header advert
Results 1 - 8 of 8
Results per page:
Bone & Joint Open
Vol. 4, Issue 8 | Pages 643 - 651
24 Aug 2023
Langit MB Tay KS Al-Omar HK Barlow G Bates J Chuo CB Muir R Sharma H

Aims

The standard of wide tumour-like resection for chronic osteomyelitis (COM) has been challenged recently by adequate debridement. This paper reviews the evolution of surgical debridement for long bone COM, and presents the outcome of adequate debridement in a tertiary bone infection unit.

Methods

We analyzed the retrospective record review from 2014 to 2020 of patients with long bone COM. All were managed by multidisciplinary infection team (MDT) protocol. Adequate debridement was employed for all cases, and no case of wide resection was included.


The Bone & Joint Journal
Vol. 98-B, Issue 9 | Pages 1289 - 1296
1 Sep 2016
McNally MA Ferguson JY Lau ACK Diefenbeck M Scarborough M Ramsden AJ Atkins BL

Aims. Chronic osteomyelitis may recur if dead space management, after excision of infected bone, is inadequate. This study describes the results of a strategy for the management of deep bone infection and evaluates a new antibiotic-loaded biocomposite in the eradication of infection from bone defects. Patients and Methods. We report a prospective study of 100 patients with chronic osteomyelitis, in 105 bones. Osteomyelitis followed injury or surgery in 81 patients. Nine had concomitant septic arthritis. 80 patients had comorbidities (Cierny-Mader (C-M) Class B hosts). Ten had infected nonunions. All patients were treated by a multidisciplinary team with a single-stage protocol including debridement, multiple sampling, culture-specific systemic antibiotics, stabilisation, dead space filling with the biocomposite and primary skin closure. . Results. Patients were followed up for a mean of 19.5 months (12 to 34). Infection was eradicated in 96 patients with a single procedure and all four recurrences were successfully managed with repeat surgery. Adverse events were uncommon, with three fractures, six wound leaks and three unrelated deaths. Outcome was not dependant on C-M host class, microbial culture, wound leakage or presence of nonunion. Conclusion. This single-stage protocol, facilitated by the absorbable local antibiotic, is effective in the treatment of chronic osteomyelitis. It offers a more patient-friendly treatment compared with other published treatment options. Cite this article: Bone Joint J 2016;98-B:1289–96


Bone & Joint Open
Vol. 1, Issue 10 | Pages 628 - 638
6 Oct 2020
Mott A Mitchell A McDaid C Harden M Grupping R Dean A Byrne A Doherty L Sharma H

Aims

Bone demonstrates good healing capacity, with a variety of strategies being utilized to enhance this healing. One potential strategy that has been suggested is the use of stem cells to accelerate healing.

Methods

The following databases were searched: MEDLINE, CENTRAL, EMBASE, Cochrane Database of Systematic Reviews, WHO-ICTRP, ClinicalTrials.gov, as well as reference checking of included studies. The inclusion criteria for the study were: population (any adults who have sustained a fracture, not including those with pre-existing bone defects); intervention (use of stem cells from any source in the fracture site by any mechanism); and control (fracture healing without the use of stem cells). Studies without a comparator were also included. The outcome was any reported outcomes. The study design was randomized controlled trials, non-randomized or observational studies, and case series.


Bone & Joint Research
Vol. 4, Issue 5 | Pages 70 - 77
1 May 2015
Gupta A Liberati TA Verhulst SJ Main BJ Roberts MH Potty AGR Pylawka TK El-Amin III SF

Objectives

The purpose of this study was to evaluate in vivo biocompatibility of novel single-walled carbon nanotubes (SWCNT)/poly(lactic-co-glycolic acid) (PLAGA) composites for applications in bone and tissue regeneration.

Methods

A total of 60 Sprague-Dawley rats (125 g to 149 g) were implanted subcutaneously with SWCNT/PLAGA composites (10 mg SWCNT and 1gm PLAGA 12 mm diameter two-dimensional disks), and at two, four, eight and 12 weeks post-implantation were compared with control (Sham) and PLAGA (five rats per group/point in time). Rats were observed for signs of morbidity, overt toxicity, weight gain and food consumption, while haematology, urinalysis and histopathology were completed when the animals were killed.


Bone & Joint Research
Vol. 3, Issue 7 | Pages 223 - 229
1 Jul 2014
Fleiter N Walter G Bösebeck H Vogt S Büchner H Hirschberger W Hoffmann R

Objective

A clinical investigation into a new bone void filler is giving first data on systemic and local exposure to the anti-infective substance after implantation.

Method

A total of 20 patients with post-traumatic/post-operative bone infections were enrolled in this open-label, prospective study. After radical surgical debridement, the bone cavity was filled with this material. The 21-day hospitalisation phase included determination of gentamicin concentrations in plasma, urine and wound exudate, assessment of wound healing, infection parameters, implant resorption, laboratory parameters, and adverse event monitoring. The follow-up period was six months.


The Bone & Joint Journal
Vol. 97-B, Issue 5 | Pages 582 - 589
1 May 2015
Brennan SA Ní Fhoghlú C Devitt BM O’Mahony FJ Brabazon D Walsh A

Implant-associated infection is a major source of morbidity in orthopaedic surgery. There has been extensive research into the development of materials that prevent biofilm formation, and hence, reduce the risk of infection. Silver nanoparticle technology is receiving much interest in the field of orthopaedics for its antimicrobial properties, and the results of studies to date are encouraging. Antimicrobial effects have been seen when silver nanoparticles are used in trauma implants, tumour prostheses, bone cement, and also when combined with hydroxyapatite coatings. Although there are promising results with in vitro and in vivo studies, the number of clinical studies remains small. Future studies will be required to explore further the possible side effects associated with silver nanoparticles, to ensure their use in an effective and biocompatible manner. Here we present a review of the current literature relating to the production of nanosilver for medical use, and its orthopaedic applications.

Cite this article: Bone Joint J 2015; 97-B:582–9.


The Bone & Joint Journal
Vol. 97-B, Issue 3 | Pages 427 - 431
1 Mar 2015
Wu C Hsieh P Fan Jiang J Shih H Chen C Hu C

Fresh-frozen allograft bone is frequently used in orthopaedic surgery. We investigated the incidence of allograft-related infection and analysed the outcomes of recipients of bacterial culture-positive allografts from our single-institute bone bank during bone transplantation. The fresh-frozen allografts were harvested in a strict sterile environment during total joint arthroplasty surgery and immediately stored in a freezer at -78º to -68º C after packing. Between January 2007 and December 2012, 2024 patients received 2083 allografts with a minimum of 12 months of follow-up. The overall allograft-associated infection rate was 1.2% (24/2024). Swab cultures of 2083 allografts taken before implantation revealed 21 (1.0%) positive findings. The 21 recipients were given various antibiotics at the individual orthopaedic surgeon’s discretion. At the latest follow-up, none of these 21 recipients displayed clinical signs of infection following treatment. Based on these findings, we conclude that an incidental positive culture finding for allografts does not correlate with subsequent surgical site infection. Additional prolonged post-operative antibiotic therapy may not be necessary for recipients of fresh-frozen bone allograft with positive culture findings.

Cite this article: Bone Joint J 2015;97-B:427–31.


The Bone & Joint Journal
Vol. 96-B, Issue 5 | Pages 569 - 573
1 May 2014
Sullivan MP McHale KJ Parvizi J Mehta S

Nanotechnology is the study, production and controlled manipulation of materials with a grain size < 100 nm. At this level, the laws of classical mechanics fall away and those of quantum mechanics take over, resulting in unique behaviour of matter in terms of melting point, conductivity and reactivity. Additionally, and likely more significant, as grain size decreases, the ratio of surface area to volume drastically increases, allowing for greater interaction between implants and the surrounding cellular environment. This favourable increase in surface area plays an important role in mesenchymal cell differentiation and ultimately bone–implant interactions.

Basic science and translational research have revealed important potential applications for nanotechnology in orthopaedic surgery, particularly with regard to improving the interaction between implants and host bone. Nanophase materials more closely match the architecture of native trabecular bone, thereby greatly improving the osseo-integration of orthopaedic implants. Nanophase-coated prostheses can also reduce bacterial adhesion more than conventionally surfaced prostheses. Nanophase selenium has shown great promise when used for tumour reconstructions, as has nanophase silver in the management of traumatic wounds. Nanophase silver may significantly improve healing of peripheral nerve injuries, and nanophase gold has powerful anti-inflammatory effects on tendon inflammation.

Considerable advances must be made in our understanding of the potential health risks of production, implantation and wear patterns of nanophase devices before they are approved for clinical use. Their potential, however, is considerable, and is likely to benefit us all in the future.

Cite this article: Bone Joint J 2014; 96-B: 569–73.