Advertisement for orthosearch.org.uk
Results 1 - 14 of 14
Results per page:
Bone & Joint Research
Vol. 9, Issue 7 | Pages 386 - 393
1 Jul 2020
Doyle R van Arkel RJ Muirhead-Allwood S Jeffers JRT

Aims

Cementless acetabular components rely on press-fit fixation for initial stability. In certain cases, initial stability is more difficult to obtain (such as during revision). No current study evaluates how a surgeon’s impaction technique (mallet mass, mallet velocity, and number of strikes) may affect component fixation. This study seeks to answer the following research questions: 1) how does impaction technique affect a) bone strain generation and deterioration (and hence implant stability) and b) seating in different density bones?; and 2) can an impaction technique be recommended to minimize risk of implant loosening while ensuring seating of the acetabular component?

Methods

A custom drop tower was used to simulate surgical strikes seating acetabular components into synthetic bone. Strike velocity and drop mass were varied. Synthetic bone strain was measured using strain gauges and stability was assessed via push-out tests. Polar gap was measured using optical trackers.


The Bone & Joint Journal
Vol. 101-B, Issue 6_Supple_B | Pages 62 - 67
1 Jun 2019
Tanzer M Chuang PJ Ngo CG Song L TenHuisen KS

Aims

The purpose of this study was to evaluate the biological fixation of a 3D printed porous implant, with and without different hydroxyapatite (HA) coatings, in a canine model.

Materials and Methods

A canine transcortical model was used to evaluate the characteristics of bone ingrowth of Ti6Al4V cylindrical implants fabricated using laser rapid manufacturing (LRM). At four and 12 weeks post-implantation, we performed histological analysis and mechanical push-out testing on three groups of implants: a HA-free control (LRM), LRM with precipitated HA (LRM-PA), and LRM with plasma-sprayed HA (LRM-PSHA).


The Bone & Joint Journal
Vol. 100-B, Issue 7 | Pages 903 - 908
1 Jul 2018
Eachempati KK Malhotra R Pichai S Reddy AVG Podhili Subramani AK Gautam D Bollavaram VR Sheth NP

Aims

The advent of trabecular metal (TM) augments has revolutionized the management of severe bone defects during acetabular reconstruction. The purpose of this study was to evaluate patients undergoing revision total hip arthroplasty (THA) with the use of TM augments for reconstruction of Paprosky IIIA and IIIB defects.

Patients and Methods

A retrospective study was conducted at four centres between August 2008 and January 2015. Patients treated with TM augments and TM shell for a Paprosky grade IIIA or IIIB defect, in the absence of pelvic discontinuity, and who underwent revision hip arthroplasty with the use of TM augments were included in the study. A total of 41 patients with minimum follow-up of two years were included and evaluated using intention-to-treat analysis.


The Bone & Joint Journal
Vol. 100-B, Issue 11 | Pages 1424 - 1433
1 Nov 2018
Amstutz HC Le Duff MJ

Aims

This study presents the long-term survivorship, risk factors for prosthesis survival, and an assessment of the long-term effects of changes in surgical technique in a large series of patients treated by metal-on-metal (MoM) hip resurfacing arthroplasty (HRA).

Patients and Methods

Between November 1996 and January 2012, 1074 patients (1321 hips) underwent HRA using the Conserve Plus Hip Resurfacing System. There were 787 men (73%) and 287 women (27%) with a mean age of 51 years (14 to 83). The underlying pathology was osteoarthritis (OA) in 1003 (75.9%), developmental dysplasia of the hip (DDH) in 136 (10.3%), avascular necrosis in 98 (7.4%), and other conditions, including inflammatory arthritis, in 84 (6.4%).


The Bone & Joint Journal
Vol. 97-B, Issue 9 | Pages 1192 - 1196
1 Sep 2015
Amanatullah DF Siman H Pallante GD Haber DB Sierra RJ Trousdale RT

When fracture of an extensively porous-coated femoral component occurs, its removal at revision total hip arthroplasty (THA) may require a femoral osteotomy and the use of a trephine. The remaining cortical bone after using the trephine may develop thermally induced necrosis. A retrospective review identified 11 fractured, well-fixed, uncemented, extensively porous-coated femoral components requiring removal using a trephine with a minimum of two years of follow-up.

The mean time to failure was 4.6 years (1.7 to 9.1, standard deviation (sd) 2.3). These were revised using a larger extensively porous coated component, fluted tapered modular component, a proximally coated modular component, or a proximal femoral replacement. The mean clinical follow-up after revision THA was 4.9 years (2 to 22, sd 3.1). The mean diameter of the femoral component increased from 12.7 mm (sd 1.9) to 16.2 mm (sd 3.4; p >  0.001). Two revision components had radiographic evidence of subsidence that remained radiographically stable at final follow-up. The most common post-operative complication was instability affecting six patients (54.5%) on at least one occasion.

A total of four patients (36.4%) required further revision: three for instability and one for fracture of the revision component. There was no statistically significant difference in the mean Harris hip score before implant fracture (82.4; sd 18.3) and after trephine removal and revision THA (81.2; sd 14.8, p = 0.918).

These findings suggest that removal of a fractured, well-fixed, uncemented, extensively porous-coated femoral component using a trephine does not compromise subsequent fixation at revision THA and the patient’s pre-operative level of function can be restored. However, the loss of proximal bone stock before revision may be associated with a high rate of dislocation post-operatively.

Cite this article: Bone Joint J 2015;97-B:1192–6.


The Bone & Joint Journal
Vol. 96-B, Issue 11_Supple_A | Pages 87 - 92
1 Nov 2014
Kwong LM Nielsen ESN Ruiz DR Hsu AH Dines MD Mellano CM

A retrospective review was performed of patients undergoing primary cementless total knee replacement (TKR) using porous tantalum performed by a group of surgical trainees. Clinical and radiological follow-up involved 79 females and 26 males encompassing 115 knees. The mean age was 66.9 years (36 to 85). Mean follow-up was 7 years (2 to 11). Tibial and patellar components were porous tantalum monoblock implants, and femoral components were posterior stabilised (PS) in design with cobalt–chromium fibre mesh. Radiological assessments were made for implant positioning, alignment, radiolucencies, lysis, and loosening. There was 95.7% survival of implants. There was no radiological evidence of loosening and no osteolysis found. No revisions were performed for aseptic loosening. Average tibial component alignment was 1.4° of varus (4°of valgus to 9° varus), and 6.2° (3° anterior to 15° posterior) of posterior slope. Mean femoral component alignment was 6.6° (1° to 11°) of valgus. Mean tibiofemoral alignment was 5.6° of valgus (7° varus to 16° valgus). Patellar tilt was a mean of 2.4° lateral (5° medial to 28° lateral). Patient satisfaction with improvement in pain was 91%. Cementless TKR incorporating porous tantalum yielded good clinical and radiological outcomes at a mean of follow-up of seven-years.

Cite this article: Bone Joint J 2014;96-B(11 Suppl A):87–92.


Bone & Joint Research
Vol. 2, Issue 12 | Pages 264 - 269
1 Dec 2013
Antoniades G Smith EJ Deakin AH Wearing SC Sarungi M

Objective

This study compared the primary stability of two commercially available acetabular components from the same manufacturer, which differ only in geometry; a hemispherical and a peripherally enhanced design (peripheral self-locking (PSL)). The objective was to determine whether altered geometry resulted in better primary stability.

Methods

Acetabular components were seated with 0.8 mm to 2 mm interference fits in reamed polyethylene bone substrate of two different densities (0.22 g/cm3 and 0.45 g/cm3). The primary stability of each component design was investigated by measuring the peak failure load during uniaxial pull-out and tangential lever-out tests.


The Bone & Joint Journal
Vol. 96-B, Issue 11_Supple_A | Pages 36 - 42
1 Nov 2014
Sheth NP Melnic CM Paprosky WG

Acetabular bone loss is a challenging problem facing the revision total hip replacement surgeon. Reconstruction of the acetabulum depends on the presence of anterosuperior and posteroinferior pelvic column support for component fixation and stability. The Paprosky classification is most commonly used when determining the location and degree of acetabular bone loss. Augments serve the function of either providing primary construct stability or supplementary fixation.

When a pelvic discontinuity is encountered we advocate the use of an acetabular distraction technique with a jumbo cup and modular porous metal acetabular augments for the treatment of severe acetabular bone loss and associated chronic pelvic discontinuity.

Cite this article: Bone Joint J 2014;96-B(11 Suppl A):36–42.


The Bone & Joint Journal
Vol. 95-B, Issue 11_Supple_A | Pages 53 - 56
1 Nov 2013
Su EP Barrack RL

Cementless femoral stems are currently preferred for total hip replacement (THR) in the United States. Improvements in stem design, instrumentation and surgical technique have made this technology highly successful, reproducible, and applicable to the vast majority of patients requiring a THR. However, there are ongoing developments in some aspects of stem design that influence clinical results, the incidence of complications and their inherent adaptability in accommodating the needs of individual patients. Here we examine some of these design features.

Cite this article: Bone Joint J 2013;95-B, Supple A:53–6.


Bone & Joint Research
Vol. 1, Issue 4 | Pages 56 - 63
1 Apr 2012
Langton DJ Sidaginamale R Lord JK Nargol AVF Joyce TJ

Objectives

An ongoing prospective study to investigate failing metal-on-metal hip prostheses was commenced at our centre in 2008. We report on the results of the analysis of the first consecutive 126 failed mated total hip prostheses from a single manufacturer.

Methods

Analysis was carried out using highly accurate coordinate measuring to calculate volumetric and linear rates of the articular bearing surfaces and also the surfaces of the taper junctions. The relationship between taper wear rates and a number of variables, including bearing diameter and orientation of the acetabular component, was investigated.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 11 | Pages 1443 - 1447
1 Nov 2009
Zenz P Stiehl JB Knechtel H Titzer-Hochmaier G Schwagerl W

Cementless acetabular fixation has demonstrated superior long-term durability in total hip replacement, but most series have studied implants with porous metal surfaces. We retrospectively evaluated the results of 100 consecutive patients undergoing total hip replacement where a non-porous Allofit component was used for primary press-fit fixation.

This implant is titanium alloy, grit-blasted, with a macrostructure of forged teeth and has a biradial shape. A total of 81 patients (82 hips) were evaluated at final follow-up at a mean of 10.1 years (8.9 to 11.9). The Harris Hip Score improved from a mean 53 points (23 to 73) pre-operatively to a mean of 96 points (78 to 100) at final review. The osseointegration of all acetabular components was radiologically evaluated with no evidence of loosening. The survival rate with revision of the component as the endpoint was 97.5% (95% confidence interval 94 to 100) after 11.9 years. Radiolucency was found in one DeLee-Charnley zone in four acetabular components. None of the implants required revision for aseptic loosening. Two patients were treated for infection, one requiring a two-stage revision of the implant. One femoral stem was revised for osteolysis due to the production of metal wear debris, but the acetabular shell did not require revision.

This study demonstrates that a non-porous titanium acetabular component with adjunct surface fixation offers an alternative to standard porous-coated implants.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 9 | Pages 1142 - 1147
1 Sep 2009
Nagoya S Kaya M Sasaki M Tateda K Kosukegawa I Yamashita T

Total hip replacement for high dislocation of the hip joint remains technically difficult in terms of preparation of the true acetabulum and restoration of leg length. We describe our experience of cementless total hip replacement combined with a subtrochanteric femoral shortening osteotomy in 20 hips with Crowe grade IV dislocation with a mean follow-up of 8.1 years (4 to 11.5). There was one man and 17 women with a mean age of 55 years (44 to 69) at the time of the operation.

After placment of the acetabular component at the site of the natural acetabulum, a cementless porous-coated cylindrical femoral component was implanted following a subtrochanteric femoral shortening osteotomy.

The mean Japanese Orthopedic Association hip score improved from a mean of 38 (22 to 62) to a mean of 83 points (55 to 98) at the final follow-up. The mean lengthening of the leg was 14.8 mm (−9 to 34) in patients with iliofemoral osteoarthritis and 35.3 mm (15 to 51) in patients with no arthritic changes. No nerve palsy was observed.

Total hip replacement combined with subtrochanteric shortening femoral osteotomy in this situation is beneficial in avoiding nerve injury and still permits valuable improvement in inequality of leg length.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 8 | Pages 1033 - 1044
1 Aug 2011
Periasamy K Watson WS Mohammed A Murray H Walker B Patil S Meek RMD

The ideal acetabular component is characterised by reliable, long-term fixation with physiological loading of bone and a low rate of wear. Trabecular metal is a porous construct of tantalum which promotes bony ingrowth, has a modulus of elasticity similar to that of cancellous bone, and should be an excellent material for fixation.

Between 2004 and 2006, 55 patients were randomised to receive either a cemented polyethylene or a monobloc trabecular metal acetabular component with a polyethylene articular surface. We measured the peri-prosthetic bone density around the acetabular components for up to two years using dual-energy x-ray absorptiometry.

We found evidence that the cemented acetabular component loaded the acetabular bone centromedially whereas the trabecular metal monobloc loaded the lateral rim and behaved like a hemispherical rigid metal component with regard to loading of the acetabular bone. We suspect that this was due to the peripheral titanium rim used for the mechanism of insertion.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 3 | Pages 319 - 323
1 Mar 2008
Moonot P Singh PJ Cronin MD Kalairajah YE Kavanagh TG Field RE

Hip resurfacing is a bone-conserving procedure with respect to proximal femoral resection, but there is debate in the literature as to whether the same holds true for the acetabulum. We have investigated whether the Birmingham hip resurfacing conserves acetabular bone.

Between 1998 and 2005, 500 Birmingham hip resurfacings were performed by two surgeons. Between 1996 and 2005 they undertook 700 primary hip replacements, with an uncemented acetabular component. These patients formed the clinical material to compare acetabular component sizing. The Birmingham hip resurfacing group comprised 350 hips in men and 150 hips in women. The uncemented total hip replacement group comprised 236 hips in men and 464 hips in women. Age- and gender-matched analysis of a cohort of patients for the sizes of the acetabular components required for the two types of replacement was also undertaken. Additionally, an analysis of the sizes of the components used by each surgeon was performed.

For age-matched women, the mean outside diameter of the Birmingham hip resurfacing acetabular components was 2.03 mm less than that of the acetabular components in the uncemented total hip replacements (p < 0.0001). In similarly matched men there was no significant difference (p = 0.77). A significant difference was also found between the size of acetabular components used by the two surgeons for Birmingham hip resurfacing for both men (p = 0.0015) and women (p = 0.001). In contrast, no significant difference was found between the size of acetabular components used by the two surgeons for uncemented total hip replacement in either men or women (p = 0.06 and p = 0.14, respectively). This suggests that variations in acetabular preparation also influence acetabular component size in hip resurfacing.