Advertisement for orthosearch.org.uk
Results 1 - 20 of 25
Results per page:
Bone & Joint Research
Vol. 7, Issue 3 | Pages 244 - 251
1 Mar 2018
Tawonsawatruk T Sriwatananukulkit O Himakhun W Hemstapat W

Objectives. In this study, we compared the pain behaviour and osteoarthritis (OA) progression between anterior cruciate ligament transection (ACLT) and osteochondral injury in surgically-induced OA rat models. Methods. OA was induced in the knee joints of male Wistar rats using transection of the ACL or induction of osteochondral injury. Changes in the percentage of high limb weight distribution (%HLWD) on the operated hind limb were used to determine the pain behaviour in these models. The development of OA was assessed and compared using a histological evaluation based on the Osteoarthritis Research Society International (OARSI) cartilage OA histopathology score. Results. Both models showed an increase in joint pain as indicated by a significant (p < 0.05) decrease in the values of %HLWD at one week post-surgery. In the osteochondral injury model, the %HLWD returned to normal within three weeks, while in the ACLT model, a significant decrease in the %HLWD was persistent over an eight-week period. In addition, OA progression was more advanced in the ACLT model than in the osteochondral injury model. Furthermore, the ACLT model exhibited a higher mean OA score than that of the osteochondral injury model at 12 weeks. Conclusion. The development of pain patterns in the ACLT and osteochondral injury models is different in that the OA progression was significant in the ACLT model. Although both can be used as models for a post-traumatic injury of the knee, the selection of appropriate models for OA in preclinical studies should be specified and relevant to the clinical scenario. Cite this article: T. Tawonsawatruk, O. Sriwatananukulkit, W. Himakhun, W. Hemstapat. Comparison of pain behaviour and osteoarthritis progression between anterior cruciate ligament transection and osteochondral injury in rat models. Bone Joint Res 2018;7:244–251. DOI: 10.1302/2046-3758.73.BJR-2017-0121.R2


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 10 | Pages 1392 - 1400
1 Oct 2008
Hayashi R Kondo E Tohyama H Saito T Yasuda K

We report the effects of local administration of osteogenic protein-1 on the biomechanical properties of the overstretched anterior cruciate ligament in an animal model. An injury in the anterior cruciate ligament was created in 45 rabbits. They were divided into three equal groups. In group 1, no treatment was applied, in group II, phosphate-buffered saline was applied around the injured ligament, and in group III, 12.5 μg of osteogenic protein-1 mixed with phosphate-buffered saline was applied around the injured ligament. A control group of 15 rabbits was assembled from randomly-selected injured knees from among the first three groups. Each rabbit was killed at 12 weeks. The maximum load and stiffness of the anterior cruciate ligament was found to be significantly greater in group III than either group 1 (p = 0.002, p = 0.014) or group II (p = 0.032, p = 0.025). The tensile strength and the tangent modulus of fascicles from the ligament were also significantly greater in group III than either group I (p = 0.002, p = 0.0174) or II (p = 0.005, p = 0.022). The application of osteogenic protein-1 enhanced the healing in the injured anterior cruciate ligament, but compared with the control group the treated ligament remained lengthened. The administration of osteogenic protein-1 may have a therapeutic role in treating the overstretched anterior cruciate ligament


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 1 | Pages 129 - 133
1 Jan 2006
Lee SY Miwa M Sakai Y Kuroda R Niikura T Kurosaka M

We have investigated whether cells derived from haemarthrosis caused by injury to the anterior cruciate ligament could differentiate into the osteoblast lineage in vitro. Haemarthroses associated with anterior cruciate ligament injuries were aspirated and cultured. After treatment with β-glycerophosphate, ascorbic acid and dexamethasone or 1,25 (OH). 2. D. 3. , a significant increase in the activity of alkaline phosphatase was observed. Matrix mineralisation was demonstrated after 28 days and mRNA levels in osteoblast-related genes were enhanced. Our results suggest that the haemarthrosis induced by injury to the anterior cruciate ligament contains osteoprogenitor cells and is a potential alternative source for cell-based treatment in such injury


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 5 | Pages 682 - 687
1 May 2006
Kanazawa T Soejima T Murakami H Inoue T Katouda M Nagata K

We studied bone-tendon healing using immunohistochemical methods in a rabbit model. Reconstruction of the anterior cruciate ligament was undertaken using semitendinosus tendon in 20 rabbits. Immunohistochemical evaluations were performed at one, two, four and eight weeks after the operation. The expression of CD31, RAM-11, VEGF, b-FGF, S-100 protein and collagen I, II and III in the bone-tendon interface was very similar to that in the endochondral ossification. Some of the type-III collagen in the outer layer of the graft, which was deposited at a very early phase after the operation, was believed to have matured into Sharpey-like fibres. However, remodelling of the tendon grafted into the bone tunnel was significantly delayed when compared with this ossification process. To promote healing, we believe that it is necessary to accelerate remodelling of the tendon, simultaneously with the augmentation of the ossification


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 5 | Pages 902 - 906
1 Sep 1999
Ochi M Iwasa J Uchio Y Adachi N Sumen Y

We examined whether somatosensory evoked potentials (SEPs) were detectable after direct electrical stimulation of injured, reconstructed and normal anterior cruciate ligaments (ACL) during arthroscopy under general anaesthesia. We investigated the position sense of the knee before and after reconstruction and the correlation between the SEP and instability. We found detectable SEPs in all ligaments which had been reconstructed with autogenous semitendinosus and gracilis tendons over the past 18 months as well as in all cases of the normal group. The SEP was detectable in only 15 out of 32 cases in the injured group, although the voltages in the injured group were significantly lower than those of the controls. This was not the case in the reconstructed group. The postoperative position sense in 17 knees improved significantly, but there was no correlation between it and the voltage. The voltage of stable knees was significantly higher than that of the unstable joints. Our findings showed that sensory reinnervation occurred in the reconstructed human ACL and was closely related to the function of the knee


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 7 | Pages 1075 - 1081
1 Sep 2002
Bull AMJ Earnshaw PH Smith A Katchburian MV Hassan ANA Amis AA

Our objectives were to establish the envelope of passive movement and to demonstrate the kinematic behaviour of the knee during standard clinical tests before and after reconstruction of the anterior cruciate ligament (ACL). An electromagnetic device was used to measure movement of the joint during surgery. Reconstruction of the ACL significantly reduced the overall envelope of tibial rotation (10° to 90° flexion), moved this envelope into external rotation from 0° to 20° flexion, and reduced the anterior position of the tibial plateau (5° to 30° flexion) (p < 0.05 for all). During the pivot-shift test in early flexion there was progressive anterior tibial subluxation with internal rotation. These subluxations reversed suddenly around a mean position of 36 ± 9° of flexion of the knee and consisted of an external tibial rotation of 13 ± 8° combined with a posterior tibial translation of 12 ± 8 mm. This abnormal movement was abolished after reconstruction of the ACL


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 3 | Pages 450 - 456
1 Apr 2000
Azangwe G Mathias KJ Marshall D

In a study combining tissue mechanics and fracture morphology for the first time, we examined the ruptured surfaces of anterior cruciate ligaments of rabbits and related their appearance to the initial loading conditions. Sixteen specimens were stretched to failure at rates of displacement of 10 and 500 mm/min. We used video images to study the changes which occurred during the fracture process and SEM to examine the appearance of the ruptured surfaces. The surfaces of ligaments tested at 10 mm/min had more pulled-out collagen fibres and the fibres had more pronounced waviness compared with those tested at 500 mm/min. We have shown that the macroscopic appearance of ruptured ligaments can be related to their microscopic appearance and that it is possible to deduce whether failure was by gradual tearing of the fibres or catastrophic failure


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 5 | Pages 761 - 766
1 Jul 2002
Ochi M Iwasa J Uchio Y Adachi N Kawasaki K

We have determined whether somatosensory evoked potentials (SEPs) were detectable after direct mechanical stimulation of normal, injured and reconstructed anterior cruciate ligaments (ACLs) during arthroscopy. We investigated the position sense of the knee before and after reconstruction, and correlated the SEP with instability. Reproducible SEPs were detected in all 19 normal ACLs and in 36 of 38 ACLs reconstructed during a period of 13 months. Of the 45 injured ACLs, reproducible SEPs were detected in 26. The mean difference in anterior displacement in the SEP-positive group of the injured ACL group was significantly lower than that in the SEP-negative group. In the reconstructed group, the postoperative position sense was significantly better than the preoperative position sense. Our results indicate not only that sensory reinnervation occurs in the reconstructed ACL, but also that the response to mechanical loads can be restored, and is strongly related to improvement in position sense


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 5 | Pages 753 - 757
1 Jul 2003
Min B Han M Woo JI Park H Park SR

Cryopreserved patellar tendon allografts are often recommended for reconstruction of anterior cruciate ligaments (ACLs) because living donor fibroblasts are thought to promote repair. Animal studies, however, indicate that ligaments regenerate from recipient rather than donor cells. If applicable to man, these observations suggest that allograft cell viability is unimportant. We therefore used short tandem repeat analysis with polymerase chain reaction (PCR) amplification to determine the source of cells in nine human ACLs reconstructed with cryopreserved patellar tendon allografts. PCR amplification of donor and recipient DNA obtained before operation and DNA from the graft obtained two to ten months after transplantation revealed the genotype of cells and showed only recipient cells in the graft area. Rather than preserve the viability of donor cells, a technique is required which will facilitate the introduction of recipient cells into patellar tendon allografts


Objectives. Preservation of both anterior and posterior cruciate ligaments in total knee arthroplasty (TKA) can lead to near-normal post-operative joint mechanics and improved knee function. We hypothesised that a patient-specific bicruciate-retaining prosthesis preserves near-normal kinematics better than standard off-the-shelf posterior cruciate-retaining and bicruciate-retaining prostheses in TKA. Methods. We developed the validated models to evaluate the post-operative kinematics in patient-specific bicruciate-retaining, standard off-the-shelf bicruciate-retaining and posterior cruciate-retaining TKA under gait and deep knee bend loading conditions using numerical simulation. Results. Tibial posterior translation and internal rotation in patient-specific bicruciate-retaining prostheses preserved near-normal kinematics better than other standard off-the-shelf prostheses under gait loading conditions. Differences from normal kinematics were minimised for femoral rollback and internal-external rotation in patient-specific bicruciate-retaining, followed by standard off-the-shelf bicruciate-retaining and posterior cruciate-retaining TKA under deep knee bend loading conditions. Moreover, the standard off-the-shelf posterior cruciate-retaining TKA in this study showed the most abnormal performance in kinematics under gait and deep knee bend loading conditions, whereas patient-specific bicruciate-retaining TKA led to near-normal kinematics. Conclusion. This study showed that restoration of the normal geometry of the knee joint in patient-specific bicruciate-retaining TKA and preservation of the anterior cruciate ligament can lead to improvement in kinematics compared with the standard off-the-shelf posterior cruciate-retaining and bicruciate-retaining TKA. Cite this article: Y-G. Koh, J. Son, S-K. Kwon, H-J. Kim, O-R. Kwon, K-T. Kang. Preservation of kinematics with posterior cruciate-, bicruciate- and patient-specific bicruciate-retaining prostheses in total knee arthroplasty by using computational simulation with normal knee model. Bone Joint Res 2017;6:557–565. DOI: 10.1302/2046-3758.69.BJR-2016-0250.R1


Bone & Joint Research
Vol. 3, Issue 2 | Pages 32 - 37
1 Feb 2014
Singh A Goel SC Gupta KK Kumar M Arun GR Patil H Kumaraswamy V Jha S

Introduction. Osteoarthritis (OA) is a progressively debilitating disease that affects mostly cartilage, with associated changes in the bone. The increasing incidence of OA and an ageing population, coupled with insufficient therapeutic choices, has led to focus on the potential of stem cells as a novel strategy for cartilage repair. Methods. In this study, we used scaffold-free mesenchymal stem cells (MSCs) obtained from bone marrow in an experimental animal model of OA by direct intra-articular injection. MSCs were isolated from 2.8 kg white New Zealand rabbits. There were ten in the study group and ten in the control group. OA was induced by unilateral transection of the anterior cruciate ligament of the knee joint. At 12 weeks post-operatively, a single dose of 1 million cells suspended in 1 ml of medium was delivered to the injured knee by direct intra-articular injection. The control group received 1 ml of medium without cells. The knees were examined at 16 and 20 weeks following surgery. Repair was investigated radiologically, grossly and histologically using haematoxylin and eosin, Safranin-O and toluidine blue staining. Results. Radiological assessment confirmed development of OA changes after 12 weeks. Rabbits receiving MSCs showed a lower degree of cartilage degeneration, osteophyte formation, and subchondral sclerosis than the control group at 20 weeks post-operatively. The quality of cartilage was significantly better in the cell-treated group compared with the control group after 20 weeks. Conclusions. Bone marrow-derived MSCs could be promising cell sources for the treatment of OA. Neither stem cell culture nor scaffolds are absolutely necessary for a favourable outcome. Cite this article: Bone Joint Res 2014;3:32–7


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 2 | Pages 259 - 263
1 Feb 2009
Dimmen S Nordsletten L Engebretsen L Steen H Madsen JE

Conventional non-steroidal anti-inflammatory drugs (NSAIDs) and newer specific cyclo-oxygenase-2 (cox-2) inhibitors are commonly used in musculoskeletal trauma and orthopaedic surgery to reduce the inflammatory response and pain. These drugs have been reported to impair bone metabolism. In reconstruction of the anterior cruciate ligament the hamstring tendons are mainly used as the graft of choice, and a prerequisite for good results is healing of the tendons in the bone tunnel. Many of these patients are routinely given NSAIDs or cox-2 inhibitors, although no studies have elucidated the effects of these drugs on tendon healing in the bone tunnel. In our study 60 female Wistar rats were randomly allocated into three groups of 20. One received parecoxib, one indometacin and one acted as a control. In all the rats the tendo-Achillis was released proximally from the calf muscles. It was then pulled through a drill hole in the distal tibia and sutured anteriorly. The rats were given parecoxib, indometacin or saline intraperitoneally twice daily for seven days. After 14 days the tendon/bone-tunnel interface was subjected to mechanical testing. Significantly lower maximum pull-out strength (p < 0.001), energy absorption (p < 0.001) and stiffness (p = 0.035) were found in rats given parecoxib and indometacin compared with the control group, most pronounced with parecoxib


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 1 | Pages 169 - 172
1 Jan 1998
Jorn LP Fridén T Ryd L Lindstrand A

We obtained simultaneous measurements of sagittal knee laxity in 12 consecutive patients after reconstruction of the anterior cruciate ligament (ACL), using the Stryker laxity tester and radiostereometric analysis (RSA). The mean anteroposterior (AP) displacement when a 90 N load was applied in both directions was 5.3 ± 2.7 mm with RSA and 9.8 ± 1.6 mm with the external device (p < 0.001). The corresponding measurements at a load of 180 N were 5.7 ± 2.4 mm and 13.8 ± 3.7 mm, respectively (p < 0.001). More than 50% of the sagittal knee movement, as measured by the external device at a load of 180 N, was not true femorotibial displacement of the joint but was due to soft-tissue deformation


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 5 | Pages 900 - 906
1 Sep 1998
Miller RK Goodfellow JW Murray DW O’Connor JJ

Using a new, non-invasive method, we measured the patellofemoral force (PFF) in cadaver knees mounted in a rig to simulate weight-bearing. The PFF was measured from 20° to 120° of flexion before and after implanting three designs of knee prosthesis. Medial unicompartmental arthroplasty with a meniscal-bearing prosthesis and with retention of both cruciate ligaments caused no significant change in the PFF. After arthroplasty with a posterior-cruciate-retaining prosthesis and division of the anterior cruciate ligament, the PFF decreased in extension and increased by 20% in flexion. Implantation of a posterior stabilised prosthesis and division of both cruciate ligaments produced a decrease in the PFF in extension but maintained normal load in flexion. There was a direct relationship between the PFF and the angle made with the patellar tendon and the long axis of the tibia. The abnormalities of the patellar tendon angle which resulted from implantation of the two total prostheses explain the observed changes in the PFF and show how the mechanics of the patellofemoral joint depend upon the kinematics of the tibiofemoral articulation


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 5 | Pages 915 - 920
1 Sep 1999
Sckell A Leunig M Fraitzl CR Ganz R Ballmer FT

Free patellar tendon grafts used for the intra-articular replacement of ruptured anterior cruciate ligaments (ACL) lack perfusion at the time of implantation. The central core of the graft undergoes a process of ischaemic necrosis which may result in failure. Early reperfusion of the graft may diminish the extent of this process. We assessed the role of peritendinous connective tissue in the revascularisation of the patellar tendon graft from the day of implantation up to 24 days in a murine model using intravital microscopy. The peritendinous connective-tissue envelope of the graft was either completely removed, partially removed or not stripped before implantation into dorsal skinfold chambers of recipient mice. Initial revascularisation of the grafts with preserved peritendinous connective tissues began after two days. The process was delayed by five to six times in completely stripped patellar tendons (p < 0.05). Only grafts with preserved connective tissues showed high viability whereas those which were completely stripped appeared to be subvital. The presence of peritendinous connective tissues accelerates the revascularisation of free patellar tendon grafts


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 3 | Pages 428 - 436
1 Apr 2001
Lovász G Park SH Ebramzadeh E Benya PD Llinás A Bellyei Á Luck JV Sarmiento A

To investigate the effect of instability on the remodelling of a minor articular surface offset, we created a 0.5 mm coronal step-off of the medial femoral condyle in 12 New Zealand white rabbits and transected the anterior cruciate ligament (ACL). A control group of 12 rabbits had only ACL resection and the opposite knee was used as the non-operated control. The osteoarthritic changes at 6, 12 and 24 weeks after surgery were evaluated histologically. In addition, changes in the immunological detection of 3-B-3(-) and 7-D-4 chondroitin-6-sulphate epitopes were determined because of the previous association of such changes with repair of cartilage and early osteoarthritis. In the instability/step-off group there was rapidly progressing focal degeneration of cartilage on the high side of the defect, not seen in previous step-off studies in stable knees. The rest of the femoral condyles and the tibial plateaux of the instability/step-off group had moderate osteoarthritis similar to that of the instability group. 3-B-3(-) was detectable in the early and the intermediate stages of osteoarthritis but no staining was seen in the severely damaged cartilage zones. Immunoreactivity with 7-D-4 increased as degeneration progressed. Our findings have shown that even a minor surface offset may induce rapid degeneration of cartilage when the stability of the knee is compromised


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 7 | Pages 1072 - 1076
1 Sep 2004
Tien Y Chih T Lin JC Ju C Lin S

The healing of a hamstring graft to bone is the weak link in the reconstruction of a cruciate ligament using this donor material. We therefore investigated the augmentation of healing at the tendon-bone interface using calcium-phosphate cement (CPC). We performed semitendinosus autograft reconstructions of the anterior cruciate ligament on both knees of 22 New Zealand white rabbits. The interface between the grafted tendon and the bone tunnel for one knee was filled with CPC. Six rabbits were killed at the end of the first and second post-operative weeks in order to evaluate the biomechanical changes. Two rabbits were then killed sequentially at the end of weeks 1, 3, 6, 12 and 24 after operation and tissue removed for serial histological observation. Histological examination showed that the use of CPC produced early, diffuse and massive bone ingrowth. By contrast, in the non-CPC group of rabbits only a thin layer of new bone was seen. Mechanical pull-out testing at one week showed that the mean maximal tensile strength was 6.505 ± 1.333 N for the CPC group and 2.048 ± 0.950 N for the non-CPC group. At two weeks the values were 11.491 ± 2.865 N and 5.452 ± 3.955 N, respectively. Our findings indicate that CPC is a potentially promising material in clinical practice as regards its ability to reinforce the fixation of the tendon attachment to bone and to augment the overall effectiveness of tendon healing to bone


Bone & Joint Research
Vol. 7, Issue 11 | Pages 587 - 594
1 Nov 2018
Zhang R Li G Zeng C Lin C Huang L Huang G Zhao C Feng S Fang H

Objectives

The role of mechanical stress and transforming growth factor beta 1 (TGF-β1) is important in the initiation and progression of osteoarthritis (OA). However, the underlying molecular mechanisms are not clearly known.

Methods

In this study, TGF-β1 from osteoclasts and knee joints were analyzed using a co-cultured cell model and an OA rat model, respectively. Five patients with a femoral neck fracture (four female and one male, mean 73.4 years (68 to 79)) were recruited between January 2015 and December 2015. Results showed that TGF-β1 was significantly upregulated in osteoclasts by cyclic loading in a time- and dose-dependent mode. The osteoclasts were subjected to cyclic loading before being co-cultured with chondrocytes for 24 hours.


Bone & Joint Research
Vol. 6, Issue 5 | Pages 277 - 283
1 May 2017
Yoshikawa M Nakasa T Ishikawa M Adachi N Ochi M

Objectives

Regenerative medicine is an emerging field aimed at the repair and regeneration of various tissues. To this end, cytokines (CKs), growth factors (GFs), and stem/progenitor cells have been applied in this field. However, obtaining and preparing these candidates requires invasive, costly, and time-consuming procedures. We hypothesised that skeletal muscle could be a favorable candidate tissue for the concept of a point-of-care approach. The purpose of this study was to characterize and confirm the biological potential of skeletal muscle supernatant for use in regenerative medicine.

Methods

Semitendinosus muscle was used after harvesting tendon from patients who underwent anterior cruciate ligament reconstructions. A total of 500 milligrams of stripped muscle was minced and mixed with 1 mL of saline. The collected supernatant was analysed by enzyme-linked immunosorbent assay (ELISA) and flow cytometry. The biological effects of the supernatant on cell proliferation, osteogenesis, and angiogenesis in vitro were evaluated using human mesenchymal stem cells (hMSCs) and human umbilical cord vein endothelial cells (HUVECs).


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 8 | Pages 1110 - 1119
1 Aug 2009
Hepp P Osterhoff G Niederhagen M Marquass B Aigner T Bader A Josten C Schulz R

Perilesional changes of chronic focal osteochondral defects were assessed in the knees of 23 sheep. An osteochondral defect was created in the main load-bearing region of the medial condyle of the knees in a controlled, standardised manner. The perilesional cartilage was evaluated macroscopically and biopsies were taken at the time of production of the defect (T0), during a second operation one month later (T1), and after killing animals at three (T3; n = 8), four (T4; n = 8), and seven (T7; n = 8) months. All the samples were histologically assessed by the International Cartilage Repair Society grading system and Mankin histological scores. Biopsies were taken from human patients (n = 10) with chronic articular cartilage lesions and compared with the ovine specimens. The ovine perilesional cartilage presented with macroscopic and histological signs of degeneration. At T1 the International Cartilage Repair Society ‘Subchondral Bone’ score decreased from a mean of 3.0 (sd 0) to a mean of 1.9 (sd 0.3) and the ‘Matrix’ score from a mean of 3.0 (sd 0) to a mean of 2.5 (sd 0.5). This progressed further at T3, with the International Cartilage Repair Society ‘Surface’ grading, the ‘Matrix’ grading, ‘Cell Distribution’ and ‘Cell Viability’ grading further decreasing and the Mankin score rising from a mean of 1.3 (sd 1.4) to a mean of 5.1 (sd 1.6). Human biopsies achieved Mankin grading of a mean of 4.2 (sd 1.6) and were comparable with the ovine histology at T1 and T3.

The perilesional cartilage in the animal model became chronic at one month and its histological appearance may be considered comparable with that seen in human osteochondral defects after trauma.