Advertisement for orthosearch.org.uk
Results 1 - 20 of 403
Results per page:
Bone & Joint Research
Vol. 10, Issue 12 | Pages 807 - 819
1 Dec 2021
Wong RMY Wong PY Liu C Chung YL Wong KC Tso CY Chow SK Cheung W Yung PS Chui CS Law SW

Aims. The use of 3D printing has become increasingly popular and has been widely used in orthopaedic surgery. There has been a trend towards an increasing number of publications in this field, but existing literature incorporates limited high-quality studies, and there is a lack of reports on outcomes. The aim of this study was to perform a scoping review with Level I evidence on the application and effectiveness of 3D printing. Methods. A literature search was performed in PubMed, Embase, and Web of Science databases. The keywords used for the search criteria were ((3d print*) OR (rapid prototyp*) OR (additive manufactur*)) AND (orthopaedic). The inclusion criteria were: 1) use of 3D printing in orthopaedics, 2) randomized controlled trials, and 3) studies with participants/patients. Risk of bias was assessed with Cochrane Collaboration Tool and PEDro Score. Pooled analysis was performed. Results. Overall, 21 studies were included in our study with a pooled total of 932 participants. Pooled analysis showed that operating time (p < 0.001), blood loss (p < 0.001), fluoroscopy times (p < 0.001), bone union time (p < 0.001), pain (p = 0.040), accuracy (p < 0.001), and functional scores (p < 0.001) were significantly improved with 3D printing compared to the control group. There were no significant differences in complications. Conclusion. 3D printing is a rapidly developing field in orthopaedics. Our findings show that 3D printing is advantageous in terms of operating time, blood loss, fluoroscopy times, bone union time, pain, accuracy, and function. The use of 3D printing did not increase the risk of complications. Cite this article: Bone Joint Res 2021;10(12):807–819


The Journal of Bone & Joint Surgery British Volume
Vol. 77-B, Issue 3 | Pages 442 - 444
1 May 1995
Lewall D Riley P Hassoon A McParland B

We have developed a teaching programme for non-radiologists who use fluoroscopy, which includes techniques for reducing the radiation received by the patient and the surgeon during orthopaedic procedures. The techniques resolve around the radiation protection concepts of time, distance and shielding. The programme has been very successful in reducing the total fluoroscopy times of orthopaedic surgeons; in our institute, durations have been reduced to about 10% of those before the training started. We review the aims and content of our programme


The Bone & Joint Journal
Vol. 102-B, Issue 7 | Pages 874 - 880
1 Jul 2020
Langerhuizen DWG Bergsma M Selles CA Jaarsma RL Goslings JC Schep NWL Doornberg JN

Aims. The aim of this study was to investigate whether intraoperative 3D fluoroscopic imaging outperforms dorsal tangential views in the detection of dorsal cortex screw penetration after volar plating of an intra-articular distal radial fracture, as identified on postoperative CT imaging. Methods. A total of 165 prospectively enrolled patients who underwent volar plating for an intra-articular distal radial fracture were retrospectively evaluated to study three intraoperative imaging protocols: 1) standard 2D fluoroscopic imaging with anteroposterior (AP) and elevated lateral images (n = 55); 2) 2D fluoroscopic imaging with AP, lateral, and dorsal tangential views images (n = 50); and 3) 3D fluoroscopy (n = 60). Multiplanar reconstructions of postoperative CT scans served as the reference standard. Results. In order to detect dorsal screw penetration, the sensitivity of dorsal tangential views was 39% with a negative predictive value (NPV) of 91% and an accuracy of 91%; compared with a sensitivity of 25% for 3D fluoroscopy with a NPV of 93% and an accuracy of 93%. On the postoperative CT scans, we found penetrating screws in: 1) 40% of patients in the 2D fluoroscopy group; 2) in 32% of those in the 2D fluoroscopy group with AP, lateral, and dorsal tangential views; and 3) in 25% of patients in the 3D fluoroscopy group. In all three groups, the second compartment was prone to penetration, while the postoperative incidence decreased when more advanced imaging was used. There were no penetrating screws in the third compartment (extensor pollicis longus groove) in the 3D fluoroscopy groups, and one in the dorsal tangential views group. Conclusion. Advanced intraoperative imaging helps to identify screws which have penetrated the dorsal compartments of the wrist. However, based on diagnostic performance characteristics, one cannot conclude that 3D fluoroscopy outperforms dorsal tangential views when used for this purpose. Dorsal tangential views are sufficiently accurate to detect dorsal screw penetration, and arguably more efficacious than 3D fluoroscopy. Cite this article: Bone Joint J 2020;102-B(7):874–880


The Bone & Joint Journal
Vol. 105-B, Issue 5 | Pages 543 - 550
1 May 2023
Abel F Avrumova F Goldman SN Abjornson C Lebl DR

Aims. The aim of this study was to assess the accuracy of pedicle screw placement, as well as intraoperative factors, radiation exposure, and complication rates in adult patients with degenerative disorders of the thoracic and lumbar spines who have undergone robotic-navigated spinal surgery using a contemporary system. Methods. The authors reviewed the prospectively collected data on 196 adult patients who had pedicle screws implanted with robot-navigated assistance (RNA) using the Mazor X Stealth system between June 2019 and March 2022. Pedicle screws were implanted by one experienced spinal surgeon after completion of a learning period. The accuracy of pedicle screw placement was determined using intraoperative 3D fluoroscopy. Results. A total of 1,123 pedicle screws were implanted: 1,001 screws (89%) were placed robotically, 63 (6%) were converted from robotic placement to a freehand technique, and 59 (5%) were planned to be implanted freehand. Of the robotically placed screws, 942 screws (94%) were determined to be Gertzbein and Robbins grade A with median deviation of 0.8 mm (interquartile range 0.4 to 1.6). Skive events were noted with 20 pedicle screws (1.8%). No adverse clinical sequelae were noted in the 90-day follow-up. The mean fluoroscopic exposure per screw was 4.9 seconds (SD 3.8). Conclusion. RNA is highly accurate and reliable, with a low rate of abandonment once mastered. No adverse clinical sequelae occurred after implanting a large series of pedicle screws using the latest generation of RNA. Understanding of patient-specific anatomical features and the real-time intraoperative identification of risk factors for suboptimal screw placement have the potential to improve accuracy further. Cite this article: Bone Joint J 2023;105-B(5):543–550


The Bone & Joint Journal
Vol. 105-B, Issue 1 | Pages 35 - 46
1 Jan 2023
Mills K Wymenga AB Bénard MR Kaptein BL Defoort KC van Hellemondt GG Heesterbeek PJC

Aims. The aim of this study was to compare a bicruciate-retaining (BCR) total knee arthroplasty (TKA) with a posterior cruciate-retaining (CR) TKA design in terms of kinematics, measured using fluoroscopy and stability as micromotion using radiostereometric analysis (RSA). Methods. A total of 40 patients with end-stage osteoarthritis were included in this randomized controlled trial. All patients performed a step-up and lunge task in front of a monoplane fluoroscope one year postoperatively. Femorotibial contact point (CP) locations were determined at every flexion angle and compared between the groups. RSA images were taken at baseline, six weeks, three, six, 12, and 24 months postoperatively. Clinical and functional outcomes were compared postoperatively for two years. Results. The BCR-TKA demonstrated a kinematic pattern comparable to the natural knee’s screw-home mechanism in the step-up task. In the lunge task, the medial CP of the BCR-TKA was more anterior in the early flexion phase, while laterally the CP was more posterior during the entire movement cycle. The BCR-TKA group showed higher tibial migration. No differences were found for the clinical and functional outcomes. Conclusion. The BCR-TKA shows a different kinematic pattern in early flexion/late extension compared to the CR-TKA. The difference between both implants is mostly visible in the flexion phase in which the anterior cruciate ligament is effective; however, both designs fail to fully replicate the motion of a natural knee. The higher migration of the BCR-TKA was concerning and highlights the importance of longer follow-up. Cite this article: Bone Joint J 2023;105-B(1):35–46


Aims. The primary aim of this study was to report the radiological outcomes of patients with a dorsally displaced distal radius fracture who were randomized to a moulded cast or surgical fixation with wires following manipulation and closed reduction of their fracture. The secondary aim was to correlate radiological outcomes with patient-reported outcome measures (PROMs) in the year following injury. Methods. Participants were recruited as part of DRAFFT2, a UK multicentre clinical trial. Participants were aged 16 years or over with a dorsally displaced distal radius fracture, and were eligible for the trial if they needed a manipulation of their fracture, as recommended by their treating surgeon. Participants were randomly allocated on a 1:1 ratio to moulded cast or Kirschner wires after manipulation of the fracture in the operating theatre. Standard posteroanterior and lateral radiographs were performed in the radiology department of participating centres at the time of the patient’s initial assessment in the emergency department and six weeks postoperatively. Intraoperative fluoroscopic images taken at the time of fracture reduction were also assessed. Results. Patients treated with surgical fixation with wires had less dorsal angulation of the radius versus those treated in a moulded cast at six weeks after manipulation of the fracture; the mean difference of -4.13° was statistically significant (95% confidence interval 5.82 to -2.45). There was no evidence of a difference in radial shortening. However, there was no correlation between these radiological measurements and PROMs at any timepoint in the 12 months post-injury. Conclusion. For patients with a dorsally displaced distal radius fracture treated with a closed manipulation, surgical fixation with wires leads to less dorsal angulation on radiographs at six weeks compared with patients treated in a moulded plaster cast alone. However, the difference in dorsal angulation was small and did not correlate with patient-reported pain and function. Cite this article: Bone Jt Open 2024;5(2):132–138


Bone & Joint Open
Vol. 3, Issue 11 | Pages 907 - 912
23 Nov 2022
Hurley RJ McCabe FJ Turley L Maguire D Lucey J Hurson CJ

Aims. The use of fluoroscopy in orthopaedic surgery creates risk of radiation exposure to surgeons. Appropriate personal protective equipment (PPE) can help mitigate this. The primary aim of this study was to assess if current radiation protection in orthopaedic trauma is safe. The secondary aims were to describe normative data of radiation exposure during common orthopaedic procedures, evaluate ways to improve any deficits in protection, and validate the use of electronic personal dosimeters (EPDs) in assessing radiation dose in orthopaedic surgery. Methods. Radiation exposure to surgeons during common orthopaedic trauma operations was prospectively assessed using EPDs and thermoluminescent dosimeters (TLDs). Normative data for each operation type were calculated and compared to recommended guidelines. Results. Current PPE appears to mitigate more than 90% of ionizing radiation in orthopaedic fluoroscopic procedures. There is a higher exposure to the inner thigh during seated procedures. EPDs provided results for individual procedures. Conclusion. PPE currently used by surgeons in orthopaedic trauma theatre adequately reduces radiation exposure to below recommended levels. Normative data per trauma case show specific anatomical areas of higher exposure, which may benefit from enhanced radiation protection. EPDs can be used to assess real-time radiation exposure in orthopaedic surgery. There may be a role in future medical wearables for orthopaedic surgeons. Cite this article: Bone Jt Open 2022;3(11):907–912


The Bone & Joint Journal
Vol. 103-B, Issue 1 | Pages 105 - 112
1 Jan 2021
Lynch JT Perriman DM Scarvell JM Pickering MR Galvin CR Neeman T Smith PN

Aims. Modern total knee arthroplasty (TKA) prostheses are designed to restore near normal kinematics including high flexion. Kneeling is a high flexion, kinematically demanding activity after TKA. The debate about design choice has not yet been informed by six-degrees-of-freedom in vivo kinematics. This prospective randomized clinical trial compared kneeling kinematics in three TKA designs. Methods. In total, 68 patients were randomized to either a posterior stabilized (PS-FB), cruciate-retaining (CR-FB), or rotating platform (CR-RP) design. Of these patients, 64 completed a minimum one year follow-up. Patients completed full-flexion kneeling while being imaged using single-plane fluoroscopy. Kinematics were calculated by registering the 3D implant models onto 2D-dynamic fluoroscopic images and exported for analysis. Results. CR-FB designs had significantly lower maximal flexion (mean 116° (SD 2.1°)) compared to CR-RP (123° (SD 1.6°)) and PS-FB (125° (SD 2.1°)). The PS-FB design displayed a more posteriorly positioned femur throughout flexion. Furthermore, the CR-RP femur was more externally rotated throughout kneeling. Finally, individual patient kinematics showed high degrees of variability within all designs. Conclusion. The increased maximal flexion found in the PS-FB and CR-RP designs were likely achieved in different ways. The PS-FB design uses a cam-post to hold the femur more posteriorly preventing posterior impingement. The external rotation within the CR-RP design was surprising and hasn’t previously been reported. It is likely due to the polyethylene bearing being decoupled from flexion. The findings of this study provide insights into the function of different knee arthroplasty designs in the context during deep kneeling and provide clinicians with a more kinematically informed choice for implant selection and may allow improved management of patients' functional expectations. Cite this article: Bone Joint J 2021;103-B(1):105–112


The Bone & Joint Journal
Vol. 98-B, Issue 5 | Pages 696 - 702
1 May 2016
Theologis AA Burch S Pekmezci M

Aims. We compared the accuracy, operating time and radiation exposure of the introduction of iliosacral screws using O-arm/Stealth Navigation and standard fluoroscopy. Materials and Methods. Iliosacral screws were introduced percutaneously into the first sacral body (S1) of ten human cadavers, four men and six women. The mean age was 77 years (58 to 85). Screws were introduced using a standard technique into the left side of S1 using C-Arm fluoroscopy and then into the right side using O-Arm/Stealth Navigation. The radiation was measured on the surgeon by dosimeters placed under a lead thyroid shield and apron, on a finger, a hat and on the cadavers. Results. There were no neuroforaminal breaches in either group. The set-up time for the O-Arm was significantly longer than for the C-Arm, while total time for placement of the screws was significantly shorter for the O-Arm than for the C-Arm (p = 0.001). The mean absorbed radiation dose during fluoroscopy was 1063 mRad (432.5 mRad to 4150 mRad). No radiation was detected on the surgeon during fluoroscopy, or when he left the room during the use of the O-Arm. The mean radiation detected on the cadavers was significantly higher in the O-Arm group (2710 mRem standard deviation (. sd. ) 1922) than during fluoroscopy (11.9 mRem . sd 14.8). (p < 0.01). Conclusion. O-Arm/Stealth Navigation allows for faster percutaneous placement of iliosacral screws in a radiation-free environment for surgeons, albeit with the same accuracy and significantly more radiation exposure to cadavers, when compared with standard fluoroscopy. Take home message: Placement of iliosacral screws with O-Arm/Stealth Navigation can be performed safely and effectively. Cite this article: Bone Joint J 2016;98-B:696–702


The Bone & Joint Journal
Vol. 103-B, Issue 4 | Pages 739 - 745
1 Apr 2021
Mehta JS Hodgson K Yiping L Kho JSB Thimmaiah R Topiwala U Sawlani V Botchu R

Aims. To benchmark the radiation dose to patients during the course of treatment for a spinal deformity. Methods. Our radiation dose database identified 25,745 exposures of 6,017 children (under 18 years of age) and adults treated for a spinal deformity between 1 January 2008 and 31 December 2016. Patients were divided into surgical (974 patients) and non-surgical (5,043 patients) cohorts. We documented the number and doses of ionizing radiation imaging events (radiographs, CT scans, or intraoperative fluoroscopy) for each patient. All the doses for plain radiographs, CT scans, and intraoperative fluoroscopy were combined into a single effective dose by a medical physicist (milliSivert (mSv)). Results. There were more ionizing radiation-based imaging events and higher radiation dose exposures in the surgical group than in the non-surgical group (p < 0.001). The difference in effective dose for children between the surgical and non-surgical groups was statistically significant, the surgical group being significantly higher (p < 0.001). This led to a higher estimated risk of cancer induction for the surgical group (1:222 surgical vs 1:1,418 non-surgical). However, the dose difference for adults was not statistically different between the surgical and non-surgical groups. In all cases the effective dose received by all cohorts was significantly higher than that from exposure to natural background radiation. Conclusion. The treatment of spinal deformity is radiation-heavy. The dose exposure is several times higher when surgical treatment is undertaken. Clinicians should be aware of this and review their practices in order to reduce the radiation dose where possible. Cite this article: Bone Joint J 2021;103-B(4):1–7


The Bone & Joint Journal
Vol. 103-B, Issue 5 | Pages 822 - 827
1 May 2021
Buzzatti L Keelson B Vanlauwe J Buls N De Mey J Vandemeulebroucke J Cattrysse E Scheerlinck T

Evaluating musculoskeletal conditions of the lower limb and understanding the pathophysiology of complex bone kinematics is challenging. Static images do not take into account the dynamic component of relative bone motion and muscle activation. Fluoroscopy and dynamic MRI have important limitations. Dynamic CT (4D-CT) is an emerging alternative that combines high spatial and temporal resolution, with an increased availability in clinical practice. 4D-CT allows simultaneous visualization of bone morphology and joint kinematics. This unique combination makes it an ideal tool to evaluate functional disorders of the musculoskeletal system. In the lower limb, 4D-CT has been used to diagnose femoroacetabular impingement, patellofemoral, ankle and subtalar joint instability, or reduced range of motion. 4D-CT has also been used to demonstrate the effect of surgery, mainly on patellar instability. 4D-CT will need further research and validation before it can be widely used in clinical practice. We believe, however, it is here to stay, and will become a reference in the diagnosis of lower limb conditions and the evaluation of treatment options. Cite this article: Bone Joint J 2021;103-B(5):822–827


The Bone & Joint Journal
Vol. 102-B, Issue 11 | Pages 1505 - 1510
2 Nov 2020
Klemt C Limmahakhun S Bounajem G Xiong L Yeo I Kwon Y

Aims. The complex relationship between acetabular component position and spinopelvic mobility in patients following total hip arthroplasty (THA) renders it difficult to optimize acetabular component positioning. Mobility of the normal lumbar spine during postural changes results in alterations in pelvic tilt (PT) to maintain the sagittal balance in each posture and, as a consequence, markedly changes the functional component anteversion (FCA). This study aimed to investigate the in vivo association of lumbar degenerative disc disease (DDD) with the PT angle and with FCA during postural changes in THA patients. Methods. A total of 50 patients with unilateral THA underwent CT imaging for radiological evaluation of presence and severity of lumbar DDD. In all, 18 patients with lumbar DDD were compared to 32 patients without lumbar DDD. In vivo PT and FCA, and the magnitudes of changes (ΔPT; ΔFCA) during supine, standing, swing-phase, and stance-phase positions were measured using a validated dual fluoroscopic imaging system. Results. PT, FCA, ΔPT, and ΔFCA were significantly correlated with the severity of lumbar DDD. Patients with severe lumbar DDD showed marked differences in PT with changes in posture; there was an anterior tilt (-16.6° vs -12.3°, p = 0.047) in the supine position, but a posterior tilt in an upright posture (1.0° vs -3.6°, p = 0.005). A significant decrease in ΔFCA during stand-to-swing (8.6° vs 12.8°, p = 0.038) and stand-to-stance (7.3° vs 10.6°,p = 0.042) was observed in the severe lumbar DDD group. Conclusion. There were marked differences in the relationship between PT and posture in patients with severe lumbar DDD compared with healthy controls. Clinical decision-making should consider the relationship between PT and FCA in order to reduce the risk of impingement at large ranges of motion in THA patients with lumbar DDD. Cite this article: Bone Joint J 2020;102-B(11):1505–1510


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 353 - 359
1 Feb 2021
Cho C Min B Bae K Lee K Kim DH

Aims. Ultrasound (US)-guided injections are widely used in patients with conditions of the shoulder in order to improve their accuracy. However, the clinical efficacy of US-guided injections compared with blind injections remains controversial. The aim of this study was to compare the accuracy and efficacy of US-guided compared with blind corticosteroid injections into the glenohumeral joint in patients with primary frozen shoulder (FS). Methods. Intra-articular corticosteroid injections were administered to 90 patients primary FS, who were randomly assigned to either an US-guided (n = 45) or a blind technique (n = 45), by a shoulder specialist. Immediately after injection, fluoroscopic images were obtained to assess the accuracy of the injection. The outcome was assessed using a visual analogue scale (VAS) for pain, the American Shoulder and Elbow Surgeons (ASES) score, the subjective shoulder value (SSV) and range of movement (ROM) for all patients at the time of presentation and at three, six, and 12 weeks after injection. Results. The accuracy of injection in the US and blind groups was 100% (45/45) and 71.1% (32/45), respectively; this difference was significant (p < 0.001). Both groups had significant improvements in VAS pain score, ASES score, SSV, forward flexion, abduction, external rotation, and internal rotation throughout follow-up until 12 weeks after injection (all p < 0.001). There were no significant differences between the VAS pain scores, the ASES score, the SSV and all ROMs between the two groups at the time points assessed (all p > 0.05). No injection-related adverse effects were noted in either group. Conclusion. We found no significant differences in pain and functional outcomes between the two groups, although an US-guided injection was associated with greater accuracy. Considering that it is both costly and time-consuming, an US-guided intra-articular injection of corticosteroid seems not always to be necessary in the treatment of FS as it gives similar outcomes as a blind injection. Cite this article: Bone Joint J 2021;103-B(2):353–359


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 59 - 65
1 Jun 2020
Kwon Y Arauz P Peng Y Klemt C

Aims. The removal of the cruciate ligaments in total knee arthroplasty (TKA) has been suggested as a potential contributing factor to patient dissatisfaction, due to alteration of the in vivo biomechanics of the knee. Bicruciate retaining (BCR) TKA allows the preservation of the cruciate ligaments, thus offering the potential to reproduce healthy kinematics. The aim of this study was to compare in vivo kinematics between the operated and contralateral knee in patients who have undergone TKA with a contemporary BCR design. Methods. A total of 29 patients who underwent unilateral BCR TKA were evaluated during single-leg deep lunges and sit-to-stand tests using a validated computer tomography and fluoroscopic imaging system. In vivo six-degrees of freedom (6DOF) kinematics were compared between the BCR TKA and the contralateral knee. Results. During single-leg deep lunge, BCR TKAs showed significantly less mean posterior femoral translation (13 mm; standard deviation (SD) 4) during terminal flexion, compared with the contralateral knee (16.6 mm, SD 3.7; p = 0.001). Similarly, BCR TKAs showed significantly less mean femoral rollback (11.6 mm (SD 4.5) vs 14.4 mm (SD 4.6); p < 0.043) during sit-to-stand. BCR TKAs showed significantly reduced internal rotation during many parts of the strenuous flexion activities particularly during high-flexion lunge (4° (SD 5.6°) vs 6.5° (SD 6.1°); p = 0.051) and during sit-to-stand (4.5° (SD 6°) vs 6.9° (SD 6.3°); p = 0.048). Conclusion. The contemporary design of BCR TKA showed asymmetrical flexion-extension and internal-external rotation, suggesting that the kinematics are not entirely reproduced during strenuous activities. Future studies are required to establish the importance of patient factors, component orientation and design, in optimizing kinematics in patients who undergo BCR TKA. Cite this article: Bone Joint J 2020;102-B(6 Supple A):59–65


The Bone & Joint Journal
Vol. 102-B, Issue 1 | Pages 5 - 10
1 Jan 2020
Cawley DT Rajamani V Cawley M Selvadurai S Gibson A Molloy S

Aims. Intraoperative 3D navigation (ION) allows high accuracy to be achieved in spinal surgery, but poor workflow has prevented its widespread uptake. The technical demands on ION when used in patients with adolescent idiopathic scoliosis (AIS) are higher than for other more established indications. Lean principles have been applied to industry and to health care with good effects. While ensuring optimal accuracy of instrumentation and safety, the implementation of ION and its associated productivity was evaluated in this study for AIS surgery in order to enhance the workflow of this technique. The aim was to optimize the use of ION by the application of lean principles in AIS surgery. Methods. A total of 20 consecutive patients with AIS were treated with ION corrective spinal surgery. Both qualitative and quantitative analysis was performed with real-time modifications. Operating time, scan time, dose length product (measure of CT radiation exposure), use of fluoroscopy, the influence of the reference frame, blood loss, and neuromonitoring were assessed. Results. The greatest gains in productivity were in avoiding repeat intraoperative scans (a mean of 248 minutes for patients who had two scans, and a mean 180 minutes for those who had a single scan). Optimizing accuracy was the biggest factor influencing this, which was reliant on incremental changes to the operating setup and technique. Conclusion. The application of lean principles to the introduction of ION for AIS surgery helps assimilate this method into the environment of the operating theatre. Data and stakeholder analysis identified a reproducible technique for using ION for AIS surgery, reducing operating time, and radiation exposure. Cite this article: Bone Joint J. 2020;102-B(1):5–10


The Bone & Joint Journal
Vol. 101-B, Issue 11 | Pages 1325 - 1330
1 Nov 2019
White J Couzens G Jeffery C

The wrist is a complex joint involving many small bones and complicated kinematics. It has, therefore, been traditionally difficult to image and ascertain information about kinematics when making a diagnosis. Although MRI and fluoroscopy have been used, they both have limitations. Recently, there has been interest in the use of 4D-CT in imaging the wrist. This review examines the literature regarding the use of 4D-CT in imaging the wrist to assess kinematics and its ability to diagnose pathology. Some questions remain about the description of normal ranges, the most appropriate method of measuring intercarpal stability, the accuracy compared with established standards, and the place of 4D-CT in postoperative assessment. Cite this article: Bone Joint J 2019;101-B:1325–1330


Bone & Joint Research
Vol. 1, Issue 10 | Pages 234 - 237
1 Oct 2012
Hughes AW Dwyer AJ Govindaswamy R Lankester B

Objectives. Our aim was to assess the use of intra-operative fluoroscopy in the assessment of the position of the tibial tunnel during reconstruction of the anterior cruciate ligament (ACL). Methods. Between January and June 2009 a total of 31 arthroscopic hamstring ACL reconstructions were performed. Intra-operative fluoroscopy was introduced (when available) to verify the position of the guidewire before tunnel reaming. It was only available for use in 20 cases, due to other demands on the radiology department. The tourniquet times were compared between the two groups and all cases where radiological images lead to re-positioning of the guide wire were recorded. The secondary outcome involved assessing the tibial interference screw position measured on post-operative radiographs and comparing with the known tunnel position as shown on intra-operative fluoroscopic images. Results. Of the 20 patients treated with fluoroscopy, the imaging led to repositioning of the tibial guide wire before reaming in three (15%). The mean tourniquet time with intra-operative fluoroscopy was 56 minutes (44 to 70) compared with 51 minutes (42 to 67) for the operations performed without. Six patients (30%) had post-operative screw positions that were > 5% more posterior than the known position of the tibial tunnel. Conclusion. Intra-operative fluoroscopy can be effectively used to improve the accuracy of tibial tunnel positions with minimal increase in tourniquet time. This study also demonstrates the potential inaccuracy associated with plain radiological assessment of tunnel position


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 10 | Pages 1332 - 1337
1 Oct 2010
Leung KS Tang N Cheung LWH Ng E

Fluoronavigation is an image-guided technology which uses intra-operative fluoroscopic images taken under a real-time tracking system and registration to guide surgical procedures. With the skeleton and the instrument registered, guidance under an optical tracking system is possible, allowing fixation of the fracture and insertion of an implant. This technology helps to minimise exposure to x-rays, providing multiplanar views for monitoring and accurate positioning of implants. It allows real-time interactive quantitative data for decision-making and expands the application of minimally invasive surgery. In orthopaedic trauma its use can be further enhanced by combining newer imaging technologies such as intra-operative three-dimensional fluoroscopy and optical image guidance, new advances in software for fracture reduction, and new tracking mechanisms using electromagnetic technology. The major obstacles for general and wider applications are the inability to track individual fracture fragments, no navigated real-time fracture reduction, and the lack of an objective assessment method for cost-effectiveness. We believe that its application will go beyond the operating theatre and cover all aspects of patient management, from pre-operative planning to intra-operative guidance and postoperative rehabilitation


The Bone & Joint Journal
Vol. 105-B, Issue 3 | Pages 331 - 340
1 Mar 2023
Vogt B Toporowski G Gosheger G Laufer A Frommer A Kleine-Koenig M Roedl R Antfang C

Aims

Temporary hemiepiphysiodesis (HED) is applied to children and adolescents to correct angular deformities (ADs) in long bones through guided growth. Traditional Blount staples or two-hole plates are mainly used for this indication. Despite precise surgical techniques and attentive postoperative follow-up, implant-associated complications are frequently described. To address these pitfalls, a flexible staple was developed to combine the advantages of the established implants. This study provides the first results of guided growth using the new implant and compares these with the established two-hole plates and Blount staples.

Methods

Between January 2013 and December 2016, 138 patients (22 children, 116 adolescents) with genu valgum or genu varum were treated with 285 flexible staples. The minimum follow-up was 24 months. These results were compared with 98 patients treated with 205 two-hole plates and 92 patients treated with 535 Blount staples. In long-standing anteroposterior radiographs, mechanical axis deviations (MADs) were measured before and during treatment to analyze treatment efficiency. The evaluation of the new flexible staple was performed according to the idea, development, evaluation, assessment, long-term (IDEAL) study framework (Stage 2a).


Bone & Joint Open
Vol. 4, Issue 5 | Pages 329 - 337
8 May 2023
Khan AQ Chowdhry M Sherwani MKA McPherson EJ

Aims

Total hip arthroplasty (THA) is considered the preferred treatment for displaced proximal femoral neck fractures. However, in many countries this option is economically unviable. To improve outcomes in financially disadvantaged populations, we studied the technique of concomitant valgus hip osteotomy and operative fixation (VOOF). This prospective serial study compares two treatment groups: VOOF versus operative fixation alone with cannulated compression screws (CCSs).

Methods

In the first series, 98 hip fixation procedures were performed using CCS. After fluoroscopic reduction of the fracture, three CCSs were placed. In the second series, 105 VOOF procedures were performed using a closing wedge intertrochanteric osteotomy with a compression lag screw and lateral femoral plate. The alignment goal was to create a modified Pauwel’s fracture angle of 30°. After fluoroscopic reduction of fracture, lag screw was placed to achieve the calculated correction angle, followed by inter-trochanteric osteotomy and placement of barrel plate. Patients were followed for a minimum of two years.