Aims. Unicompartmental knee arthroplasty (UKA) has become a popular method of treating knee localized osteoarthritis (OA). Additionally, the posterior cruciate ligament (PCL) is essential to maintaining the physiological kinematics and functions of the knee joint. Considering these factors, the purpose of this study was to investigate the biomechanical effects on PCL-deficient knees in medial UKA. Methods. Computational simulations of five subject-specific models were performed for intact and PCL-deficient UKA with
A functional anterior cruciate ligament (ACL) or posterior cruciate ligament (PCL) has been assumed to be required for patients undergoing unicompartmental knee arthroplasty (UKA). However, this assumption has not been thoroughly tested. Therefore, this study aimed to assess the biomechanical effects exerted by cruciate ligament-deficient knees with medial UKAs regarding different posterior tibial slopes. ACL- or PCL-deficient models with posterior tibial slopes of 1°, 3°, 5°, 7°, and 9° were developed and compared to intact models. The kinematics and contact stresses on the tibiofemoral joint were evaluated under gait cycle loading conditions.Aims
Methods
Objectives. Posterior condylar offset (PCO) and posterior tibial slope (PTS) are critical factors in total knee arthroplasty (TKA). A computational simulation was performed to evaluate the biomechanical effect of PCO and PTS on cruciate retaining TKA. Methods. We generated a subject-specific computational model followed by the development of ± 1 mm, ± 2 mm and ± 3 mm PCO models in the posterior direction, and -3°, 0°, 3° and 6° PTS models with each of the PCO models. Using a validated finite element (FE) model, we investigated the influence of the changes in PCO and PTS on the contact stress in the patellar button and the forces on the posterior cruciate ligament (PCL), patellar tendon and quadriceps muscles under the deep knee-bend loading conditions. Results. Contact stress on the patellar button increased and decreased as PCO translated to the anterior and posterior directions, respectively. In addition, contact stress on the patellar button decreased as PTS increased. These trends were consistent in the FE models with altered PCO. Higher quadriceps muscle and patellar tendon force are required as PCO translated in the anterior direction with an equivalent flexion angle. However, as PTS increased, quadriceps muscle and patellar tendon force reduced in each PCO condition. The forces exerted on the PCL increased as PCO translated to the posterior direction and decreased as PTS increased. Conclusion. The change in PCO alternatively provided positive and negative biomechanical effects, but it led to a reduction in a negative biomechanical effect as PTS increased. Cite this article: K-T. Kang, Y-G. Koh, J. Son, O-R. Kwon, J-S. Lee, S. K. Kwon. A computational simulation study to determine the biomechanical influence of posterior condylar offset and
Radiographs of 110 patients who had undergone 120 high tibial osteotomies (60 closed-wedge, 60 open-wedge) were assessed for posterior tibial slope before and after operation, and before removal of the hardware. In the closed-wedge group the mean slope was 5.7° ( Posterior tibial slope decreases after closed-wedge high tibial osteotomy and increases after an open-wedge procedure because of the geometry of the proximal tibia. The changes in the slope are stable over time, emphasising the influence of the operative procedure rather than of the implant.
The optimal management of the
We report the outcome of 32 patients (37 knees) who underwent hemicallostasis with a dynamic external fixator for osteoarthritis of the medial compartment of the knee. There were 16 men (19 knees) and 16 women (18 knees) with a mean age at operation of 54.6 years (27 to 72). The aim was to achieve a valgus overcorrection of 2° to 8° or mechanical axis at 62.5% (± 12.5%). At a mean follow-up of 62.8 months (51 to 81) there was no change in the mean range of movement, and no statistically significant difference in the Insall-Salvati index or
Aims. We conducted a randomised controlled trial to assess the accuracy
of positioning and alignment of the components in total knee arthroplasty
(TKA), comparing those undertaken using standard intramedullary
cutting jigs and those with patient-specific instruments (PSI). Patients and Methods. There were 64 TKAs in the standard group and 69 in the PSI group. The post-operative hip-knee-ankle (HKA) angle and positioning
was investigated using CT scans. Deviation of >
3° from the planned
position was regarded as an outlier. The operating time, Oxford
Knee Scores (OKS) and Short Form-12 (SF-12) scores were recorded. Results. There were 14 HKA-angle outliers (22%) in the standard group
and nine (13%) in the PSI group (p = 0.251). The mean HKA-angle
was 0.5° varus in the standard group and 0.2° varus in the PSI group
(p = 0.492). The accuracy of alignment in the coronal and axial
planes and the proportion of outliers was not different in the two
groups. The femoral component was more flexed (p = 0.035) and there
were significantly more
The aim of this study was to evaluate the risk
factors for dislocation of the bearing after a mobile-bearing Oxford medial
unicompartmental knee replacement (UKR) and to test the hypothesis
that surgical factors, as measured from post-operative radiographs,
are associated with its dislocation. From a total of 480 UKRs performed between 2001 and 2012, in
391 patients with a mean age of 66.5 years (45 to 82) (316 female,
75 male), we identified 17 UKRs where bearing dislocation occurred.
The post-operative radiological measurements of the 17 UKRs and
51 matched controls were analysed using conditional logistic regression analysis.
The post-operative radiological measurements included post-operative
change in limb alignment, the position of the femoral and tibial
components, the resection depth of the proximal tibia, and the femoral component-posterior
condyle classification. We concluded that a post-operative decrease in the posterior
tibial slope relative to the pre-operative value was the only significant
determinant of dislocation of the bearing after medial Oxford UKR
(odds ratio 1.881; 95% confidence interval 1.272 to 2.779). A post-operative
posterior
We studied the intra- and interobserver reliability of measurements of the position of the components after total knee replacement (TKR) using a combination of radiographs and axial two-dimensional (2D) and three-dimensional (3D) reconstructed CT images to identify which method is best for this purpose. A total of 30 knees after primary TKR were assessed by two independent observers (an orthopaedic surgeon and a radiologist) using radiographs and CT scans. Plain radiographs were highly reliable at measuring the
We performed a randomised controlled trial comparing
computer-assisted surgery (CAS) with conventional surgery (CONV)
in total knee replacement (TKR). Between 2009 and 2011 a total of
192 patients with a mean age of 68 years (55 to 85) with osteoarthritis
or arthritic disease of the knee were recruited from four Norwegian
hospitals. At three months follow-up, functional results were marginally
better for the CAS group. Mean differences (MD) in favour of CAS
were found for the Knee Society function score (MD: 5.9, 95% confidence
interval (CI) 0.3 to 11.4, p = 0.039), the Knee Injury and Osteoarthritis
Outcome Score (KOOS) subscales for ‘pain’ (MD: 7.7, 95% CI 1.7 to
13.6, p = 0.012), ‘sports’ (MD: 13.5, 95% CI 5.6 to 21.4, p = 0.001)
and ‘quality of life’ (MD: 7.2, 95% CI 0.1 to 14.3, p = 0.046).
At one-year follow-up, differences favouring CAS were found for
KOOS ‘sports’ (MD: 11.0, 95% CI 3.0 to 19.0, p = 0.007) and KOOS
‘symptoms’ (MD: 6.7, 95% CI 0.5 to 13.0, p = 0.035). The use of
CAS resulted in fewer outliers in frontal alignment (>
3° malalignment),
both for the entire TKR (37.9% vs 17.9%, p = 0.042)
and for the tibial component separately (28.4% vs 6.3%,
p = 0.002).
Sagittal plane imbalance (SPI), or asymmetry between extension and flexion gaps, is an important issue in total knee arthroplasty (TKA). The purpose of this study was to compare SPI between kinematic alignment (KA), mechanical alignment (MA), and functional alignment (FA) strategies. In 137 robotic-assisted TKAs, extension and flexion stressed gap laxities and bone resections were measured. The primary outcome was the proportion and magnitude of medial and lateral SPI (gap differential > 2.0 mm) for KA, MA, and FA. Secondary outcomes were the proportion of knees with severe (> 4.0 mm) SPI, and resection thicknesses for each technique, with KA as reference.Aims
Methods
The aim of this study was to evaluate whether achieving medial joint opening, as measured by the change in the joint line convergence angle (∆JLCA), is a better predictor of clinical outcomes after high tibial osteotomy (HTO) compared with the mechanical axis deviation, and to find individualized targets for the redistribution of load that reflect bony alignment, joint laxity, and surgical technique. This retrospective study analyzed 121 knees in 101 patients. Patient-reported outcome measures (PROMs) were collected preoperatively and one year postoperatively, and were analyzed according to the surgical technique (opening or closing wedge), postoperative mechanical axis deviation (deviations above and below 10% from the target), and achievement of medial joint opening (∆JLCA > 1°). Radiological parameters, including JLCA, mechanical axis deviation, and the difference in JLCA between preoperative standing and supine radiographs (JLCAPD), an indicator of medial soft-tissue laxity, were measured. Cut-off points for parameters related to achieving medial joint opening were calculated from receiver operating characteristic (ROC) curves.Aims
Methods
The surgical target for optimal implant positioning in robotic-assisted total knee arthroplasty remains the subject of ongoing discussion. One of the proposed targets is to recreate the knee’s functional behaviour as per its pre-diseased state. The aim of this study was to optimize implant positioning, starting from mechanical alignment (MA), toward restoring the pre-diseased status, including ligament strain and kinematic patterns, in a patient population. We used an active appearance model-based approach to segment the preoperative CT of 21 osteoarthritic patients, which identified the osteophyte-free surfaces and estimated cartilage from the segmented bones; these geometries were used to construct patient-specific musculoskeletal models of the pre-diseased knee. Subsequently, implantations were simulated using the MA method, and a previously developed optimization technique was employed to find the optimal implant position that minimized the root mean square deviation between pre-diseased and postoperative ligament strains and kinematics.Aims
Methods
The aim of this study was to compare a bicruciate-retaining (BCR) total knee arthroplasty (TKA) with a posterior cruciate-retaining (CR) TKA design in terms of kinematics, measured using fluoroscopy and stability as micromotion using radiostereometric analysis (RSA). A total of 40 patients with end-stage osteoarthritis were included in this randomized controlled trial. All patients performed a step-up and lunge task in front of a monoplane fluoroscope one year postoperatively. Femorotibial contact point (CP) locations were determined at every flexion angle and compared between the groups. RSA images were taken at baseline, six weeks, three, six, 12, and 24 months postoperatively. Clinical and functional outcomes were compared postoperatively for two years.Aims
Methods
While mechanical alignment (MA) is the traditional technique in total knee arthroplasty (TKA), its potential for altering constitutional alignment remains poorly understood. This study aimed to quantify unintentional changes to constitutional coronal alignment and joint line obliquity (JLO) resulting from MA. A retrospective cohort study was undertaken of 700 primary MA TKAs (643 patients) performed between 2014 and 2017. Lateral distal femoral and medial proximal tibial angles were measured pre- and postoperatively to calculate the arithmetic hip-knee-ankle angle (aHKA), JLO, and Coronal Plane Alignment of the Knee (CPAK) phenotypes. The primary outcome was the magnitude and direction of aHKA, JLO, and CPAK alterations.Aims
Methods
We have previously reported the mid-term outcomes of revision total knee arthroplasty (TKA) for flexion instability. At a mean of four years, there were no re-revisions for instability. The aim of this study was to report the implant survivorship and clinical and radiological outcomes of the same cohort of of patients at a mean follow-up of ten years. The original publication included 60 revision TKAs in 60 patients which were undertaken between 2000 and 2010. The mean age of the patients at the time of revision TKA was 65 years, and 33 (55%) were female. Since that time, 21 patients died, leaving 39 patients (65%) available for analysis. The cumulative incidence of any re-revision with death as a competing risk was calculated. Knee Society Scores (KSSs) were also recorded, and updated radiographs were reviewed.Aims
Methods
Accurate identification of the ankle joint centre is critical for estimating tibial coronal alignment in total knee arthroplasty (TKA). The purpose of the current study was to leverage artificial intelligence (AI) to determine the accuracy and effect of using different radiological anatomical landmarks to quantify mechanical alignment in relation to a traditionally defined radiological ankle centre. Patients with full-limb radiographs from the Osteoarthritis Initiative were included. A sub-cohort of 250 radiographs were annotated for landmarks relevant to knee alignment and used to train a deep learning (U-Net) workflow for angle calculation on the entire database. The radiological ankle centre was defined as the midpoint of the superior talus edge/tibial plafond. Knee alignment (hip-knee-ankle angle) was compared against 1) midpoint of the most prominent malleoli points, 2) midpoint of the soft-tissue overlying malleoli, and 3) midpoint of the soft-tissue sulcus above the malleoli.Aims
Methods
Nearly 99,000 total knee arthroplasties (TKAs) are performed in UK annually. Despite plenty of research, the satisfaction rate of this surgery is around 80%. One of the important intraoperative factors affecting the outcome is alignment. The relationship between joint obliquity and functional outcomes is not well understood. Therefore, a study is required to investigate and compare the effects of two types of alignment (mechanical and kinematic) on functional outcomes and range of motion. The aim of the study is to compare navigated kinematically aligned TKAs (KA TKAs) with navigated mechanically aligned TKA (MA TKA) in terms of function and ROM. We aim to recruit a total of 96 patients in the trial. The patients will be recruited from clinics of various consultants working in the trust after screening them for eligibility criteria and obtaining their informed consent to participate in this study. Randomization will be done prior to surgery by a software. The primary outcome measure will be the Knee injury and Osteoarthritis Outcome Score The secondary outcome measures include Oxford Knee Score, ROM, EuroQol five-dimension questionnaire, EuroQol visual analogue scale, 12-Item Short-Form Health Survey (SF-12), and Forgotten Joint Score. The scores will be calculated preoperatively and then at six weeks, six months, and one year after surgery. The scores will undergo a statistical analysis.Aims
Methods
The primary aim of this study was to compare the postoperative systemic inflammatory response in conventional jig-based total knee arthroplasty (conventional TKA) versus robotic-arm assisted total knee arthroplasty (robotic TKA). Secondary aims were to compare the macroscopic soft tissue injury, femoral and tibial bone trauma, localized thermal response, and the accuracy of component positioning between the two treatment groups. This prospective randomized controlled trial included 30 patients with osteoarthritis of the knee undergoing conventional TKA versus robotic TKA. Predefined serum markers of inflammation and localized knee temperature were collected preoperatively and postoperatively at six hours, day 1, day 2, day 7, and day 28 following TKA. Blinded observers used the Macroscopic Soft Tissue Injury (MASTI) classification system to grade intraoperative periarticular soft tissue injury and bone trauma. Plain radiographs were used to assess the accuracy of achieving the planned postioning of the components in both groups.Aims
Methods
The extensive variation in axial rotation of tibial components can lead to coronal plane malalignment. We analyzed the change in coronal alignment induced by tray malrotation. We constructed a computer model of knee arthroplasty and used a virtual cutting guide to cut the tibia at 90° to the coronal plane. The virtual guide was rotated axially (15° medial to 15° lateral) and with posterior slopes (0° to 7°). To assess the effect of axial malrotation, we measured the coronal plane alignment of a tibial tray that was axially rotated (25° internal to 15° external), as viewed on a standard anteroposterior (AP) radiograph.Aims
Methods