of the knee should be quantified.

The primary aim of this study was to determine whether different clinicians could reliably assess coronal knee laxity with a standardised protocol that controlled these variables. Furthermore, a secondary question was to examine if the experience of the clinician makes a difference. We hypothesised that standardisation would result in a narrow range of laxity measurements obtained by different clinicians.

Six consultant orthopaedic surgeons, six orthopaedic trainees and six physiotherapists were instructed to assess the coronal laxity of the right knee of a healthy volunteer. Points were marked over the femoral epicondyles and the malleoli to indicate hand positioning and give a constant moment arm. The non-invasive adaptation of a commercially available image-free navigation system enabled real-time measurement of coronal and sagittal mechanical femorotibial (MFT) angles. This has been previously validated to an accuracy of ±1°. Collateral knee laxity was defined as the amount of angular displacement during a stress manoeuvre. Participants were instructed to maintain the knee joint in 2° of flexion whilst performing a varus-valgus stress test using what they perceived as an acceptable load. They were blinded to the coronal MFT angle measurements. A hand-held force application device (FAD) was then employed to allow the clinicians to apply a moment of 18Nm. This level was based on previous work to determine a suitable subject tolerance limit. They were instructed to repeat the test using the device in the palm of their right hand and to apply the force until the visual display and an auditory alarm indicated that the target had been reached. The FAD was then removed and participants were asked to repeat the clinical varus-valgus stress test, but to try and apply the same amount of force as they had been doing with the device.

Maximum MFT angular deviation was automatically recorded for each stress test and the maximum moment applied was recorded for each of the tests using the FAD. Means and standard deviations (SD) were used to compare different clinicians under the same conditions. Paired t-tests were used to measure the change in practice of groups of clinicians before, during and after use of the FAD for both varus and valgus stress tests.

All three groups of clinicians initially produced measurements of valgus laxity with consistent mean values (1.5° for physiotherapists, 1.8° for consultants and 1.6° for trainees) and standard deviations (<1°). For varus, mean values were consistent (5.9° for physiotherapists, 5.0° for consultants and 5.4° for trainees) but standard deviations were larger (0.9° to 1.6°). When using the FAD, the standard deviations remained low for all groups for both varus and valgus laxity. Introducing the FAD overall produced a significantly greater angulation in valgus (2.4° compared to 1.6°, p<0.001) but not varus (p = 0.67) when compared to the initial examination. In attempting to reach the target moment of 18Nm, the mean ‘overshoot’ was 0.9Nm for both varus and valgus tests. Standard deviations for varus laxity were lower for all groups following use of the FAD. The consultants' performance remained consistent and valgus assessment remained consistent for all groups. The only statistically significant change in practice for a group before and after use of the FAD was for the trainees testing valgus, who may have been trained to push harder (p = 0.01). Standardising the applied moment indicated that usually a lower force is applied during valgus stress testing than varus. This was re-enforced by clinicians, one third of whom commented that they felt they had to push harder for valgus than varus, despite the FAD target being the same.

We have successfully standardised the manual technique of coronal knee laxity assessment by controlling the subjective variables. The results support the hypothesis of producing a narrow range of laxity measurements but with valgus laxity appearing more consistent than varus. The incorporation of a FAD into assessment of coronal knee laxity did not affect the clinicians' ability to produce reliable and repeatable measurements, despite removing the manual perception of laxity. The FAD also provided additional information about the actual moment applied. This information may have a role in improving the balancing techniques of TKA and the management of collateral ligament injuries with regard initial diagnosis and grading as well as rehabilitation.

Finally, the results suggest that following use of the FAD, more experienced clinicians returned to applying their usual manual force, while trainees appeared to use this augmented feedback to adapt their technique. Therefore this technique could be a way to harness the experience of senior clinicians and use it to enhance the perceptive skills of more junior trainees who do not have the benefit of this knowledge.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 58 - 58
1 Oct 2012
Augustine A Deakin A Rowe P Picard F
Full Access

There is increasing interest in the use of image free computer assisted surgery (CAS) in total hip arthroplasty (THA). Many of these systems require the registration of the Anterior Pelvic Plane (APP) via the bony landmarks of the anterior superior iliac spines (ASIS) and pubic tubercles (PT) in order to accurately orient the acetabular cup in terms of anteversion and inclination. Given system accuracies are within 1mm and 1° and clinical validation studies have given accuracy by cup position. However, clinical outcomes contain not only system inaccuracies but also variations due to clinical practice. To understand the effects of variation in landmark acquisition on the identification of the acetabular cup orientation, independent bench testing is required. This requires a phantom model that can represent the range of pelvises, male and female, encountered during THA and introduce deliberate known errors to the acquisition to see the effect on anteversion and inclination angles. However, there is a paucity of information in the literature with regards to these specific pelvic dimensions (pelvic width and height). Therefore the aims of this work were to generate the normal expected range of sizes of the APP for both males and females and to use these to manufacture a phantom model that could be used to assess CT free navigation systems.

In the first part of the study 35 human cadavers and 100 pelvic computed tomography (CT) scans were examined.

All cadavers had no gross pelvic abnormalities or previous surgeries. Measurements were carried out with cadavers placed in a supine position. The first author made three sets of measurements using a millimeter ruler. Solid steel pins were used to identify the palpated ASISs and PTs. String was tied between the two ASIS pins and the pelvic width measured. The midpoint of the pubic tubercles was taken to be the midpoint of the pubic symphysis. Pelvic height was measured from the midpoint of the ASIS distance (marked on the string) to the midpoint of the PTs. One hundred pelvic CT scans with no bony abnormalities, previous surgery or metal prosthesis (due to artefacts) were obtained retrospectively from the hospital radiological online system (PACS, Kodak). Mimics software (Mimics12 Materialise, Leuven, Belgium) was used to automatically reconstruct three-dimensional (3D) models using the ‘Bone’ thresholding function. This eliminated any soft tissue from the 3D models. The most anterior ASIS and PT points were then identified on the 3D model surface and measurements of distances made. As the software did not allow identification of points not on the model surface it was not possible to directly obtain the midpoint of the ASIS distance. Therefore to obtain the pelvic height measurements the distance between each ASIS and the ipsilateral and contralateral PTs was also measured. The pelvic height was then calculated using trigonometric functions. The ratio of width to height was calculated (ratio > 1 indicating pelvis width greater than pelvis height). Student's t test was used analyse any differences between male and female pelvic measurements with a p<0.05 being statistically significant.

Using the results from above an aluminium pelvic phantom model was designed and manufactured. It was machined from a billet of marine grade aluminium alloy using a vertical computer numerical controlled (CNC) milling machine. The top surface represented the APP and sides (which represented the acetabuli) were angled to give anteversion and inclination angles of 20° and 45° respectively. Co-ordinates for ASIS and PT points were given based on the 99% prediction intervals from the pelvic data and additional points were milled to give up to a 20 mm error mediolaterally and also in height. Each co-ordinate point was drilled with a 2.0mm diameter ball-nose cutter to a depth of 1.0mm, these holes designed to accommodate the ball-nosed pointer tip to ensure it remained at the same position in space at all orientations of the pointer. Further to this, known errors in height were introduced using accurately manufactured blocks with similar points milled on the surface to fit a ball-nosed pointer. These blocks could be secured to the top surface of the model using screws. A Perspex base unit with tracker attachments was made to hold the phantom and provide the reference frame. A further support that enables the phantom to also be used in the “lateral” position was manufactured.

For the assessment of pelvic size there were 66 females and 69 males, mean age 62.3 years (range from 20 to 99 years). The mean width was 238 mm (SD 20 mm) and mean height was 93 mm (SD 11 mm) with a mean ratio of 2.6 (SD 0.3). There were no statistically significant differences in mean between males and females (p>0.4 in all cases). From this data set the range of APP sizes required to cover 99% of population (width 186 to 290 mm and height 66 to 120 mm) and therefore the measurements for the model were generated. The manufactured model can be used to give the range of pelvis sizes from 170mm to 290mm in width and 60mm to 120mm in height and also to add up to 20 mm of error in palpation of each of the ASISs and PT.

This study generated APP sizes to cover 99% of the general population over a wide age range. It illustrated that a single pelvic model would fit both sexes. The model allows the determination of the effects of changes of the pelvic dimensions may have on the acetabular orientation measured on an image free CAS system including the assessment of point acquisition and deliberate errors. The model has been successfully used in preliminary testing and can be used to assess any CT free system.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 53 - 53
1 Oct 2012
Arachchi S Augustine A Deakin A Picard F Rowe P
Full Access

Computer assisted surgery is becoming more frequently used in the medical world. Navigation of surgical instruments and implants plays an important role in this surgery. OrthoPilot™ Hip Suite (BBraun Aesculap) is one such system used for hip navigation in orthopaedic surgery. However the accuracy of this system remains to be determined independently of the manufacturer. The manufacturer supplies a technical specification for the accuracy of the system (± 2 mm and ± 2°) and previous research has been undertaken to compare its clinical accuracy against conventional hip replacements by x-ray. This clinical validation is important but contains many sources of error or deviation from an ideal outcome in terms of the surgeons' use of the system, inaccurate palpation of landmarks, variation in actual cup position from that given by the navigation system and measurement of the final cup position. It is therefore not possible to validate the claims of the manufacturer from this data. There is no literature evaluating the technical accuracy of the software i.e. the accuracy of the system given known inputs. This study had two main aims 1) validating the accuracy of the OrthoPilot data while navigating the surgical instruments and 2) validating the accuracy of navigation algorithm inside the OrthoPilot system which determines cup implant placement. The OrthoPilot validation was performed and compared against the gold standard of a VICON movement analysis system.

The system used was OrthoPilot™ with a Spectra camera from Northern Digital Inc. (Ontario, Canada). Software investigated was the Hip Suite THA cup only navigation software Version 3.1. The validation was performed and compared against the VICON Nexus version 1.4.116 with Bodybuilder software version 3.55. An aluminium pelvis phantom was used for measurement allowing accurate and repeatable inputs. The OrthoPilot system has three types of instruments sets; passive, active and hybrid. This study was carried out with the passive instruments set. Data were captured simultaneously from both the OrthoPilot and VICON systems for the supine position of the phantom. Distances between the anatomical land marks on the phantom were compared to test the data capturing accuracy of the OrthoPilot system. Anatomical land marks of right anterior superior iliac supine (RASIS), left anterior superior iliac supine (LASIS) and Pubic Symphasis (PS) were palpated to define the Anterior Pelvic Plane (APP). Distances between the anatomical landmarks of RASIS to LASIS, RASIS to PS and LASIS to PS were considered for comparison. Width and height of the pelvis was varied to examine different APPs. The width and height used were 170 mm and 53 mm, 230 mm and 88 mm, and 290 mm and 123 mm respectively. One hundred APP data sets were captured at each instance.

The accuracy of the hip navigation algorithm was tested by applying similar algorithm to calculate the native anteversion and inclination angles of the acetabulum using the VICON system. Data were captured simultaneously from both OrthoPilot and VICON systems. Radiographic anteversion and inclination angles were obtained with phantom model, which had 14° of anteversion angle and 45° of inclination angle. APP of 230 mm in width and 88 mm in height was used to obtain anterior pelvic plane data. Position vectors for each anatomical land mark from the OrthoPilot system were extracted from relevant transformation matrices, while position vectors from the VICON system were extracted from static trial modelling.

The distance data from both systems were compared with calibrated distance data from the phantom model. Mean values of the distances between anatomical landmarks were found to be similar for both OrthoPilot and VICON systems. In addition, these distances were comparable with the pelvic phantom model data, within 1 mm for all measured distances for the VICON and 2 mm for the OrthoPilot. Furthermore, the standard deviations were less than 1% of the measured value. Comparison was also made for the anteversion and inclination angles of the acetabulum of the pelvic model with OrthoPilot and VICON data. Both systems produced similar results for the mean angle values, within 0.5° of the known angles for the VICON and 1° for the OrthoPilot and with standard deviations of the measured values of less than 1%.

All the data were captured simultaneously from both OrthoPilot and VICON systems under the same laboratory conditions. According to the above results it is clear that the distance readings obtained from the OrthoPilot are comparable to the results obtained from the gold standard VICON system and the calibrated distance readings of the phantom. In addition, acetabular angle results obtained from OrthoPilot are almost equivalent to results obtained from VICON and the calibrated phantom angles. Finally it is can be concluded that, both the data palpation with OrthoPilot system and acetabular angle calculation algorithm of the OrthoPilot system are accurate enough for the real world clinical tasks they are expected to perform.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 57 - 57
1 Oct 2012
Clarke J Deakin A Picard F Riches P
Full Access

Knee alignment is a fundamental measurement in the assessment, monitoring and surgical management of patients with osteoarthritis [OA]. In spite of extensive research into the consequences of malalignment, our understanding of static tibiofemoral alignment remains poor with discrepancies in the reported weight-bearing characteristics of the knee joint and there is a lack of data regarding the potential variation between supine and standing (functional) conditions. In total knee arthroplasty [TKA] the lower limb alignment is usually measured in a supine condition and decisions on prosthesis placement made on this. An improved understanding of the relationship between supine and weight-bearing conditions may lead to a reassessment of current surgical goals.

The purpose of this study was to explore the relationship between supine and standing lower limb alignment in asymptomatic, osteoarthritic and prosthetic knees. Our hypothesis was that the change in alignment of these three groups would be different.

A non-invasive infrared position capture system (accuracy ±1° in both coronal and sagittal plane) was used to assess the knee alignment for 30 asymptomatic controls and 31 patients with OA, both before and after TKA. Coronal and sagittal mechanical femorotibial (MFT) angles in extension (negative values indicating varus in the coronal plane and hyperextension in the sagittal plane) were measured with each subject supine and in bi-pedal stance. For the supine test, the lower limb was supported at the heel and the subject told to relax. For the standing position subjects were asked to assume their normal stance. The change in alignment between these two conditions was analysed using a paired t-test for both coronal and sagittal planes. To quantify the change in 3D, vector plots of ankle centre displacement relative to the knee centre from the supine to standing condition were produced.

Alignment in both planes changed significantly from supine to standing for all three groups. For the coronal plane the supine and standing measurements (in degrees, mean(SD)) were 0.1(2.5) and −1.1(3.7) in the asymptomatic group, −2.5(5.7) and −3.6(6) in the OA group and −0.7(1.4) and −2.5(2) in the TKA group. For the sagittal plane the numbers were −1.7(3.3) and −5.5(4.9); 7.7(7.1) and 1.8(7.7); 6.8(5.1) and 1.4((7.6) respectively. This change was most frequently towards relative varus and extension. Vector plots showed that the trend of relative varus and extension in stance was similar in overall magnitude and direction between the three groups.

Knee alignment can change from supine to standing for asymptomatic and osteoarthritic knees, most frequently towards relative varus and hyperextension. The similarities between each group did not support our hypothesis. The consistent kinematic pattern for different knee types suggests that soft tissue restraints rather than underlying joint deformity may be more influential in dynamic control of alignment from lying to standing. In spite of some evidence suggesting a difference between supine and standing knee alignment a mechanical femorotibial (MFT) angle of 0° is a common intra-operative target as well as the desired post-operative weight-bearing alignment. These results indicated that arthroplasties positioned in varus intra-operatively could potentially become ‘outliers’ (>3° varus) when measured weight-bearing. Mild flexion contractures may correct when standing, reducing the need for intra-operative posterior release. These potential changes should be considered when positioning TKA components on supine limbs as post-operative functional alignment may be different.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 51 - 51
1 Oct 2012
Claasen G Martin P Picard F
Full Access

Over the past fifteen years, computer-assisted surgery systems have been more commonly used, especially in joint arthroplasty. They allow a greater accuracy and precision in surgical procedures and thus should improve outcomes and long term results.

New instruments such as guided handheld tools have been recently developed to ultimately eliminate the need for drilling/cutting or milling guides.

To make sure that the handheld tool cuts and/or drills in the desired plane, it has to be servo-controlled. For this purpose, the tool joints are actuated by computer-controlled motors. A tracking system gives the tool position and orientation and a computer calculates the corrections for the motors to keep the tool in the desired plane.

For this servo-control, a very fast tracking system would be necessary. It should be fast enough to follow human motion. Current optical tracking systems used for computer-assisted surgery have a bandwidth of about 10–60 Hz [3]. For servo-control, a bandwidth of about 200–300 Hz would be required to be faster than human reaction; the latency of the system should also be small, about 2–3 ms. Optical tracking systems with a higher bandwidth exist but are too expensive for applications in surgery; besides the latency – due to the complex computer vision treatment involved – is too big.

We have developed a hybrid tracking system consisting of two cameras pointed at the operating field and a sensor unit which can be attached to a handheld tool.

The sensor unit is made up of an inertial measuring unit (IMU) and numerous optical markers. The data from the IMU (three gyroscopes and three accelerometers placed such that their measurement axes are perpendicular to each other) and the marker images from the cameras looking at the optical markers are fed to a data fusion algorithm. This algorithm calculates the position and the orientation of any handheld tool. It can do so at the higher of the two sensor sample rates which is the IMU sample rate in our case.

Our experimental setup consists of an ADIS 16355 IMU which runs at a sample rate of 250 Hz and a pair of stereo cameras which are sampled at 16.7 Hz. The data collected from these sensors are processed offline by the data fusion algorithm. To compare the results of our hybrid system to those of a purely optical tracking system, we use only the marker image data to recalculate the sensor unit's position by triangulation.

The experiment we conducted was a fast motion in a horizontal direction starting from a rest position. The sensor unit position was calculated by the hybrid system and by the optical tracking system using the experimental data. The fast motion started right after the optical sample at t1 and the hybrid system detects it at once. The optical tracking system, on the other hand, only sees the motion at the next optical sample time t2.

These results show that our hybrid system is able to follow a fast motion of the sensor unit whereas a purely optical tracking system is not.

The proposed hybrid tracking system calculates position and orientation of any handheld tool at a high frequency of 250 Hz and thus makes it possible to servo-control the tool to keep it in the desired plane.

Several similar systems fusing optical and inertial data have been described in the literature. They all use processed optical data, i.e. 3D marker positions. Our algorithm uses raw image data to considerably reduce computation time. This hybrid tracking system can be used with any handheld tool developed to substitute existing drilling, cutting or milling instruments used in orthopaedic surgery and particularly in arthroplasty.

The sensor unit can be easily implemented into an existing optical tracking system. For the surgeon, the only change is an additional small inertial sensor besides the optical markers already attached to the tool.

The authors would like to thank the AXA Research Fund for funding G.C. Claasen's work with a doctoral grant and Guillaume Picard for his contributions to the experimental setup.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVIII | Pages 39 - 39
1 Jun 2012
Clarke J Deakin A Picard F Riches P
Full Access

Knee alignment is a fundamental measurement in the assessment, monitoring and surgical management of patients with OA. In spite of extensive research into the consequences of malalignment, there is a lack of data regarding the potential variation between supine and standing (functional) conditions. The purpose of this study was to explore this relationship in asymptomatic, osteoarthritic and prosthetic knees. Our hypothesis was that the change in alignment of these three groups would be different.

Infrared position capture was used to assess knee alignment for 30 asymptomatic controls and 31 patients with OA, before and after TKA. Coronal and sagittal mechanical femorotibial (MFT) angles in extension (negative values varus/hyperextension) were measured supine and in bi-pedal stance and changes analysed using a paired t-test. To quantify this change in 3D, vector plots of ankle centre displacement relative to the knee centre were produced.

Alignment in both planes changed significantly from supine to standing for all three groups, most frequently towards relative varus and extension. In the coronal plane, the mean±SD(°) of the supine/standing MFT angles was 0.1±2.5/−1.1±3.7 for asymptomatic (p=0.001), −2.5±5.7/−3.6±6.0 for osteoarthritic (p=0.009) and −0.7±1.4/ −2.5±2.0 for prosthetic knees (p<0.001). In the sagittal plane, the mean±SD(°) of the supine/standing MFT angles was −1.7±3.3/−5.5±4.9 for asymptomatic (p<0.001), 7.7±7.1/1.8±7.7 for osteoarthritic (p<0.001) and 6.8±5.1/1.4±7.6 for prosthetic knees (p<0.001). The vector plots showed that the trend of relative varus and extension in stance was similar in overall magnitude and direction between the groups.

The similarities between each group did not support our hypothesis. The consistent kinematic pattern for different knee types suggests that soft tissue restraints rather than underlying joint deformity may be more influential in dynamic control of alignment from lying to standing. This potential change should be considered when positioning TKA components on supine limbs as post-operative functional alignment may be different.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVIII | Pages 4 - 4
1 Jun 2012
Goudie S Deakin A Picard F
Full Access

Fixed flexion contracture (FFC) following total knee arthroplasty (TKA) is a source of morbidity for patients. This retrospective review of pre- and post-operative data for 811 total knee replacements with two year follow up aimed to identify pre-operative risk factors for developing FFC and quantify the effect of FFC on outcomes. The incidence of FFC two years post-operation was 3.6%. Advanced age was associated with increased rate of FFC (p=0.02) Males were 2.6 times more likely than females to have FFC at two years (p=0.012). Patients with pre-implant FFC were 2.95 times more likely than those without to have FFC (p=0.028). BMI was not a risk factor (p=0.968). Patients with FFC had poorer outcomes (Oxford Knee Score p=0.003, patient satisfaction p=0.036). The results of this study support the existing literature and clarify a previously contentious point by excluding BMI as a risk factor.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVIII | Pages 40 - 40
1 Jun 2012
Clarke J Spencer S Deakin A Picard F Riches P
Full Access

Assessment of coronal knee laxity via manual stress testing is commonly performed during joint examination. While it is generally accepted that the knee should be flexed slightly to assess its collateral restraints, the importance of the exact degree of flexion at time of testing has not been documented. The aim of this study therefore was to assess the effect of differing degrees of knee flexion on the magnitude of coronal deflection observed during collateral stress testing.

Using non-invasive infrared technology, the real-time coronal and sagittal mechanical femorotibial (MFT) angles of three asymptomatic volunteers were measured. A single examiner, blinded to the real-time display of coronal but not sagittal alignment, held the knee in maximum extension and performed manual varus and valgus stress manoeuvres to a perceived end-point. This sequence was repeated at 5° increments up to 30° of flexion. This provided unstressed, varus and valgus coronal alignment measurements as well as overall envelope of laxity (valgus angle – varus angle) which were subsequently regressed against knee flexion.

Regression analysis indicated that all regression coefficients were significantly different to zero (p < 0.001). With increasing knee flexion, valgus MFT angles became more valgus and varus MFT angles became more. The overall laxity of the knee in the coronal plane increased approximately fourfold with 30° of knee flexion.

The results demonstrated that small changes in knee flexion could result in significant changes in coronal knee laxity, an observation which has important clinical relevance and applications. For example the assessment of medial collateral ligament (MCL) injuries can be based on the perceived amount of joint opening with no reference made to knee flexion at time of assessment. Therefore, close attention should be paid to the flexion angle of the knee during stress testing in order to achieve a reliable and reproducible assessment.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XI | Pages 32 - 32
1 Apr 2012
Clarke J Picard F Riches PE Wearing SC Deakin A
Full Access

The assessment of knee laxity by application of varus and valgus stress is a subjective clinical manoeuvre often used for soft tissue balancing in arthroplasty or for diagnosis of collateral ligament injuries. Quantitative adjuncts such as stress radiographs have enabled a more objective measurement of angular deviation but may be limited by variations in examination technique. The aim of this study was to quantify clinical knee laxity assessment by measurement of applied forces and resultant angulations.

A novel system for measuring the manually-applied forces and moments was developed. Both hardware and software components underwent laboratory validation prior to volunteer testing. Two clinicians performed multiple blinded examinations on two volunteers and the corresponding angular deviations were measured using a validated non-invasive system with a repeatability of ±1° for coronal alignment. The distance between the kinematically-determined knee and ankle centres was used as the moment arm.

Comparison of single measurements of laxity showed a wide intra- and inter-observer variation (up to 3°). However, when the median value of repeated measurements was used there was good repeatability for both a single surgeon on different days and between the two clinicians with angular measurements agreeing within 1°. In spite of this agreement, the magnitudes of the tangential forces and moments applied varied between clinicians and did not correlate with the corresponding angular deviations.

It was not possible to standardise clinical examination using the current system. Orientation of the applied force with respect to the leg was not quantified and during force measurement it became apparent that the assumed tangential direction of application was not true. This may explain the lack of correlation between the force and angulation data. However, for quantitative measurement of coronal knee laxity using non-invasive laxity measurements, the use of a repeated measures protocol may be accurate enough for clinical application.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_IX | Pages 86 - 86
1 Mar 2012
Page S Pinzuti J Payne AP Picard F
Full Access

Purpose

To evaluate the normal bony profiles of the anterior surface of the distal femoral cortex, its relation to the posterior condylar plane and assess the implications of these findings to anterior femoral referencing.

Methods and Results

Fifty well preserved adult, cadaveric femora were studied. Different points on the proximal and distal femur were recorded using an optoelectronic system based around a commercial navigation system. Definitions were: anterior femoral plane (AFP) derived from nine points on the anterior cortex of the distal femur; posterior condylar plane (PCP) as the plane parallel to the sagittal mechanical axis of the femur and containing the PCA. The anterior femoral cortex was divided into lateral, median and medial areas. Average heights of each of these areas from the PCP were calculated, as were the angles between the PCP and AFP.

Four distinct anterior cortex profiles were seen. In 28 specimens the lateral side had the highest mean height and the medial side had the lowest mean height (Group 1). For 13 specimens the lowest mean height was in the median area (Group 2) but 7 specimens had highest mean height here (Group 3). Only 2 specimens had the highest mean height on the medial side with the lowest mean height on the lateral side (Group 4). The average angle between the AFP and the PCP was 1.3° of external rotation. In Group 1 the AFP angle was more internally rotated (-10° to -2°) compared to the other groups, in particular Group 4 which showed the most external rotation (3° and 4°).


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 509 - 509
1 Nov 2011
Picard F McDonald D Deakin A Scott N Kinninmonth A Willcox N
Full Access

Purpose of the study: Recent data in the literature regarding intra-articular deliver of analgesics during the postoperative period have been encouraging. Patients benefit from optimal analgesia and earlier mobilisation, shortening rehabilitation time and hospital stay and limiting complications. In light of these encouraging results, our institution developed a programme designed to address all postoperative situations associated with implantation of a total knee arthroplasty (TKA).

Material and methods: The programme combines pre-operative counselling and a postoperative programme for multimodal anaesthesia in addition to intra-articular analgesia for 24 hours and early mobilisation. We present here the results of this technique in patients undergoing first-intention TKA. We analysed information collected prospectively in all patients who had TKA from January to June 2008: 319 patients in six months. The operation was performed under peridural anaesthesia supplemented by intra-articular ropivacaine delivered by a catheter for 24 hours. Patients were mobilised, or verticalised, the day of surgery according to individual capacities. Data collected included: pain scores, date of the end of physical therapy, and data reviewed at six weeks.

Results: A cohort of 305 patients was analysed; 36% of patients were mobilised the day of the operation and 93% on day 2. The rate of urinary catheters was 12% and administration of intravenous fluids 10%. Physical therapists determined that 58% of patients could be discharged on 3 after surgery and 85% on day 5. Eighty-percent of patients were free of nausea or vomiting and had well controlled pain. Regarding function, mean range of motion was 85° at discharge with 31% of patients requiring physical therapy. At six weeks, mean range of motion was 95° and only 5% of patients had lost amplitude (reduction > 10° of range of motion) compared to discharge values. Mean scores on the Oxford questionnaire improved from 43 preoperatively to 26 six weeks postoperatively.

Discussion: This multidisciplinary approach guarantees excellent postoperative analgesia with early mobilisation and provides satisfactory results at six weeks. To this can be added the benefit of a lower rate of urinary catheters, administration of intravenous fluids, and physical therapy.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 528 - 528
1 Nov 2011
Picard F Page S Willcox N Deakin A Pinzuti J Payne A
Full Access

Purpose of the study: Rotation of the tibial implant is an important factor for the functional outcome of total knee arthroplasty (TKA). Any rotational malposition will cause eccentric loading of the plateau. Several techniques have been recommended to avoid malposition, but none has proven superior over the others in terms of reliability or reproductibility. The landmark used to establish rotation must meet two prerequisites: easy identification and reliable representation of the anatomic rotation of the proximal tibia. This study was conducted to compare seven different techniques for landmarking used for choosing the rotation of the tibial base in TKA.

Material and methods: An optoelectronic method was used to measure 50 tibia selected among a collection of 600 skeletons. A palper was used to locate 34 distinct landmarks and institute each reference system. The groups of anatomic points were reconstructed to form lines and plans depending on the comparisons to make: posterior condylar alignment (PCA), transversal alignment (TA), anterior condylar alignment (ACA), alignment of the anterior tibial tuberosity (ATT), the transmalleolar alignment (TMA), the line of the tibial crest (LTC) and a new line, the anterior distal line (ADL). The PCA was used as the reference.

Results: Intra-observer variation was determined in a preliminary study using ten consecutive measurements. The standard deviation was 0.5° with a distribution of 1.8°. Angle: mean [-:internal rotation; +external rotation], standard deviation: difference between the minimum and the maximum. TA: −5.13; 9.2; 38.03; ACA: −12.81; 6.7; 41.74; ATT: 68.72; 8.6; 58.46; TMA: −22.68; 11.6; 72.84; LTC: 67.56; 10.3; 46.11; ADL: 16.61; 13.2; 74.93.

Discussion: This study did not prove convincingly that any one of the tibial alignments was better than another; which demonstrates that use of a single reference is probably inappropriate to determine the rotational alignment of the tibial base for TKA. It was noted however that the anterior condylar line (mean external rotation 12.8°-SD< 7° relative to the PCA) could be pertinent for future research since this line is easily accessible and palpable, particularly during navigated surgery.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 391 - 391
1 Jul 2011
Deep K Picard F Baines J Deakin A Kinninmonth A Sarungi M
Full Access

Arthritic knees, for the purpose of surgical correction during arthroplasty, are generally thought to be either varus knees or valgus knees and soft tissue releases are done in accordance with the same concept. This view is dependent on the clinical deformity in extended knee and the plain AP radiograph of the extended knee. This concept is now challenged by the observations from our study of the arthritic knee kinematics using computer aided navigation when performing total knee replacement arthroplasty. We performed 283 total knee replacements with computer aided navigation. Imageless navigation was used with Stryker and Orthopilot systems. Bone trackers were fixed to the bones and through real time infrared communication the data was collected. The knee kinematics were recorded before and at the end of surgery. This included measurement of biomechanical axis with the knee extended and then gradually flexed. The effect of flexion on the coronal alignment was recorded real time on the computer. The results were then analysed and compared with plain radiographic deformity on long leg films.

Majority of the knees did not behave in a true varus or valgus fashion. We classified the deformity into different groups depending on the behavior of the knee in coronal plane as it moves from extension to flexion. 2 degree was taken as minimum deviation to signify change, as the knee bends from full extension to flexion. The classification system is as follows

Neutral

Deformity - Varus/Valgus to start with in extension

Gp1

Deformity remains the same as the knee flexes

Increasing deformity as the knee flexes

Gp2

Decreasing deformity but does not reach neutral in flexion

Decreasing deformity reaches neutral in flexion

Gp3

Decreasing deformity and crosses to opposite (Varus to valgus or valgus to varus) deformity in flexion

Gp4

Deformity first increases and then decreases but does not reach neutral

Deformity first increases and then decreases to neutral

Deformity first increases and then decreases to cross over to opposite deformity in flexion

Traditional releases of medial or lateral structures without realising the true picture of what happens when the knee is flexed, may not be correct. From our study it is clear that not all arthritic varus or valgus knees behave in the same way. Some of the releases we perform conventionally may not be required or need to be modified depending on the knee kinematics.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 387 - 387
1 Jul 2011
Ferguson A Deakin A Wearing S Picard F
Full Access

As further improvements in surgical accuracy are made possible by computer-aided surgery, there is a demand for new pre- and post- surgical assessment and more accurate intra-operative registration techniques. Ultrasonic palpation is being used in navigated hip surgery but as yet little work had been published on the identification of anatomical landmarks used in knee surgery with this technique. The aim of this study was to investigate the accuracy of the identification of the femoral condyles with ultrasound in both saline and in tissue mimicking material (TMM).

The system comprised of an image free navigation system (OrthoPilot, B Braun Aesculap) synchronized with a standard B-mode ultrasound system (Echoblaster 128, TELEMED) used with passive trackers. Bony anatomy was represented by two sawbone phantoms; one involving an isolated femur and one simulated knee joint. Both phantoms had fiducial markers in the form of steel pins inserted into the condylar eminences of the femur, providing sharply defined structural interfaces for determination of inter-condylar distance (ICD). Initial testing was completed in a waterbath filled with saline (NaCl 4500ppm) maintained at 22°C. Further testing used both sawbone phantoms encased in TMM. To gain accurate dimensions of the ICD, 3D models of both sawbone phantoms were created using a high-resolution non-contact 3D digitiser (Konica Minolta Sensing Inc.) and measurements taken using Geomagic software. Measurements for all test set-ups were repeated and mean (SD) values calculated.

The mean ICD measurement (SD) of the isolated femur from the high resolution 3D model was 53.6mm (1.2mm) (n=4). The ICD for the isolated femur in the saline water bath was 48.8mm (0.7mm) (n=5). For the isolated femur encased in TMM the mean ICD was 54.6mm (0.7mm) (n=4) with the probe positioned parallel to the shaft of the femur and 52.2mm (0.4mm) (n=5) with the probe held perpendicular to the femur. For the second phantom, which consisted of an articulated knee joint, the mean ICD measured from the high-resolution 3D model was 43.5mm (1.0mm) (n=5). When encased in TMM, the mean ICD derived from the navigation system was 42.6mm (1.4mm) (n=5).

Average ICD measurements for phantoms encased in TMM were within 1mm of that determined by high resolution, non-contact 3D digitization. However, results in the saline waterbath were less accurate, with an average difference of 4.8mm in ICD measurement. We believe these differences largely reflect the digitisation error associated with manual registration of the fiducial markers and highlights the difficulty in using this method and taking measurements within one scanned plane. Hence we are now developing a new method of automatic registration that uses multiple scans and will hopefully provide a more accurate outcome.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 391 - 391
1 Jul 2011
Wilson W Deakin A Wearing S Payne A Picard F
Full Access

As well as improved component alignment, recent publications have shown that navigation systems can assess knee kinematics and provide a quantitative measurement of soft tissue characteristics. In particular, navigation-based measures of varus and valgus stress angles have been used to define of the extent of soft-tissue release required at the time of the placement of the prosthesis. However, the extent to which such navigation-derived stress angles reflect the restraining properties of the collateral ligaments of the knee remain unknown. The aim of this cadaveric study was to investigate correlations between the structural properties of the collateral ligaments of the knee and stress angles measured with an optically-based navigation system.

Nine fresh-frozen cadaveric knees (age 81 ± 11 years) were resected 10-cm proximal and distal to the knee joint and dissected to leave the menisci, cruciate ligaments, posterior joint capsule and collateral ligaments. The resected femoral and tibial were rigidly secured within a test system which replicated the lower limb and permitted kinematic registration of the knee using the standard workflow of a commercially available image free navigation system. Frontal plane knee alignment and varus-valgus stress angles in extension were acquired. The manual force required to produce varus-valgus stress angles during clinical testing was quantified with a dynamometer attached to the distal tibial segment. Following assessment of knee laxity, bone–ligament–bone specimens were prepared and mounted within a uniaxial materials testing machine. Following 10 preconditioning cycles specimens were extended to failure. Force and crosshead displacement were used to calculate principal structural properties of the ligaments including ultimate tensile strength and stiffness as well as the instantaneous stiffness at loads corresponding to those applied during varus-valgus stress testing. Differences in the structural properties of the collateral ligaments and the varus and valgus laxity of the knee were evaluated using paired t tests, while potential relationships were investigated with scatter plots and Pearson’s product moment correlations.

There was no significant difference in the mean varus (4.3 ± 0.6°) and valgus laxity measured (4.3 ± 2.1°) for the nine knees or the corresponding distal force application required during stress testing (9.9 ± 2.5N and 11.1 ± 4.2N, respectively). Six of the nine knees had a larger varus stress angle compared to the valgus angle. There was no significant difference in the stiffness of the medial (63 ± 15 N/mm) and lateral (57 ± 13 N/mm) collateral ligaments during failure testing. The medial ligament, however, was approximately two fold stronger than its lateral counterpart (780 ± 214N verse 376 ± 104N, p< 0.001). While the laxity measures of the knee were independent of the ultimate tensile strength and stiffness of the collateral ligaments, there was a significant correlation between the force applied during stress testing and the instantaneous stiffness of the medial (r = 0.91, p = 0.001) and lateral (r = 0.68, p = 0.04) collateral ligaments.

The findings of the current study suggest that computer-assisted measures of passive knee laxity are largely independent of the ultimate strength and stiffness of the collateral ligaments. The force applied during manual stress testing of the knee, however, was strongly correlated with the instantaneous stiffness of the collateral ligaments suggesting users may attend to the low-stress behaviour of the ligaments. Nonetheless the force applied during stress testing varied between knees, as did the resultant angular deviation. Therefore to make use of the quantified data given by navigation systems, further work to understand the relationships between applied force, resultant stress angles and clinical outcomes for knee arthroplasty is required.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 388 - 388
1 Jul 2011
Clarke J Deakin A Nicol A Picard F
Full Access

Computer-assisted technology has provided surgeons with intra-operative quantitative measurement tools that have led to the development of soft-tissue balancing algorithms based on surgeon-applied varus-valgus stress. Unfortunately these forces tend not to be standardised and the resultant algorithms may at best be surgeon-specific. Furthermore, these techniques are only available intra-operatively and rely on the rigid fixation of trackers to bone. The aim of this study was to develop a non-invasive computer-assisted measurement technique and assess the variation in collateral knee laxity measurements between different clinicians.

An image-free navigation system was adapted for non-invasive use by developing external mountings for active infrared trackers. A leg model with rigid tracker mountings was designed and manufactured for comparison. Multiple kinematic registrations of alignment were made for both the model and the right leg of a volunteer to quantify the soft tissue artefacts. Repeatability of the system was assessed by performing two registration processes on eight volunteers. Collateral knee laxity was assessed on a single volunteer by 16 participants of varying experience each applying a maximum varus and valgus knee stress. Two surgeons performed repeated examinations to assess intra-observer variation.

For repeated registrations of alignment, the SD of the non-invasive mounting (0.8°) was only a third higher than the leg model (0.6°) and the actual range was only 1° larger. The repeated alignment measurements on the volunteers showed a high level of agreement with an intraclass correlation coefficient of 0.93. Varus-valgus stress values showed poor inter-observer variation with a wide range of angles for both varus (1° to 7°) and valgus stress (0.5° to 5°). A Mann-Whitney test between the two sets of repeated tests showed that both varus stress and overall laxity were significantly different (p< 0.0001) but that valgus stress was marginal (p=0.052). Intra-observer measurements overall appeared more consistent.

Soft tissue artefacts did not significantly reduce the repeatability of the assessment of coronal knee alignment using a navigation system and this provided a non-invasive technique for assessing coronal knee laxity. The perception of an ‘end-point’ varied significantly between different clinicians and although there may be a role for surgeon-specific algorithms, to use this quantitative data more widely there is a need to standardise the forces and moments applied.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 385 - 386
1 Jul 2011
Millar NL Deakin AH Millar LL Picard F
Full Access

Recent studies suggest the use of computer navigation during TKA can reduce intraoperative blood loss. The purpose of this study was to assess if navigation affected blood loss after TKA in the morbidly obese patient (BMI> 40).

Total body blood loss was calculated from body weight, height and haemotocrit change, using a model which accurately assess true blood loss.

The computer navigated group comprised of 60 patients, 30 with BMI > 40 and 30 with BMI< 30. The matched conventional knee arthroplasty group consisted of 62 consecutive patients, 31 with BMI> 40 and 31 with BMI< 30 The groups were matched for age, gender, diagnosis and operative technique.

Following TKA, the mean total loss was 1014mls (521-1942, SD 312) in the computer assisted group and 1287mls (687-2356, SD 330) in the conventional group. This difference was statistically different (p< 0.001). The mean calculated loss of haemoglobin was 19 g/dl in the navigated group versus 25 g/dl in the conventional group; this was also significant at p< 0.01. The mean total loss was 1105mls in patients with a BMI> 40 in the navigated group compared to 1300mls in the conventional group (p< 0.01). A significant correlation was found between total blood loss and BMI (r=0.2, p< 0.05).

This study confirms a highly significant reduction in total body blood loss and calculated Hb loss between computer assisted and conventional TKA in obese patients. Therefore navigation-assisted TKA could present an effective and safe method for reducing blood loss and preventing blood transfusion in obese patients undergoing TKA.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 535 - 535
1 Oct 2010
Deep K Bains J Deakin A Kinninmonth A Munro N Picard F Sarungi M Smith B Wilson C
Full Access

Introduction: The knee joint replacement arthroplasty is a very successful procedure. Traditionally we aim to perform the arthroplasty and recreate the patients’ biomechanical axis and correct the coronal plain alignment deformity. Unfortunately till recently there was no fine way of controlling the exact alignment and depending on surgeon to surgeon, a valgus (to anatomical axis) of 3 to 7 degrees is aimed for using mechanical intra or extramedullary jigs. On proper measurements only 70–80% of knees achieve the aimed result at best as can be seen in the literature. With the advent of computer aided navigation we can now achieve the desired alignment in a much higher percentage of patients.

Material: We performed 1000 total knee arthroplasties at our hospital. Out of these 500 were performed using computer navigation and 500 using conventional mechanical jigs. Pre op and post op long leg alignment films were taken using standardised method. The data was collected using oxford scores and from computer navigation machines and plain radiographic analysis. The observers doing the radiographic analysis were blinded as to whether the patient had procedure done by conventional means or by computer navigation. Sub grouping of the deformities was done depending on the amount of deformity.

Results: 500 patients had the operation done by conventional means and the other 500 with computer navigation guidance. Further subgroups were made depending on the amount of pre-existing radiological deformity 0–5, 6–10, 11–15 and more than 15 degrees of varus or valgus deformity. The effect of gender, bmi, surgeon experience, clinical oxford score outcome was also considered. It was clear that the patients who had more severe deformities and valgus deformities had better post operative alignments after the procedure was performed with computer navigation as compared with the conventional means. There was statistically significant difference observed between the subgroups.

Discussion: Orthopaedic surgery has improved with technical advancements over the number of years. With any new procedure it takes a long time to shed the old beliefs and adapt the new concepts. While we have plenty of evidence in literature and from our study that computer navigation can give better desired alignment after total knee arthroplasty especially with more severe deformities, it still needs to be taken up by majority of orthopaedic surgeons. Ours is the first study to demonstrate the difference in the specific subgroups.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_III | Pages 421 - 421
1 Jul 2010
Millar NL Deakin AH Millar LL Picard F
Full Access

Computer navigated total knee arthroplasty (TKA) has several proposed benefits including reduced post operative blood loss. We compared the total blood volume loss in a cohort of morbidly obese (BMI> 40) patients undergoing computer navigated (n=30) or standard intramedullary techniques (n=30) with a cohort of matched patients with a BMI< 30 also undergoing navigated (n=31) or standard TKA (n=31). Total body blood loss was calculated from body weight, height and haemotocrit change, using a model which accurately assesses true blood loss as was maximum allowable blood loss. The groups were matched for age, gender, diagnosis and operative technique.

The mean true blood volume loss was significantly (p< 0.001) less in the computer assisted group (1014±312mls) compared to the conventional group (1287±330mls). Patients with a BMI > 40 and a computer navigated procedure (1105 ±321mls) had a significantly lower (p< 0.001) blood volume loss compared to those who underwent a conventional TKA (1399±330mls). There was no significant difference in the transfusion rate or those reaching the maximum allowable blood loss between groups.

This study confirms a significant reduction in total body blood loss between computer assisted and conventional TKA in morbidly obese patients. However computer navigation did not affect the transfusion rate or those reaching the transfusion trigger in the morbidly obese group. Therefore computer navigation may reduce blood loss in the morbidly obese patient but this may not be clinically relevant to transfusion requirements as previously suggested.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_III | Pages 421 - 421
1 Jul 2010
Millar NL Deakin A Millar LL Picard F
Full Access

The influence of BMI on outcomes from TKA remains unclear. The purpose of this study was to evaluate if navigation affected the outcomes of TKA in obese patients.

Sixty-four (mean age 65 yrs±7) consecutive computer navigated TKA’s were compared with a matched group of 64 (65yrs±8) conventional TKA’s in patients with a BMI > 35. The groups were matched for age, gender, diagnosis and operative technique. Patients were reviewed pre-operatively and 6 weeks and 1 year post-operatively. All patients had clinical and radiological assessment and were scored using the Oxford knee score.

There were significant improvements (p< 0.001) in all clinical outcomes at 6 weeks and 1 year post-operatively in both groups. No significant differences were found between groups 6 weeks post surgery. The computer navigated group performed significantly better in post operative knee flexion (Nav 99° ± 10, Conv 94° ±12, p< 0.05) and Oxford scores (Nav 20 ± 10, Conv 25±12, p< 0.01) at 1 year compared to the conventional group. There were significantly (p< 0.05) more flexion contractures one year post-operatively in the conventional group which correlated significantly (p< 0.001) with decreased maximal knee flexion at one year.

This study suggests that navigated TKA produces better early clinical outcomes than conventional TKA in the obese patients possibly due to improved sagittal alignment as evidenced by the lack of flexion contractures 1 year post-operatively.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_II | Pages 321 - 321
1 May 2010
Ilyas J Deakin A Brege C Picard F
Full Access

Flexion contracture is a common deformity encountered in patients requiring total knee replacements (TKR). Both the soft tissue envelope and articular bones are involved in the knee extension lag. A few studies in the past have assessed the relationship between bone cuts and extension deficit by using goniometers and rulers. Using navigation for TKR enables the accurate measurement of knee flexion contracture and bone cuts. The aim of this study was to try to establish a relationship between extension lag correction and the size of bone cuts made.

104 continuous TKR were completed by a single consultant using the OrthoPilot® (BBraun, Aesculap) navigation system and Columbus implants. 74 knees had preoperative flexion contracture (including neutral knees) while 30 were in hyperextension. Data was recorded prospectively using the navigation system. These included preoperative flexion and extension angles, actual bone cuts of tibia and femur (both medial and lateral), postoperative correction of flexion and extension angle, size of the prosthesis with thickness of polyethylene and soft tissue release. Of the 74 knees with fixed flexion, 57 had no release and 13 had a posterior release (4 had an intermediate release and were excluded from the study).

For knees with fixed flexion (n=70) there was a significant statistical difference between the pre and post implant extension angle (p < < 0.0001). There was no correlation between the thickness of bone cuts and postoperative extension lag either for the group with no release (p=0.495) or posterior release (p=0.516). There was also no correlation between bone cuts and preoperative angles for either type of release (p=0.348 and p=0.262). There was a significant difference between the preoperative extension deformity for the two soft tissue releases performed (p=0.00019), the mean fixed flexion angles being −4.4° and −10.4° for no release and posterior release respectively.

Flexion contracture deformity in TKR can theoretically be solved in two ways: either by extensively releasing the soft tissue or by increasing the extension gap by cutting more bone (logically the distal femur). Appropriate soft tissue management and release in TKR is crucial in balancing the prosthesis in the coronal as well as the lateral plane. This study seems to confirm the supremacy of soft tissue management and release over bone cut resection. Cutting more or less bone could in fact lead to a poorer outcome as this will change the joint line level without having any additional beneficial effect in correcting the flexion contracture. Conversely adequate soft tissue release has corrected the flexion contracture when needed. In conclusion, there was no correlation between bone cut resection and extension lag correction and with large extension deficits, a posterior soft tissue release and osteophytes resection was more important than bone cuts.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 396 - 397
1 Sep 2009
Abu-Rajab R Deakin A Kandasami M Sarungi M Picard F Kinninmonth A
Full Access

Short leg radiographs remain the standard radiographs available in many UK hospitals. The aim of this study was to see if these radiographs are reliable when assessing the post-operative alignment of total knee arthroplasty in comparison to a Hip-Knee-Ankle (long leg) radiograph.

Twenty consecutive 6 week post-operative long leg radiographs, taken with a standardised protocol, and a short leg radiograph derived from the same digital image were each examined on two separate occasions by two observers. On the long leg radiograph the anatomical and mechanical axis were calculated and on the short leg radiograph the anatomical and surrogate mechanical axis were calculated. These data were used to investigate intra- and inter-observer error. A single observer also collected the same measurements on an additional 30 radiographs (total of 50) to further investigate any patterns of error.

On long leg radiographs, intra-observer agreement was good for both anatomical and mechanical axis for both observers (Intraclass Correlation Coefficients [ICC] of 0.95 to 0.98). The anatomical axis on short leg radiographs was also good (ICC = 0.92 and 0.76). Intra-observer agreement for the short leg radiograph derived mechanical axis was not as consistent (ICC = 0.73 and 0.56). Inter-observer variability was good for long leg radiographs for both anatomical (ICC = 0.89) and mechanical (ICC = 0.95) axis. On short leg radiographs, however, agreement was not as good, in particular for the mechanical axis (ICC = 0.51), but also the anatomical (ICC = 0.73). Taking the long leg radiograph values as the “gold standard” there was a difference in the magnitude of errors seen on short leg radiographs dependant on the knee alignment. Varus aligned knees (n=24) had an average error of 1.2° (0° to 3°) for the anatomical axis and 1.6° (0° to 4°) for the mechanical axis. Perfectly aligned knees (n=8) had an average error of 3.0° (1° to 6°) for the anatomical axis and 2.9° (1° to 5°) for the mechanical axis. Valgus aligned knees (n=18) had an average error of 3.4° (0° to 8°) for the anatomical axis and 5.8° (2° to11°) for the mechanical axis. Using a Mann-Whitney test the magnitude of error was greater for valgus knees for both anatomical (p< 0.0001) and mechanical (p< 0.00001) axes when compare to varus knees. Interestingly all except one knee measured on the long leg radiograph as valgus aligned appeared to be in varus on the short leg radiograph.

In conclusion, short leg radiographs are inadequate to make any comment on leg alignment in total knee arthroplasty. This is most pronounced in a valgus aligned knee.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 398 - 398
1 Sep 2009
Clarke J Deakin A Picard F Nicol A
Full Access

The role of CAOS systems is now well established in several areas of orthopaedic surgery. The increasing use of these systems, particularly in knee arthroplasty, has been supported by clinical trials that demonstrate a more accurate final position of implanted devices compared with conventional instrumentation. CAOS technology is constantly evolving along with its expanding list of potential indications. This requires the adaptation of both software and hardware components. It is therefore essential that potential users have confidence in the accuracy of these systems. The aim of this project was to design and manufacture a standardised measurement object (phantom) to independently evaluate CAOS system performance.

The American Society for Testing and Materials (ASTM) International along with CAOS International recently drafted a standard for measuring technical accuracy of navigation systems. This proposed standard was obtained and its recommendations used to design a phantom model. This consisted of a 150×150×20mm base plate and two additional levels including a single 30° slope. This created a 3D surface on which points could be placed. Co-ordinates for 21 points were given to establish the x, y and z axes of a Cartesian system and then to have points at a variety of known locations in this 3D space. The final model was machined from a billet of marine grade aluminium alloy 6082-T6 (chosen for its dimensional stability) using a vertical computer numerical controlled (CNC) milling machine with the co-ordinate points drilled with a Ø0.8mm 60° BSO centre drill to a depth of 1.2mm. The drill holes, with chamfers of Ø1.0mm, were designed to accommodate a ball-nosed pointer tip of a known diameter. A Perspex base unit with three different sites of rigid tracker attachment was made to hold the phantom and provide its reference frame. This avoided the need to directly modify the phantom itself.

The final design has been used to measure the positional accuracy of a novel portable navigation system and demonstrate that it is not yet suitable for clinical evaluation due to errors of 1 – 6 mm in point location. It has also allowed independent technical validation of current pre-existing navigation systems.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 398 - 398
1 Sep 2009
Kumar P Ilyas J Young D Picard F
Full Access

Flexion contracture in total knee arthroplasty (TKA) remains a challenge. Soft tissue management and additional bone resection are traditional options for flexion contracture correction. Our hypothesis was that the post implant computer aided measurements would not be significantly different to the extension angles measured at six weeks post-operatively in the follow-up clinic.

One hundred continuous TKA were performed by a single consultant using the OrthoPilot® (BBraun, Aesculap) navigation system and Columbus implants. Of the group, 45 were male and 55 were female. Average age was 68 (range 49–87), mean BMI was 32.86 (22.26–51.86) and mean Oxford score preoperatively was 42 (range 21–56) and post-operatively 28 (range15–50). Data recorded at the preoperative assessment clinic included clinical flexion contracture and Oxford scores. Intra-operatively data were recorded using the navigation system. These included pre-operative flexion and extension angles, actual bone cuts of tibia and femur (both medial and lateral), postoperative correction of flexion and extension angles and soft tissue releases. At six weeks post operation, patients were seen in the follow clinic and clinical flexion contracture and Oxford score reassessed by the Arthroplasty outcome service.

Measurements were grouped and comparisons were made using a Pearson Chi-square test. There was no relationship between post-implant extension angle measurements (by computer) and extension angles at six weeks (by goniometer) (p=0.682). Also, there was no relationship between pre-operative measurement angles collected at the pre-assessment (by goniometer) and the pre-implant angles measured on the table (by computer) (p=0.682). We found that BMI (up to 35) and postoperative Oxford scores were significantly related to the extension levels with values of (p=0.008) and (p=0.027) respectively. Pre-operative Oxford scores, pre-operative extension, amount of bony resection and soft-tissue releases did not show any significant relationship with the post-operative extension obtained at six weeks.

The conclusions that we draw from this study are that there might be other factors that are likely to influence extension lag between the operation and the follow-up at six weeks. One of the factors that we could identify was the BMI. Attention to extensor lag is important because it leads to a poorer knee function, as indicated by the Oxford scores. Despite most of the post-implant measurement angles showing no extensor lag, about 20% of our patients still had more than five degrees flexion contracture at six weeks.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 397 - 397
1 Sep 2009
Ilyas J Deakin A Brege C Picard F
Full Access

Flexion contracture is a common deformity encountered in patients requiring total knee arthroplasty (TKA). Both the soft tissue envelope and articular bones are involved in the knee extension lag. A few studies in the past have assessed the relationship between bone cuts and extension deficit by using goniometers and rulers. Using navigation for TKA enables the accurate measurement of knee flexion contracture and bone cuts. The aim of this study was to try to establish a relationship between extension lag correction and the size of bone cuts made.

One hundred and four continuous TKA were completed by a single consultant using the OrthoPilot® (BBraun, Aesculap) navigation system and Columbus implants. Seventy-four knees had preoperative flexion contracture (including neutral knees) while 30 were in hyperextension. Data was recorded prospectively using the navigation system. These included preoperative flexion and extension angles, actual bone cuts of tibia and femur (both medial and lateral), postoperative correction of flexion and extension angle, size of the prosthesis with thickness of polyethylene and soft tissue release. Of the 74 knees with fixed flexion, 57 had no release and 13 had a posterior release (four had an intermediate release and were excluded from the study).

For knees with fixed flexion (n = 70) there was a significant statistical difference between the pre and post implant extension angle (p < < 0.0001). There was no correlation between the thickness of bone cuts and postoperative extension lag either for the group with no release (p = 0.495) or posterior release (p = 0.516). There was also no correlation between bone cuts and preoperative angles for either type of release (p = 0.348 and p = 0.262). There was a significant difference between the preoperative extension deformity for the two soft tissue releases performed (p = 0.00019), the mean fixed flexion angles being −4.4° and −10.4° for no release and posterior release respectively.

Flexion contracture deformity in TKA can theoretically be solved in two ways: either by extensively releasing the soft tissue or by increasing the extension gap by cutting more bone (logically the distal femur). Appropriate soft tissue management and release in TKA is crucial in balancing the prosthesis in the coronal as well as the lateral plane. This study seems to confirm the supremacy of soft tissue management and release over bone cut resection. Cutting more or less bone could in fact lead to a poorer outcome as this will change the joint line level without having any additional beneficial effect in correcting the flexion contracture. Conversely adequate soft tissue release has corrected the flexion contracture when needed. In conclusion, there was no correlation between bone cut resection and extension lag correction and with large extension deficits, a posterior soft tissue release and osteophytes resection was more important than bone cuts.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 396 - 396
1 Sep 2009
Baines J Deakin A Picard F
Full Access

Computer assisted total knee arthroplasty (TKA) is still a relatively novel technique. Surgeons wishing to adopt any new practice undergo a learning curve. The learning curve experienced with navigated TKA, its duration and cost in terms of complications, has not been well defined in the literature. Therefore we set out to analyse the learning curve of a newly appointed consultant with no previous experience of navigated TKA by using a surgeon who has completed over 1000 TKAs in over 10 years of experience with this technique as a baseline.

The study used the inexperienced surgeon’s first ever fifty navigated TKAs and the experienced surgeon’s most recent fifty TKAs over the same period in the same theatre using the same CT free navigation system (Orthopilot®) and prosthesis. Operative time, bone cuts and limb alignment before and after prosthesis implantation were recorded, along with the navigation specific difficulties and complications encountered by the inexperienced surgeon.

There was no statistical difference in the accuracy of postoperative limb alignment in either the coronal (p = 0.33) or sagital (p = 0.35) planes between the novice and experienced surgeon. There was also no difference in the executed bone cut angles (tibial p = 0.79, femoral p = 0.92). The operating time showed a difference between the two surgeons with the novice having a median of 80 mins (inter-quartile range of 20 mins) and the experienced surgeon had a median of 70 mins (inter-quartile range of 20 mins), p = 0.001. However there was a statistically significant reduction in operating time between the inexperienced surgeon’s first twenty and last twenty TKAs (p = 0.001). Comparison of the last 20 TKAs for each surgeon showed no difference in the operative time (medians of 70 mins and 75 mins respectively, p = 0.945). The navigation specific difficulties and complications recorded for the novice navigator were all related to the trackers: one loosening, one tibial tracker placed too proximally, one superficial infection in a tibial tracker wound and one incompletely engaged pin-tracker coupling which brought about the only conversion to manual TKA in this series.

We conclude that in terms of execution and outcome, a beginner using computer assisted TKA can match the results of an experienced navigator from the outset. The only parameter assessed that underwent a clear learning curve was the operative time, which took approximately 20 procedures to approach the same as the experienced surgeon.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 398 - 398
1 Sep 2009
Basanagoudar P Deakin A Vijayan A Baines J Gregori A Picard F
Full Access

Computer assisted total knee arthroplasty (TKA) enables the measurement of the dynamics of the knee both before and after the implant of the prosthesis. Much time has been spent looking at the outcomes of navigated TKA however less time has been invested on understanding how the data collected pre-operatively can inform the surgeon and help the surgical decision making process. The aim of this work was to use navigation as a tool to quantify and classify preoperatively valgus knees.

Between August 2006 and September 2007 a group of 51 patients who demonstrated intra-operative initial neutral or valgus aligned knees underwent navigated TKA using the Columbus knee prosthesis and the Orthopilot® navigation system (BBraun, Tuttlingen, Germany). Demographic data were recorded, along with the preoperative radiograph appearance and clinical assessment of alignment. During the surgery the approach used and the knee mechanical femorotibial (MFT) angle though the range of flexion were recorded. The knees were then categorised as either “True” valgus or “False” valgus based on whether the MFT angle at 30°, 60° and 90° flexion was still valgus (True) or had gone into varus (False).

Five patients were excluded from the study group as they had incomplete data in knee flexion. Of the remaining 46 patients, 28 were True valgus and 18 were False valgus. For the two groups demographic data were compared. Male to female ratio was 9:19 for the True valgus and 4:14 for the False valgus. The mean age of the True group was 70 years (range 52–85 years) and the False was 69 years (range 53–84 years). For BMI the True group had mean of 31 (range 20–40) and False of 33 (range 26–42). Twenty-five of the 28 True valgus knees showed preoperative evidence of clinical genu valgum deformity and radiologic evidence of predominantly lateral compartment osteoarthritis. Five patients had ipsilateral hip replacements in the past and five had rheumatoid arthritis. Seventeen were operated by lateral parapatellar approach. Eighteen required ilio-tibial band release with additional lateral collateral ligament release in five knees. Six true valgus knees did not require any soft tissue release. Five patients required lateral retinacular release to achieve thumb free patellar tracking. The median operating time for the True valgus group was 80 mins. Ten of the 18 false valgus knees showed evidence of clinical varus deformity and radiological evidence of predominantly medial compartment osteoarthritis. Only one patient had an ipsilateral hip replacement in the past and one had rheumatoid arthritis. All 18 knees underwent TKA by medial parapatellar approach, requiring no additional soft tissue release in 17 knees and a moderate release in one knee. The median operating time for the False valgus group was 60 mins.

True valgus knees had more significant deformities clinically and radiologically, longer surgical time and more incidence of soft tissue release when compared to the False valgus knees. False valgus knees behaved like varus knees clinically, radiologically and intra-operatively and should therefore be treated as such when making surgical choices.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 401 - 401
1 Sep 2009
Mathew MO Frame M Periasamy K Picard F Leitner F Mollard B
Full Access

Aim: To evaluate the accuracy of intra-operative point acquisition during navigated hip replacement using an ultrasound transducer probe relative to a percutaneous digitiser stylus (pointer)

To study intra- and inter-observer variability with the use of the ultra-sound transducer and percutaneous digitiser point probes

To assess the learning curve with the use of the ultrasound transducer probe

As part of a larger cadaver study evaluating navigated total hip replacement via the posterior approach, we assessed data relating to acquisition of bony landmarks of the Anterior Pelvic Plane (APP) by four surgeons with an ultrasound transducer and a percutaneous point probe. The surgeons had differing levels of experience with hip surgery in general, and also with surgical navigation per se, but none of them had previously used the ultrasound probe for the specific purpose of landmark acquisition.

Without fixing an absolute positional value for any of the bony landmarks, the points registered for individual landmarks by each surgeon were then studied, looking at the three-dimensional spread of these points relative to each other about the mean value. The data from all four surgeons were analysed, looking at the global dispersion of points acquired by the ultrasound and percutaneous point digitiser probes.

Our results show that with the exception of a few isolated outliers, the ultrasound probe generated values fell within a +/− 10 mm range. For all four surgeons, the global spread of ultrasound-registered points was noted to be less than that acquired by percutaneous point probe acquisition. Of interest was the finding that points registered by individual surgeons using the ultrasound probe tended to be grouped distinctly together but spatially separate from those of the other surgeons; it would appear that each operator was “homing” in on what he perceived to be the bony landmark in question on the projected ultrasound image.

With the percutaneous pointer probe, and with the anterior superior iliac spines as the target, there was closer grouping of points around the mean positional value for the two surgeons who were experienced with its use. However, at the symphysis pubis, the spread of points for these surgeons were not much different from the other two less experienced one, with these points showing a global spread as great as 25 mm.

Regardless of the experience of the surgeon, the use of the ultrasound transducer probe appears to be more accurate than percutaneous pointer probe for acquisition of the bony landmarks that constitute the anterior pelvic plane. The learning curve associated with its use is seemingly short and steep. Its accuracy is limited by the fact that the identification of the bony land marks on the on-screen display is open to interpretation by the individual. Methods to standardise the identification of these landmarks on ultrasound images may help improve its accuracy in the future.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 32 - 32
1 Mar 2009
DILLON J CLARKE J MENNEESSIER A HERIN L PICARD F
Full Access

Introduction: A successful total knee replacement (TKR) relies upon effective soft tissue management. Historically, soft tissue balancing has been difficult to assess and quantify intraoperatively. Computer navigation permits us to accurately assess kinematics during surgery. In a previous study we performed a series of varus and valgus stress measurements in extension to devise an algorithm for soft tissue management. In this study we evaluate the effectiveness of this algorithm.

Methods: This prospective study used the Orthopilot® CT-free navigation system during TKR for 57 patients with end-stage arthritis. We collected intraoperative kinematic data for 42 varus knees. Pre- and post-operatively, a varus and valgus stress was applied at maximum extension, recording the mechanical femorotibial (MFT) angle. There were no patellar resurfacings. The following medial releases were performed based upon the kinematics and the algorithm below:

No release–MFT angle not less than −12° with varus stress, greater than 2° with valgus stress, and/or if extension deficit was not greater than 5°.

Moderate release–MFT angle less than −12° with varus stress, between −5° and 2° with valgus stress, and/or extension deficit not greater than 5°.

Proximal release–MFT angle less than −12° with varus stress, less than −5° with valgus stress, and/or extension deficit greater than 5°.

Results: Pre-operatively, the mean MFT angle was −9.6°varus (−3° to −22°) with varus stress and −0.8°varus (4° to −11°) with valgus stress. Post-operatively, the mean MFT angle was −3.5° varus (0° to −5°) with varus stress, and 2.1° valgus (4° to −1°) with valgus stress.

Using regressional analysis, there was a strong linear correlation between both varus (r=0.871, p< 0.0001) and valgus (r=0.894, p< 0.0001) stresses and the MFT angle.

Post-operatively, the mean MFT angle was maintained within a narrow range (0° to −5° with varus stress, 4° to −1° with valgus stress), with no outliers. There were no extension deficits.

Conclusions: Using computer navigation a quantifiable soft tissue management system was introduced. We evaluated this algorithm, and obtained reproducible results within a narrow range and no outliers. This algorithm may provide an effective soft tissue management plan in TKR.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 124 - 124
1 Mar 2009
CLARKE J DILLON J MENNESSIER A HERIN L PICARD F
Full Access

Introduction: Computer navigation systems allow real time evaluation of knee behaviour intraoperatively. Measurements made by navigation reflect soft tissue balance throughout surgery. We studied three different populations of patients undergoing total knee replacement (TKR) with a CT-free navigation system where the goal was to achieve normal alignment. We compared the initial pathological kinematics in each group with the resultant kinematics after correction.

Method: The Orthopilot® was used during TKR for three groups of patients A (n=71), B(n=60) and C(n=43) all with endstage osteoarthritis. Patients in groups A and B had TKR performed by surgeon 1, and group C by surgeon 2.

Results: Pre-operatively, the mean mechanical femoral axis and the mean mechanical femoro-tibial (MFT) angle were calculated. The mean mechanical femoral axis for group A was −0.5° varus (−6° to 9°), group B was −0.68° varus(−6° to 6°), and for group C was 2.67° valgus (−12° to 10°). P< 0.0001, using Kruskal-Wallis test. Pre-operatively, the mean MFT angle for group A was −3.75° varus(−15° to 17°), group B was −2.98° varus(−17° to 13°), and for group C was 0.16° valgus(−17° to 25°). P=0.003 using Kruskal-Wallis test. These results show that the initial preoperative kinematics are different for the three different populations.

Post-operatively we measured the mean MFT angle in groups A, B and C. In group A, the mean MFT angle was −0.38° varus (−4° to 2°), group B was −0.41° varus(−5° to 2°), and group C was −0.02° varus(−3° to 5°). P=0.7 using the Kruskal-Wallis test. These results show that the post-operative kinematics are similar between the three different populations.

Discussion: Populations A and B preoperatively exhibited a mean varus MFT angle (−0.5° and −0.68° respectively), compared with a mean valgus MFT angle for group C(2.67°), which were statistically significantly different. Although different surgeons operated on the 3 groups (surgeon 1 operated on groups A and B, and surgeon 2 operated on group C), post-operative kinematics were within a narrow range (−0.02° to −0.41°) and not statistically different (p=0.7).

Conclusion: The Orthopilot® results showed that these populations had different initial pathological kinematics. Despite this, and using different operators we obtained similar post-op results within a narrow range. Computer navigation produces reliable, reproducible results independent of population or operator variables.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 126 - 126
1 Mar 2009
DILLON J CLARKE J MENNESSIER A HERIN L PICARD F
Full Access

Introduction: Accurate soft tissue balancing is an essential part of total knee replacement (TKR), but has been difficult to quantify using traditional instrumentation methods. Computer navigation systems allow us to accurately assess intra-operative kinematics, which are affected by soft tissue management. The aims of this study were to evaluate the role of varus and valgus stress measurements and subsequently devise an algorithm for soft tissue management during TKR.

Methods: We used the Orthopilot® CT-free navigation system during TKR for patients with primary end-stage arthritis. This was a prospective study with 71 patients collecting intra-operative kinematic data. 57 knees were varus, 13 valgus, and 1 well aligned.

Pre- and post-operatively, the surgeon applied a varus and valgus stress at maximum extension, recording the mechanical femorotibial (MFT) angle. There were no patellar resurfacings. We compared the kinematics of each varus knee. Based upon the kinematics and the surgeon’s experience the following medial releases were performed as usual and divided into three categories:

No release (limited medial approach).

Moderate release (postero-medial release including the semimembranosis).

Proximal (extensive) release.

Results: Pre-operatively, the mean MFT angle was −9.6° (−3° to −22°) with varus stress and −0.8° (4° to −11°) with valgus stress. Post-operatively, the mean MFT angle was −3.7° (−1° to −7°) with varus stress, and 1.1° (4° to −3°) with valgus stress. Using regressional analysis, there was a strong linear correlation between both varus (r=0.742, p< 0.0001) and valgus (r=0.771, p< 0.0001) stresses and the MFT angle.

With the following medial releases, these kinematics were found:

No release – MFT angle not less than −12° with varus stress, greater than 2° with valgus stress, and/or if extension deficit was not greater than 5°.

Moderate release – MFT angle less than −12° with varus stress, between −5° and 2° with valgus stress, and/or extension deficit not greater than 5°.

Proximal release – MFT angle less than −12° with varus stress, less than −5° with valgus stress, and/or extension deficit greater than 5°.

The results show that post-operatively, the mean MFT angle is maintained within a narrow range (−1° to −7° with varus stress, 4° to −3° with valgus stress). 5/57(9%) patients had a mean MFT angle of 6.4°(0° to 7°) with valgus stress, and were considered to have been over-corrected. There were no extension deficits.

Conclusions: Navigation allows us to quantify soft tissue balancing based upon the initial kinematics with varus and valgus stress testing. From these measurements, an algorithm was developed, which showed that an appropriate release was made in 52/57 (91%) patients, but this may require some adjustment to reduce the number of outlying results.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 126 - 126
1 Mar 2009
McConnell J Dillon J Kinninmonth A Sarungi M Picard F
Full Access

Introduction: Computer navigated total knee replacement does not require the use of intramedullary alignment rods, and is thus less invasive than traditional methods.

One previous study has suggested that the computer-assisted technique may reduce blood loss in comparison to traditional methods. This study (Kalairajah et al, 2005) used blood volume loss from drainage bottles as a primary outcome measure (n=60). Hidden (internal) blood losses were not accounted for.

Our study uses a more accurate method of assessing blood loss, and the sample size is larger (n=136; 68 standard TKR versus 68 computer assisted TKR).

Methods: 136 TKR patients were included, of which 68 had standard TKR and 68 computer assisted. Patients were matched such that in each group half had BMI in the range 20–30, and half had BMI between 30–40. Patients were also matched for gender. All patients had Tranexamic acid at the start of the procedure.

Total body blood volume was calculated using the formula of Nadler, Hidalgo & Bloch (1962). This was then used, together with haematocrit and volume re-infused or transfused, to calculate true blood loss, as described by Sehat, Evans, and Newman (2004). This method is considered to be more reliable than measuring drain output, as it takes account of “hidden” losses. The navigated and non-navigated groups were compared using Student’s t-test.

Results: The average blood loss was 583ml in the standard TKR group, and 442ml in the computer assisted TKR group. This difference was statistically significant (p=0.003).

Conclusions: A previous study found reduced blood loss when performing total knee replacement using computer navigation, compared with traditional methods. Our study confirmed this finding, using a larger sample size, and a more reliable method of assessing blood loss.

Our study found that overall blood loss was less for both groups, when compared to the findings of Kalairajah Y et al. We suspect that this difference was due to our departmental policy that all patients receive tranexamic acid at the start of joint replacement procedure.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 560 - 561
1 Aug 2008
McConnell J Dillon J Clarke J Picard F Gregori A
Full Access

The accuracy of measurement in computer-assisted total knee arthroplasty is dependent on the quality of data acquisition at the start of the procedure; errors in landmark identification could lead to misalignment and therefore poorer longterm outcomes.

Some navigation systems require the surgeon to explicitly identify the femoral epicondyles in order to calculate the trans-epicondylar axis, whereas other systems are able to interpolate the epicondylar location based on a number of points acquired from the distal femoral surface. Significant inter-observer variability in landmark identification has been previously reported in dry bone studies. The purpose of this study was to test the accuracy of identification of the epicondyles during a simulated total knee replacement on a fresh cadaveric specimen.

An unfixed fresh cadaveric left lower limb was used to perform a navigated total knee replacement using the Orthopilot® (B|Braun-Aesculap, Tuttlingen, Germany) image-free navigation system.

Sixteen surgeons attending an advanced navigation training course were invited to take part. A single consultant surgeon performed initial dissection and pin placement, up to the point of landmark acquisition. Each subject was then asked to use a pointer tool to identify the medial and lateral epicondyles, as they would in an operative situation. Data were recorded by the Orthopilot® system, and exported as a 3D array for further analysis.

Initial visualisation with a 3D scatter plot showed that points were evenly distributed within a circular pattern around each epicondyle. The length of a vector between each point on each epicondyle was calculated in turn. The maximum distances between points were 15.6mm for the medial epicondyle, and 19.9mm for the lateral epicondyle.

We then calculated the length and angulation of the trans-epicondylar axis (TEA) for each observer, equivalent to the vector between each pair of points (medial and lateral epicondyle). An average TEA was calculated, and the range and standard deviation of angulation were determined. In the x axis the range was 16.3° (–8.3° to 7.9°, SD 5.1°), in the y axis the range was 18.7° (–8.7° to 10°, SD 5.2°) and in the z axis the range was 20.5° (–10.1° to 10.4°, SD 6.5°). Range of recorded TEA length was 64.5 to 74.9mm (mean 70.6mm, SD 3.3mm).

We conclude that in this simulated operative scenario, surgeons exhibited considerable variability when locating the epicondyles. Range of angulation of the TEA exceeded 16° (SD > 5.1°) in all 3 planes. We cannot recommend the use of a trans-epicondylar axis determined from 2 single points, as a reliable landmark in navigated total knee replacement.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 567 - 567
1 Aug 2008
McConnell J Dillon J Kinnimonth A Sarungi M Picard F
Full Access

Computer navigated total knee replacement is less invasive than traditional methods, as it avoids the use of intramedullary alignment rods. A previous study (Kalairajah et al, 2005) has shown that computer-assisted techniques may reduce blood loss in comparison to traditional methods. Our study uses a more accurate method of assessing blood loss, and the sample size is larger.

136 TKR patients were selected from a prospectively collected database of all those undergoing arthroplasty at our institution; 68 had standard TKR and 68 had a computer assisted TKR. In each group, half had BMI in the range 20–30, and half had BMI between 30–40. There were an equal number of males and females in each group. All patients received a standardised anaesthetic, and had tranexamic acid at the start of the procedure.

Total body blood volume was calculated from patient height, weight and sex, using the model described by Nadler, Hidalgo & Bloch (1962). This was then used, together with pre- and post-op haematocrit and volume re-infused or transfused, to calculate true blood loss, as described by Sehat, Evans, and Newman (2004). This method is considered to be more reliable than measuring drain output, as it takes account of “hidden” (internal) losses.

The average blood loss was 603ml in the standard TKR group, and 448ml in the computer assisted TKR group. Student’s t-test showed that this difference was statistically significant (p = 0.007). Regression analysis showed no significant difference between obese and non-obese patients, nor a difference between sexes. Blood loss in both groups was lower than in a previous study, which we attribute to our department’s routine use of tranexamic acid.

We conclude that computer-assisted total knee replacement leads to significant reduction in blood loss when compared with traditional techniques. This confirms previous reports.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 560 - 560
1 Aug 2008
Clarke JV Dillon JM Deakin AH Kinninmonth AWG Picard F
Full Access

Total knee replacement (TKR) has become the standard procedure in management of degenerative joint disease with its success depending mainly on two factors: three dimensional alignment and soft tissue balancing. The aim of this work was to develop and validate an algorithm to indicate appropriate medial soft tissue release during TKR for varus knees using initial kinematics quantified via navigation techniques.

Kinematic data was collected intra-operatively for 46 patients with primary end-stage osteoarthritis undergoing TKR surgery using a CT-free navigation system. All patients had preoperative varus knees and medial release was made using the surgeon’s experience. From this data an algorithm was developed to define the medial release based on the pre-operative mechanical femoral-tibial angle with valgus stress;

No release (tibial cut only) when valgus stress > −2/3°. Moderate release (medial aspect of tibia +/− semimembranosous tendon) when valgus stress > −5° and < −2°. Extensive release (proximal) when valgus stress < −5°. If there was a fixed flexion deformity > 5° then a posterior release was performed.

This algorithm was validated on a further set of 35 patients where it was used to determine the medial release based only on the kinematic data. The post-operative varus and valgus stress angles for the two groups were compared and showed good outcomes in terms of distribution and outliers.

The results showed that the algorithm was a suitable tool to indicate the type of release required based on intra-operatively measured pre-implant valgus stress and extension deficit angles. It reduced the percentage of releases made and the results were more appropriate than the decisions made by an experienced surgeon.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 561 - 562
1 Aug 2008
Dillon J Gregori A Mennessier A Picard F
Full Access

Computer technology allows real time evaluation of knee behaviour throughout flexion. These measurements reflect tibial rotation about the femoral condyles, patellar tracking and soft tissue balance throughout surgery. An understanding of intraoperative kinematics allows accurate adjustment of TKR positioning. We studied computer navigation with the femoral component aligned to Whiteside’s line.

We used CT free navigation during TKR for 71 end-stage osteoarthritic patients. Patients demographics: 29 right–42 left; 44 female −27 male; age 70.4 years (+/− 8.4); mean BMI 30.8 (+/− 4.7; 23.2–48.6); Oxford score: 43 +/− 7.7 (28–58). Preoperatively, 57/71 knees were varus knees, 1 well-aligned and 13 valgus; 75% were cruciate retaining and 25% were posterior stabilised knees.

During surgery the frontal femorotibial or Hip-Knee-Ankle (HKA) angle was measured from maximum extension through 30°,60° and 90° of flexion. Measurements of the femoro tibial angles (HKA) in 0°, 30°, 60° and 90° of knee flexion before and after TKR were collected. No patella was replaced. We compared the kinematics of each knee. Femoral component rotation was 2.06° external rotation +/−1.32° (−1°; 5°) referenced from the dorsal condylar axis. Analysis divided the 71 patients into three groups:

When the femoral component was placed between 1° internal rotation and 0° of external rotation (7 patients) HKA tended to flex into valgus.

When the femoral component was placed between 1° and 3° of external rotation (45 patients) HKA tended to remain in neutral alignment (close to the mechanical axis).

When the femoral component was placed between 3° and 5°of external rotation (19 patients) HKA tended to flex into varus.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 567 - 567
1 Aug 2008
Dillon J Clarke J Kinninmonth A Gregori A Picard F
Full Access

Performing Total Knee Replacement (TKR) surgery using computer assisted navigation systems results in more reproducibly accurate component alignment. Navigation allows real time evaluation of passive knee behaviour throughout flexion. These kinematic measurements reflect tibial rotation about the femoral condyles, patellar tracking and soft tissue balance throughout surgery. In this study, we aim to study dynamic knee function in navigated and standard instrumentation TKR patients performing a range of everyday activities using gait analysis.

A prospective randomised controlled trial evaluated the functional outcome using gait analysis with 20 patients in each of three groups – Standard, Navigated and Control. The same implant (Scorpio) and navigation system (Strykervision) was used for each patient. The control group were subjects with no history of knee pathology or gait abnormality. Using an 8-camera Vicon motion analysis system set at 120Hz (real-time motion), we assessed the following functional activies: walking, rising from/sitting in chair, ascending/descending stairs. One functional outcome measure we have analysed so far is the maximum flexion angle.

The maximum flexion angle was recorded for each activity in standard, navigated and control groups respectively. ANOVA was performed, with significance set at p< 0.05. Maximum flexion angle during gait was 65.6°, 72.6° (p=0.009) and 73.5° (p=0.74), chair rising/sitting was 82.5°, 92.8° (p=0.01), and 93.5° (p=0.64), stairs ascent/descent was 81.8°, 99° (p< 0.0001), and 113.4° (p< 0.0001).

In terms of dynamic functional outcome, we found that the average maximum flexion angle for the navigated group was greater than for the standard group; moreover, this was similar to the maximum flexion angle for the control group when performing a variety of normal daily activities.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 242 - 243
1 Jul 2008
PICARD F SCHOCKMEL G LEITNER F MARTIN P
Full Access

Purpose of the study: Knee prosthesis surgery has reached a high level of reproducibility, providing very satisfactory results in the large majority of patients. There remains however a certain lack of precision concerning this surgical procedure concerning the determination of the hip center. This point is used to establish the mechanical axis of the femur for positioning the prosthesis. Navigation systems can be used to localize this center. We conducted a cadaver study to determine the accuracy and repeatability of this method for determining the center of the hip joint.

Material and methods: A computerized navigation system was applied to seven fresh cadavers with normal hips. We compared the anatomic center of the hip joint with the point determined with the navigation system. We also compared the navigation technique using different navigation techniques: marker fixed on the iliac crest and without marker fixed on the iliac crest. We also determined the accuracy of the result as a function of hip circumduction during acquisition (5°, 8°, 10°).

Results: There was no statistical difference between investigator A (0.66±0.15, max error: 0.99) and B (0.68±0.10, max error: 0.87), p=0.98 (inter or intra-observer) for comparisons between the anatomic center of the hip joint and the point determined by the navigation system. The results were not statistically different between the navigation techniques (with and without a marker fixed on the iliac crest):(mean < 0.71 ± 032, max. error: 1.91) for each hip with the iliac marker (0.66 ± 0.20, max. error max: 0.99) or without the iliac marker (0.61 ± 0.41, max. error: 1.29) for hip 1. Accuracy was better for hip movement at 10° (0.60 ± 0.21, max. error: 0.92) than at 8° (0.81 ± 0.52, max. error: 1.91) or at 5° (0.67 ± 0.46, max. error: 1.91). In addition, without an iliac crest marker, 75% of the errors were less than 1, and 95% less than 1.5.

Discussion: Acquisition of the hip center of rotation using a computerized navigation system with or without use of markers fixed on the iliac crest is remarkably accurate.

Conclusion: New algorithms and control systems should help improve reproducibility above that obtained with the conventional technique.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 271 - 271
1 Jul 2008
PICARD F
Full Access

Purpose of the study: Achieving correct ligament balance for total knee arthroplasty remains a serious challenge, even for the experienced surgeon. Computer-assisted surgery allows real time assessment of the knee joint behavior and gives continuous measures of HKA under stress.

Material and methods: Between January 2003 and November 2004, 25 patients with osteoarthritis of the knee joint underwent computer-assisted surgery for implantation of posterior stabilized total knee prosthesis. The series included 13 right knees and 12 left knees in 8 men and 17 women, mean age 73.6±8.1 years, age range 44–84 years. Body mass index was 29±5.5 (range 21.6–42.7). The IKS function score was 35.8±17 (range 5–70) and the IKS knee score was 51.2±8.5 (range 30–73). Measurements were made for varus and valgus stress of 0–30°. Extensive lateral or medial release was also performed for six knees. The medial parapatellar approach with removal of osteophytes was used for all procedures.

Results: Preoperatively, four patients presented valgus (185.6±4.7, range 182–191°), one correct alignment and 20 presented varus (174±3.45, range 166–178°). Pre-operatively the mean varus stress angle was 5.13±3.44 (range 0–11°), the mean valgus stress angle was 1.5±1.53, range −4 to 4°). At the end of the procedure, the varus stress angle 1.78±1.59 (0–5°) and the valgus stress angle 1.79±1.6 (0–4°). At 45 days, mean flexion was 115±10° (range 60–126°). There was mobilization in two patients, one with a 5° extension deficit and the other with an extension deficit less than 10°.

Discussion: This study demonstrates the usefulness of navigation systems to assess the effect of peripheral release and to limit the extent of release procedures (six of 25 patients). Materializing step by step release of the peripheral structures is helpful in achieving correct release.

Conclusion: This work confirms that extensive release is not always necessary. This type of technique should allow better control and fine tuning of ligament balance and tension.

This work was supported by work on cadaver specimens measuring the step by step effect of ligament release.