Aims. Osteoarthritis (OA) is characterized by persistent destruction of articular cartilage. It has been found that microRNAs (miRNAs) are closely related to the occurrence and development of OA. The purpose of the present study was to investigate the mechanism of miR-486 in the development and progression of OA. Methods. The expression levels of miR-486 in cartilage were determined by quantitative real-time polymerase chain reaction (qRT-PCR). The expression of collagen, type II, alpha 1 (COL2A1), aggrecan (ACAN), matrix metalloproteinase (MMP)-13, and a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS4) in SW1353 cells at both messenger RNA (mRNA) and protein levels was determined by qRT-PCR, western blot, and enzyme-linked immunosorbent assay (ELISA). Double luciferase reporter gene assay, qRT-PCR, and western blot assay were used to determine whether silencing information regulator 6 (SIRT6) was involved in miR-486 induction of
Aims. Tert-butylhydroquinone (tBHQ) has been identified as an inhibitor of oxidative stress-induced injury and apoptosis in human neural stem cells. However, the role of tBHQ in osteoarthritis (OA) is unclear. This study was carried out to investigate the role of tBHQ in OA. Methods. OA animal model was induced by destabilization of the medial meniscus (DMM). Different concentrations of tBHQ (25 and 50 mg/kg) were intraperitoneally injected in ten-week-old female mice.
Objective. To study the effect of hyaluronic acid (HA) on local anaesthetic
chondrotoxicity in vitro. Methods.
Osteoarthritis (OA) is a prevalent joint disorder with inflammatory response and cartilage deterioration as its main features. Dihydrocaffeic acid (DHCA), a bioactive component extracted from natural plant ( In vitro, interleukin-1 beta (IL-1β) was used to establish the mice OA chondrocytes. Cell counting kit-8 evaluated chondrocyte viability. Western blotting analyzed the expression levels of collagen II, aggrecan, SOX9, inducible nitric oxide synthase (iNOS), IL-6, matrix metalloproteinases (MMPs: MMP1, MMP3, and MMP13), and signalling molecules associated with nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. Immunofluorescence analysis assessed the expression of aggrecan, collagen II, MMP13, and p-P65. In vivo, a destabilized medial meniscus (DMM) surgery was used to induce mice OA knee joints. After injection of DHCA or a vehicle into the injured joints, histological staining gauged the severity of cartilage damage.Aims
Methods
Intra-articular injections of local anaesthetics (LA), glucocorticoids (GC), or hyaluronic acid (HA) are used to treat osteoarthritis (OA). Contrast agents (CA) are needed to prove successful intra-articular injection or aspiration, or to visualize articular structures dynamically during fluoroscopy. Tranexamic acid (TA) is used to control haemostasis and prevent excessive intra-articular bleeding. Despite their common usage, little is known about the cytotoxicity of common drugs injected into joints. Thus, the aim of our study was to investigate the effects of LA, GC, HA, CA, and TA on the viability of primary human chondrocytes and tenocytes Human chondrocytes and tenocytes were cultured in a medium with three different drug dilutions (1:2; 1:10; 1:100). The following drugs were used to investigate cytotoxicity: lidocaine hydrochloride 1%; bupivacaine 0.5%; triamcinolone acetonide; dexamethasone 21-palmitate; TA; iodine contrast media; HA; and distilled water. Normal saline served as a control. After an incubation period of 24 hours, cell numbers and morphology were assessed.Objectives
Methods
1. Techniques are described for homografting intact or partly digested hyaline cartilage or isolated chondrocytes on to cancellous bone in rabbits. 2. Material which had been cooled to and thawed from -79 degrees Centigrade either in the presence or absence of the protective substance dimethyl sulphoxide was grafted in the same way. In control experiments samples were boiled before grafting. 3. Necropsies were performed at intervals varying from two to twenty-six weeks later and the graft sites were removed, fixed and decalcified. Paraffin sections were stained histologically. 4. Freshly isolated chondrocytes or chondrocytes which had been frozen in the presence of dimethyl suiphoxide formed new matrix within two weeks and did not succumb to a homograft reaction. By the sixth week they had become aligned in columns surrounded by well stained matrix. There were signs oferosion by invading capillaries and osteoblasts, but no lymphocytes were seen. By the twelfth week invasion by trabeculae of newly formed bone was well advanced and by the twenty-sixth week the grafts were difficult to find although there had been no sign at any stage of an immunological reaction. 5. New matrix was also formed in homografts of hyaline cartilage which had been treated with papain or with papain and collagenase. After freezing in the presence of dimethyl sulphoxide, small areas ofthe grafts seemed to contain living cells which had formed new matrix. Other areas were disintegrating. 6. The homografts of intact cartilage showed a variety of appearances suggesting that the old matrix was gradually leached out and that chondrocytes liberated 7. Intact or partly digested cartilage which had either been frozen without dimethyl suiphoxide or boiled disintegrated and was rapidly replaced by bone after grafting. 8. When specimens of partly digested cartilage or isolated chondrocytes were homografted On to sites denuded of cartilage on the articular surface of the rabbit humeral head, nodules of fresh cartilage were formed. They were embedded in fibrous tissue derived, presumably, from marrow cavities opened up at the time of operation.
1. The epiphyses of the metatarsal heads of 250-gramme rabbits were separated at the zone of cell columns, stripped of perichondrium, labelled with tritiated thymidine and transplanted into the back muscles of the same animals. 2. Endochondral ossification started in the grafts at four days, was well established by seven days and progressed until fourteen days, the end of the study. 3. Progressive passage of the label down the zone of cell columns and into the hypertrophic zone was observed. 4. The tritiated-3H thymidine label had disappeared from the cartilage cells by ten days. No labelling was observed in the bone cells at any stage. 5. It was not possible to demonstrate from the experiment that growth plate chondrocytes are precursors of osteoblasts in the process of endochondral ossification in rabbits.
The growth plates of the femoral head of Japanese white rabbits aged 5, 10, 15 and 20 weeks were stained for apoptotic and proliferating chondrocytes using the TUNEL and PCNA antibody staining techniques. Both TUNEL- and PCNA-positive chondrocytes were detected in all of the specimens. The positive ratios of both stainings were calculated for the whole plate and for the resting, proliferating and hypertrophic zones. The highest ratios in both stainings occurred in the hypertrophic zone in all age groups. With growth, the TUNEL-positive ratio increased whereas the proliferating ratio decreased. We suggest that the increase in chondrocytic death by apoptosis and the decrease in cell proliferation potential led to closure of the growth plate.
1. A comparative study has been made of the major transplantation antigens present on the chondrocyte isolated from articular cartilage of the sheep and lymphocytes from the cartilage donors. 2. It has been shown that the chondrocyte possesses antigens of the major histocompatibility system in common with the lymphocyte. 3. In order to demonstrate the similarity between the antigen structure of the chondrocyte and the lymphocyte it was necessary to treat cartilage cells with papain after isolation in order to remove the matrix more completely. Failure to do this led to an apparent deficit of antigens on the chondrocyte. 4. It was found that lysis of cells by antibodies was slower when chondrocytes were the target cells than when lymphocytes were used. It is concluded that this is due to a protective role of remaining cartilage matrix.
The aim of this experimental study on New Zealand’s white rabbits
was to investigate the transplantation of autogenous growth plate
cells in order to treat the injured growth plate. They were assessed
in terms of measurements of radiological tibial varus and histological
characteristics. An experimental model of plate growth medial partial resection
of the tibia in 14 New Zealand white rabbits was created. During
this surgical procedure the plate growth cells were collected and
cultured. While the second surgery was being performed, the autologous
cultured growth plate cells were grafted at the right tibia, whereas
the left tibia was used as a control group. Objectives
Methods
Aims. Circular RNA (circRNA) is involved in the regulation of articular cartilage degeneration induced by inflammatory factors or oxidative stress. In a previous study, we found that the expression of circStrn3 was significantly reduced in chondrocytes of osteoarthritis (OA) patients and OA mice. Therefore, the aim of this paper was to explore the role and mechanism of circStrn3 in osteoarthritis. Methods. Minus RNA sequencing, fluorescence in situ hybridization, and quantitative real-time polymerase chain reaction (qRT-PCR) were used to detect the expression of circStrn3 in human and mouse OA cartilage tissues and chondrocytes.
Aims. To evaluate the effect of ultrasound-targeted simvastatin-loaded microbubble destruction (UTMDSV) for alleviation of the progression of osteoarthritis (OA) in rabbits through modulation of the peroxisome proliferator-activated receptor (PPARγ). Methods. In vitro, OA chondrocytes were treated with ultrasound (US), US-targeted microbubble destruction (UTMD), simvastatin (SV), and UTMDSV on alternate days for four weeks.
Osteoarthritis (OA) is the most common chronic pathema of human joints. The pathogenesis is complex, involving physiological and mechanical factors. In previous studies, we found that ferroptosis is intimately related to OA, while the role of Sat1 in chondrocyte ferroptosis and OA, as well as the underlying mechanism, remains unclear. In this study, interleukin-1β (IL-1β) was used to simulate inflammation and Erastin was used to simulate ferroptosis in vitro. We used small interfering RNA (siRNA) to knock down the spermidine/spermine N1-acetyltransferase 1 (Sat1) and arachidonate 15-lipoxygenase (Alox15), and examined damage-associated events including inflammation, ferroptosis, and oxidative stress of chondrocytes. In addition, a destabilization of the medial meniscus (DMM) mouse model of OA induced by surgery was established to investigate the role of Sat1 inhibition in OA progression.Aims
Methods
Autologous chondrocyte implantation (ACI) is a promising treatment for articular cartilage degeneration and injury; however, it requires a large number of human hyaline chondrocytes, which often undergo dedifferentiation during in vitro expansion. This study aimed to investigate the effect of suramin on chondrocyte differentiation and its underlying mechanism. Porcine chondrocytes were treated with vehicle or various doses of suramin. The expression of collagen, type II, alpha 1 (COL2A1), aggrecan (ACAN); COL1A1; COL10A1; SRY-box transcription factor 9 (SOX9); nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX); interleukin (IL)-1β; tumour necrosis factor alpha (TNFα); IL-8; and matrix metallopeptidase 13 (MMP-13) in chondrocytes at both messenger RNA (mRNA) and protein levels was determined by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and western blot. In addition, the supplementation of suramin to redifferentiation medium for the culture of expanded chondrocytes in 3D pellets was evaluated. Glycosaminoglycan (GAG) and collagen production were evaluated by biochemical analyses and immunofluorescence, as well as by immunohistochemistry. The expression of reactive oxygen species (ROS) and NOX activity were assessed by luciferase reporter gene assay, immunofluorescence analysis, and flow cytometry. Mutagenesis analysis, Alcian blue staining, reverse transcriptase polymerase chain reaction (RT-PCR), and western blot assay were used to determine whether p67phox was involved in suramin-enhanced chondrocyte phenotype maintenance.Aims
Methods
Implantation of autologous chondrocytes and matrix autologous chondrocytes are techniques of cartilage repair used in the young adult knee which require harvesting of healthy cartilage and which may cause iatrogenic damage to the joint. This study explores alternative sources of autologous cells.
To explore the novel molecular mechanisms of histone deacetylase 4 (HDAC4) in chondrocytes via RNA sequencing (RNA-seq) analysis. Empty adenovirus (EP) and a Aims
Methods
Therapeutic agents that prevent chondrocyte loss, extracellular matrix (ECM) degradation, and osteoarthritis (OA) progression are required. The expression level of epidermal growth factor (EGF)-like repeats and discoidin I-like domains-containing protein 3 (EDIL3) in damaged human cartilage is significantly higher than in undamaged cartilage. However, the effect of EDIL3 on cartilage is still unknown. We used human cartilage plugs (ex vivo) and mice with spontaneous OA (in vivo) to explore whether EDIL3 has a chondroprotective effect by altering OA-related indicators.Aims
Methods
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by progressive cartilage degradation, synovial membrane inflammation, osteophyte formation, and subchondral bone sclerosis. Pathological changes in cartilage and subchondral bone are the main processes in OA. In recent decades, many studies have demonstrated that activin-like kinase 3 (ALK3), a bone morphogenetic protein receptor, is essential for cartilage formation, osteogenesis, and postnatal skeletal development. Although the role of bone morphogenetic protein (BMP) signalling in articular cartilage and bone has been extensively studied, many new discoveries have been made in recent years around ALK3 targets in articular cartilage, subchondral bone, and the interaction between the two, broadening the original knowledge of the relationship between ALK3 and OA. In this review, we focus on the roles of ALK3 in OA, including cartilage and subchondral bone and related cells. It may be helpful to seek more efficient drugs or treatments for OA based on ALK3 signalling in future.
Osteoarthritis (OA) is a common degenerative disease. PA28γ is a member of the 11S proteasome activator and is involved in the regulation of several important cellular processes, including cell proliferation, apoptosis, and inflammation. This study aimed to explore the role of PA28γ in the occurrence and development of OA and its potential mechanism. A total of 120 newborn male mice were employed for the isolation and culture of primary chondrocytes. OA-related indicators such as anabolism, catabolism, inflammation, and apoptosis were detected. Effects and related mechanisms of PA28γ in chondrocyte endoplasmic reticulum (ER) stress were studied using western blotting, real-time polymerase chain reaction (PCR), and immunofluorescence. The OA mouse model was established by destabilized medial meniscus (DMM) surgery, and adenovirus was injected into the knee cavity of 15 12-week-old male mice to reduce the expression of PA28γ. The degree of cartilage destruction was evaluated by haematoxylin and eosin (HE) staining, safranin O/fast green staining, toluidine blue staining, and immunohistochemistry.Aims
Methods
cAMP response element binding protein (CREB1) is involved in the progression of osteoarthritis (OA). However, available findings about the role of CREB1 in OA are inconsistent. 666-15 is a potent and selective CREB1 inhibitor, but its role in OA is unclear. This study aimed to investigate the precise role of CREB1 in OA, and whether 666-15 exerts an anti-OA effect. CREB1 activity and expression of a disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) in cells and tissues were measured by immunoblotting and immunohistochemical (IHC) staining. The effect of 666-15 on chondrocyte viability and apoptosis was examined by cell counting kit-8 (CCK-8) assay, JC-10, and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling (TUNEL) staining. The effect of 666-15 on the microstructure of subchondral bone, and the synthesis and catabolism of cartilage, in anterior cruciate ligament transection mice were detected by micro-CT, safranin O and fast green (S/F), immunohistochemical staining, and enzyme-linked immunosorbent assay (ELISA).Aims
Methods