Advertisement for orthosearch.org.uk
Results 1 - 50 of 381
Results per page:
The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 24 - 30
1 Jun 2020
Livermore AT Erickson JA Blackburn B Peters CL

Aims. A significant percentage of patients remain dissatisfied after total knee arthroplasty (TKA). The aim of this study was to determine whether the sequential addition of accelerometer-based navigation for femoral component preparation and sensor-guided ligament balancing improved complication rates, radiological alignment, or patient-reported outcomes (PROMs) compared with a historical control group using conventional instrumentation. Methods. This retrospective cohort study included 371 TKAs performed by a single surgeon sequentially. A historical control group, with the use of intramedullary guides for distal femoral resection and surgeon-guided ligament balancing, was compared with a group using accelerometer-based navigation for distal femoral resection and surgeon-guided balancing (group 1), and one using navigated femoral resection and sensor-guided balancing (group 2). Primary outcome measures were Patient-Reported Outcomes Measurement Information System (PROMIS) and Knee injury and Osteoarthritis Outcome (KOOS) scores measured preoperatively and at six weeks and 12 months postoperatively. The position of the components and the mechanical axis of the limb were measured postoperatively. The postoperative range of motion (ROM), haematocrit change, and complications were also recorded. Results. There were 194 patients in the control group, 103 in group 1, and 74 in group 2. There were no significant differences in baseline demographics between the groups. Patients in group 2 had significantly higher baseline mental health subscores than control and group 1 patients (53.2 vs 50.2 vs 50.2, p = 0.041). There were no significant differences in any PROMs at six weeks or 12 months postoperatively (p > 0.05). There was no difference in the rate of manipulation under anaesthesia (MUA), complication rates, postoperative ROM, or blood loss. There were fewer mechanical axis outliers in groups 1 and 2 (25.2%, 14.9% respectively) versus control (28.4%), but this was not statistically significant (p = 0.10). Conclusion. The sequential addition of navigation of the distal femoral cut and sensor-guided ligament balancing did not improve short-term PROMs, radiological outcomes, or complication rates compared with conventional techniques. The costs of these added technologies may not be justified. Cite this article: Bone Joint J 2020;102-B(6 Supple A):24–30


The Bone & Joint Journal
Vol. 99-B, Issue 2 | Pages 261 - 266
1 Feb 2017
Laitinen MK Parry MC Albergo JI Grimer RJ Jeys LM

Aims. Due to the complex anatomy of the pelvis, limb-sparing resections of pelvic tumours achieving adequate surgical margins, can often be difficult. The advent of computer navigation has improved the precision of resection of these lesions, though there is little evidence comparing resection with or without the assistance of navigation. Our aim was to evaluate the efficacy of navigation-assisted surgery for the resection of pelvic bone tumours involving the posterior ilium and sacrum. . Patients and Methods. Using our prospectively updated institutional database, we conducted a retrospective case control study of 21 patients who underwent resection of the posterior ilium and sacrum, for the treatment of a primary sarcoma of bone, between 1987 and 2015. The resection was performed with the assistance of navigation in nine patients and without navigation in 12. We assessed the accuracy of navigation-assisted surgery, as defined by the surgical margin and how this affects the rate of local recurrence, the disease-free survival and the effects on peri-and post-operative morbidity. . Results. The mean age of the patients was 36.4 years (15 to 66). The mean size of the tumour was 10.9 cm. In the navigation-assisted group, the margin was wide in two patients (16.7%), marginal in six (66.7%) and wide-contaminated in one (11.1%) with no intralesional margin. In the non-navigated-assisted group; the margin was wide in two patients (16.7%), marginal in five (41.7%), intralesional in three (25.0%) and wide-contaminated in two (16.7%). Local recurrence occurred in two patients in the navigation-assisted group (22.2%) and six in the non-navigation-assisted group (50.0%). The disease-free survival was significantly better when operated with navigation-assistance (p = 0.048). The blood loss and operating time were less in the navigated-assisted group, as was the risk of a foot drop post-operatively. Conclusion . The introduction of navigation-assisted surgery for the resection of tumours of the posterior ilium and sacrum has increased the safety for the patients and allows for a better oncological outcome. . Cite this article: Bone Joint J 2017;99-B:261–6


The Bone & Joint Journal
Vol. 102-B, Issue 1 | Pages 5 - 10
1 Jan 2020
Cawley DT Rajamani V Cawley M Selvadurai S Gibson A Molloy S

Aims. Intraoperative 3D navigation (ION) allows high accuracy to be achieved in spinal surgery, but poor workflow has prevented its widespread uptake. The technical demands on ION when used in patients with adolescent idiopathic scoliosis (AIS) are higher than for other more established indications. Lean principles have been applied to industry and to health care with good effects. While ensuring optimal accuracy of instrumentation and safety, the implementation of ION and its associated productivity was evaluated in this study for AIS surgery in order to enhance the workflow of this technique. The aim was to optimize the use of ION by the application of lean principles in AIS surgery. Methods. A total of 20 consecutive patients with AIS were treated with ION corrective spinal surgery. Both qualitative and quantitative analysis was performed with real-time modifications. Operating time, scan time, dose length product (measure of CT radiation exposure), use of fluoroscopy, the influence of the reference frame, blood loss, and neuromonitoring were assessed. Results. The greatest gains in productivity were in avoiding repeat intraoperative scans (a mean of 248 minutes for patients who had two scans, and a mean 180 minutes for those who had a single scan). Optimizing accuracy was the biggest factor influencing this, which was reliant on incremental changes to the operating setup and technique. Conclusion. The application of lean principles to the introduction of ION for AIS surgery helps assimilate this method into the environment of the operating theatre. Data and stakeholder analysis identified a reproducible technique for using ION for AIS surgery, reducing operating time, and radiation exposure. Cite this article: Bone Joint J. 2020;102-B(1):5–10


The Bone & Joint Journal
Vol. 98-B, Issue 5 | Pages 696 - 702
1 May 2016
Theologis AA Burch S Pekmezci M

Aims. We compared the accuracy, operating time and radiation exposure of the introduction of iliosacral screws using O-arm/Stealth Navigation and standard fluoroscopy. Materials and Methods. Iliosacral screws were introduced percutaneously into the first sacral body (S1) of ten human cadavers, four men and six women. The mean age was 77 years (58 to 85). Screws were introduced using a standard technique into the left side of S1 using C-Arm fluoroscopy and then into the right side using O-Arm/Stealth Navigation. The radiation was measured on the surgeon by dosimeters placed under a lead thyroid shield and apron, on a finger, a hat and on the cadavers. Results. There were no neuroforaminal breaches in either group. The set-up time for the O-Arm was significantly longer than for the C-Arm, while total time for placement of the screws was significantly shorter for the O-Arm than for the C-Arm (p = 0.001). The mean absorbed radiation dose during fluoroscopy was 1063 mRad (432.5 mRad to 4150 mRad). No radiation was detected on the surgeon during fluoroscopy, or when he left the room during the use of the O-Arm. The mean radiation detected on the cadavers was significantly higher in the O-Arm group (2710 mRem standard deviation (. sd. ) 1922) than during fluoroscopy (11.9 mRem . sd 14.8). (p < 0.01). Conclusion. O-Arm/Stealth Navigation allows for faster percutaneous placement of iliosacral screws in a radiation-free environment for surgeons, albeit with the same accuracy and significantly more radiation exposure to cadavers, when compared with standard fluoroscopy. Take home message: Placement of iliosacral screws with O-Arm/Stealth Navigation can be performed safely and effectively. Cite this article: Bone Joint J 2016;98-B:696–702


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 9 | Pages 1234 - 1240
1 Sep 2012
Willcox NMJ Clarke JV Smith BRK Deakin AH Deep K

We compared lower limb coronal alignment measurements obtained pre- and post-operatively with long-leg radiographs and computer navigation in patients undergoing primary total knee replacement (TKR). A series of 185 patients had their pre- and post-implant radiological and computer-navigation system measurements of coronal alignment compared using the Bland-Altman method. The study included 81 men and 104 women with a mean age of 68.5 years (32 to 87) and a mean body mass index of 31.7 kg/m. 2. (19 to 49). Pre-implant Bland–Altman limits of agreement were -9.4° to 8.6° with a repeatability coefficient of 9.0°. The Bland–Altman plot showed a tendency for the radiological measurement to indicate a higher level of pre-operative deformity than the corresponding navigation measurement. Post-implant limits of agreement were -5.0° to 5.4° with a repeatability coefficient of 5.2°. The tendency for valgus knees to have greater deformity on the radiograph was still seen, but was weaker for varus knees. . The alignment seen or measured intra-operatively during TKR is not necessarily the same as the deformity seen on a standing long-leg radiograph either pre- or post-operatively. Further investigation into the effect of weight-bearing and surgical exposure of the joint on the mechanical femorotibial angle is required to enable the most appropriate intra-operative alignment to be selected


Bone & Joint Open
Vol. 5, Issue 9 | Pages 809 - 817
27 Sep 2024
Altorfer FCS Kelly MJ Avrumova F Burkhard MD Sneag DB Chazen JL Tan ET Lebl DR

Aims. To report the development of the technique for minimally invasive lumbar decompression using robotic-assisted navigation. Methods. Robotic planning software was used to map out bone removal for a laminar decompression after registration of CT scan images of one cadaveric specimen. A specialized acorn-shaped bone removal robotic drill was used to complete a robotic lumbar laminectomy. Post-procedure advanced imaging was obtained to compare actual bony decompression to the surgical plan. After confirming accuracy of the technique, a minimally invasive robotic-assisted laminectomy was performed on one 72-year-old female patient with lumbar spinal stenosis. Postoperative advanced imaging was obtained to confirm the decompression. Results. A workflow for robotic-assisted lumbar laminectomy was successfully developed in a human cadaveric specimen, as excellent decompression was confirmed by postoperative CT imaging. Subsequently, the workflow was applied clinically in a patient with severe spinal stenosis. Excellent decompression was achieved intraoperatively and preservation of the dorsal midline structures was confirmed on postoperative MRI. The patient experienced improvement in symptoms postoperatively and was discharged within 24 hours. Conclusion. Minimally invasive robotic-assisted lumbar decompression utilizing a specialized robotic bone removal instrument was shown to be accurate and effective both in vitro and in vivo. The robotic bone removal technique has the potential for less invasive removal of laminar bone for spinal decompression, all the while preserving the spinous process and the posterior ligamentous complex. Spinal robotic surgery has previously been limited to the insertion of screws and, more recently, cages; however, recent innovations have expanded robotic capabilities to decompression of neurological structures. Cite this article: Bone Jt Open 2024;5(9):809–817


Bone & Joint Open
Vol. 3, Issue 6 | Pages 475 - 484
13 Jun 2022
Jang SJ Vigdorchik JM Windsor EW Schwarzkopf R Mayman DJ Sculco PK

Aims. Navigation devices are designed to improve a surgeon’s accuracy in positioning the acetabular and femoral components in total hip arthroplasty (THA). The purpose of this study was to both evaluate the accuracy of an optical computer-assisted surgery (CAS) navigation system and determine whether preoperative spinopelvic mobility (categorized as hypermobile, normal, or stiff) increased the risk of acetabular component placement error. Methods. A total of 356 patients undergoing primary THA were prospectively enrolled from November 2016 to March 2018. Clinically relevant error using the CAS system was defined as a difference of > 5° between CAS and 3D radiological reconstruction measurements for acetabular component inclination and anteversion. Univariate and multiple logistic regression analyses were conducted to determine whether hypermobile (. Δ. sacral slope(SS). stand-sit. > 30°), or stiff (. ∆. SS. stand-sit. < 10°) spinopelvic mobility contributed to increased error rates. Results. The paired absolute difference between CAS and postoperative imaging measurements was 2.3° (standard deviation (SD) 2.6°) for inclination and 3.1° (SD 4.2°) for anteversion. Using a target zone of 40° (± 10°) (inclination) and 20° (± 10°) (anteversion), postoperative standing radiographs measured 96% of acetabular components within the target zone for both inclination and anteversion. Multiple logistic regression analysis controlling for BMI and sex revealed that hypermobile spinopelvic mobility significantly increased error rates for anteversion (odds ratio (OR) 2.48, p = 0.009) and inclination (OR 2.44, p = 0.016), whereas stiff spinopelvic mobility increased error rates for anteversion (OR 1.97, p = 0.028). There were no dislocations at a minimum three-year follow-up. Conclusion. Despite high reliability in acetabular positioning for inclination in a large patient cohort using an optical CAS system, hypermobile and stiff spinopelvic mobility significantly increased the risk of clinically relevant errors. In patients with abnormal spinopelvic mobility, CAS systems should be adjusted for use to avoid acetabular component misalignment and subsequent risk for long-term dislocation. Cite this article: Bone Jt Open 2022;3(6):475–484


Bone & Joint Research
Vol. 6, Issue 3 | Pages 137 - 143
1 Mar 2017
Cho HS Park YK Gupta S Yoon C Han I Kim H Choi H Hong J

Objectives. We evaluated the accuracy of augmented reality (AR)-based navigation assistance through simulation of bone tumours in a pig femur model. Methods. We developed an AR-based navigation system for bone tumour resection, which could be used on a tablet PC. To simulate a bone tumour in the pig femur, a cortical window was made in the diaphysis and bone cement was inserted. A total of 133 pig femurs were used and tumour resection was simulated with AR-assisted resection (164 resection in 82 femurs, half by an orthropaedic oncology expert and half by an orthopaedic resident) and resection with the conventional method (82 resection in 41 femurs). In the conventional group, resection was performed after measuring the distance from the edge of the condyle to the expected resection margin with a ruler as per routine clinical practice. Results. The mean error of 164 resections in 82 femurs in the AR group was 1.71 mm (0 to 6). The mean error of 82 resections in 41 femurs in the conventional resection group was 2.64 mm (0 to 11) (p < 0.05, one-way analysis of variance). The probabilities of a surgeon obtaining a 10 mm surgical margin with a 3 mm tolerance were 90.2% in AR-assisted resections, and 70.7% in conventional resections. Conclusion. We demonstrated that the accuracy of tumour resection was satisfactory with the help of the AR navigation system, with the tumour shown as a virtual template. In addition, this concept made the navigation system simple and available without additional cost or time. Cite this article: H. S. Cho, Y. K. Park, S. Gupta, C. Yoon, I. Han, H-S. Kim, H. Choi, J. Hong. Augmented reality in bone tumour resection: An experimental study. Bone Joint Res 2017;6:137–143


The Bone & Joint Journal
Vol. 97-B, Issue 2 | Pages 258 - 264
1 Feb 2015
Young PS Bell SW Mahendra A

We report our experience of using a computer navigation system to aid resection of malignant musculoskeletal tumours of the pelvis and limbs and, where appropriate, their subsequent reconstruction. We also highlight circumstances in which navigation should be used with caution. We resected a musculoskeletal tumour from 18 patients (15 male, three female, mean age of 30 years (13 to 75) using commercially available computer navigation software (Orthomap 3D) and assessed its impact on the accuracy of our surgery. Of nine pelvic tumours, three had a biological reconstruction with extracorporeal irradiation, four underwent endoprosthetic replacement (EPR) and two required no bony reconstruction. There were eight tumours of the bones of the limbs. Four diaphyseal tumours underwent biological reconstruction. Two patients with a sarcoma of the proximal femur and two with a sarcoma of the proximal humerus underwent extra-articular resection and, where appropriate, EPR. One soft-tissue sarcoma of the adductor compartment which involved the femur was resected and reconstructed using an EPR. Computer navigation was used to aid reconstruction in eight patients. Histological examination of the resected specimens revealed tumour-free margins in all patients. Post-operative radiographs and CT showed that the resection and reconstruction had been carried out as planned in all patients where navigation was used. In two patients, computer navigation had to be abandoned and the operation was completed under CT and radiological control. The use of computer navigation in musculoskeletal oncology allows accurate identification of the local anatomy and can define the extent of the tumour and proposed resection margins. Furthermore, it helps in reconstruction of limb length, rotation and overall alignment after resection of an appendicular tumour. . Cite this article: Bone Joint J 2015;97-B:258–64


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 2 | Pages 163 - 167
1 Feb 2006
Kalteis T Handel M Bäthis H Perlick L Tingart M Grifka J

In a prospective randomised clinical study acetabular components were implanted either freehand (n = 30) or using CT-based (n = 30) or imageless navigation (n = 30). The position of the component was determined post-operatively on CT scans of the pelvis. Following conventional freehand placement of the acetabular component, only 14 of the 30 were within the safe zone as defined by Lewinnek et al (40° inclination . sd. 10°; 15° anteversion . sd. 10°). After computer-assisted navigation 25 of 30 acetabular components (CT-based) and 28 of 30 components (imageless) were positioned within this limit (overall p < 0.001). No significant differences were observed between CT-based and imageless navigation (p = 0.23); both showed a significant reduction in variation of the position of the acetabular component compared with conventional freehand arthroplasty (p < 0.001). The duration of the operation was increased by eight minutes with imageless and by 17 minutes with CT-based navigation. Imageless navigation proved as reliable as that using CT in positioning the acetabular component


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 5 | Pages 601 - 605
1 May 2006
Pitto RP Graydon AJ Bradley L Malak SF Walker CG Anderson IA

The object of this study was to develop a method to assess the accuracy of an image-free total knee replacement navigation system in legs with normal or abnormal mechanical axes. A phantom leg was constructed with simulated hip and knee joints and provided a means to locate the centre of the ankle joint. Additional joints located at the midshaft of the tibia and femur allowed deformation in the flexion/extension, varus/valgus and rotational planes. Using a digital caliper unit to measure the coordinates precisely, a software program was developed to convert these local coordinates into a determination of actual leg alignment. At specific points in the procedure, information was compared between the digital caliper measurements and the image-free navigation system. Repeated serial measurements were undertaken. In the setting of normal alignment the mean error of the system was within 0.5°. In the setting of abnormal plane alignment in both the femur and the tibia, the error was within 1°. This is the first study designed to assess the accuracy of a clinically-validated navigation system. It demonstrates in vitro accuracy of the image-free navigation system in both normal and abnormal leg alignment settings


The Bone & Joint Journal
Vol. 95-B, Issue 4 | Pages 493 - 497
1 Apr 2013
Hino K Ishimaru M Iseki Y Watanabe S Onishi Y Miura H

There are several methods for evaluating stability of the joint during total knee replacement (TKR). Activities of daily living demand mechanical loading to the knee joint, not only in full extension, but also in mid-flexion. The purpose of this study was to compare the varus-valgus stability throughout flexion in knees treated with either cruciate-retaining or posterior-stabilised TKR, using an intra-operative navigation technique. A total of 34 knees underwent TKR with computer navigation, during which the investigator applied a maximum varus-valgus stress to the knee while steadily moving the leg from full extension to flexion both before and after prosthetic implantation. The femorotibial angle was measured simultaneously by the navigation system at every 10° throughout the range of movement. It was found that posterior-stabilised knees had more varus-valgus laxity than cruciate-retaining knees at all angles examined, and the differences were statistically significant at 10° (p = 0.0093), 20° (p = 0.0098) and 30° of flexion (p = 0.0252). Cite this article: Bone Joint J 2013;95-B:493–7


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 4 | Pages 455 - 460
1 Apr 2007
Sugano N Nishii T Miki H Yoshikawa H Sato Y Tamura S

We have developed a CT-based navigation system using infrared light-emitting diode markers and an optical camera. We used this system to perform cementless total hip replacement using a ceramic-on-ceramic bearing couple in 53 patients (60 hips) between 1998 and 2001. We reviewed 52 patients (59 hips) at a mean of six years (5 to 8) postoperatively. The mid-term results of total hip replacement using navigation were compared with those of 91 patients (111 hips) who underwent this procedure using the same implants, during the same period, without navigation. There were no significant differences in age, gender, diagnosis, height, weight, body mass index, or pre-operative clinical score between the two groups. The operation time was significantly longer where navigation was used, but there was no significant difference in blood loss or navigation-related complications. With navigation, the acetabular components were placed within the safe zone defined by Lewinnek, while without, 31 of the 111 components were placed outside this zone. There was no significant difference in the Merle d’Aubigne and Postel hip score at the final follow-up. However, hips treated without navigation had a higher rate of dislocation. Revision was performed in two cases undertaken without navigation, one for aseptic acetabular loosening and one for fracture of a ceramic liner, both of which showed evidence of neck impingement on the liner. A further five cases undertaken without navigation showed erosion of the posterior aspect of the neck of the femoral component on the lateral radiographs. These seven impingement-related mechanical problems correlated with malorientation of the acetabular component. There were no such mechanical problems in the navigated group. We conclude that CT-based navigation increased the precision of orientation of the acetabular component and control of limb length in total hip replacement, without navigation-related complications. It also reduced the rate of dislocation and mechanical problems related to impingement


Bone & Joint Open
Vol. 5, Issue 9 | Pages 806 - 808
27 Sep 2024
Altorfer FCS Lebl DR


Bone & Joint Open
Vol. 2, Issue 3 | Pages 191 - 197
1 Mar 2021
Kazarian GS Barrack RL Barrack TN Lawrie CM Nunley RM

Aims. The purpose of this study was to compare the radiological outcomes of manual versus robotic-assisted medial unicompartmental knee arthroplasty (UKA). Methods. Postoperative radiological outcomes from 86 consecutive robotic-assisted UKAs (RAUKA group) from a single academic centre were retrospectively reviewed and compared to 253 manual UKAs (MUKA group) drawn from a prior study at our institution. Femoral coronal and sagittal angles (FCA, FSA), tibial coronal and sagittal angles (TCA, TSA), and implant overhang were radiologically measured to identify outliers. Results. When assessing the accuracy of RAUKAs, 91.6% of all alignment measurements and 99.2% of all overhang measurements were within the target range. All alignment and overhang targets were simultaneously met in 68.6% of RAUKAs. When comparing radiological outcomes between the RAUKA and MUKA groups, statistically significant differences were identified for combined outliers in FCA (2.3% vs 12.6%; p = 0.006), FSA (17.4% vs 50.2%; p < 0.001), TCA (5.8% vs 41.5%; p < 0.001), and TSA (8.1% vs 18.6%; p = 0.023), as well as anterior (0.0% vs 4.7%; p = 0.042), posterior (1.2% vs 13.4%; p = 0.001), and medial (1.2% vs 14.2%; p < 0.001) overhang outliers. Conclusion. Robotic system navigation decreases alignment and overhang outliers compared to manual UKA. Given the association between component placement errors and revision in UKA, this strong significant improvement in accuracy may improve implant survival. Level of Evidence: III. Cite this article: Bone Jt Open 2021;2-3:191–197


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 10 | Pages 1414 - 1420
1 Oct 2012
Cho HS Oh JH Han I Kim H

We evaluated the oncological and functional outcome of 18 patients, whose malignant bone tumours were excised with the assistance of navigation, and who were followed up for more than three years. There were 11 men and seven women, with a mean age of 31.8 years (10 to 57). There were ten operations on the pelvic ring and eight joint-preserving limb salvage procedures. The resection margins were free of tumour in all specimens. The tumours, which were stage IIB in all patients, included osteosarcoma, high-grade chondrosarcoma, Ewing’s sarcoma, malignant fibrous histiocytoma of bone, and adamantinoma. The overall three-year survival rate of the 18 patients was 88.9% (95% confidence interval (CI) 75.4 to 100). The three-year survival rate of the patients with pelvic malignancy was 80.0% (95% CI 55.3 to 100), and of the patients with metaphyseal malignancy was 100%. The event-free survival was 66.7% (95% CI 44.9 to 88.5). Local recurrence occurred in two patients, both of whom had a pelvic malignancy. The mean Musculoskeletal Tumor Society functional score was 26.9 points at a mean follow-up of 48.2 months (22 to 79). We suggest that navigation can be helpful during surgery for musculoskeletal tumours; it can maximise the accuracy of resection and minimise the unnecessary sacrifice of normal tissue by providing precise intra-operative three-dimensional radiological information


The Bone & Joint Journal
Vol. 95-B, Issue 7 | Pages 906 - 910
1 Jul 2013
Lin S Chen C Fu Y Huang P Lu C Su J Chang J Huang H

Minimally invasive total knee replacement (MIS-TKR) has been reported to have better early recovery than conventional TKR. Quadriceps-sparing (QS) TKR is the least invasive MIS procedure, but it is technically demanding with higher reported rates of complications and outliers. This study was designed to compare the early clinical and radiological outcomes of TKR performed by an experienced surgeon using the QS approach with or without navigational assistance (NA), or using a mini-medial parapatellar (MP) approach. In all, 100 patients completed a minimum two-year follow-up: 30 in the NA-QS group, 35 in the QS group, and 35 in the MP group. There were no significant differences in clinical outcome in terms of ability to perform a straight-leg raise at 24 hours (p = 0.700), knee score (p = 0.952), functional score (p = 0.229) and range of movement (p = 0.732) among the groups. The number of outliers for all three radiological parameters of mechanical axis, frontal femoral component alignment and frontal tibial component alignment was significantly lower in the NA-QS group than in the QS group (p = 0.008), but no outlier was found in the MP group. . In conclusion, even after the surgeon completed a substantial number of cases before the commencement of this study, the supplementary intra-operative use of computer-assisted navigation with QS-TKR still gave inferior radiological results and longer operating time, with a similar outcome at two years when compared with a MP approach. Cite this article: Bone Joint J 2013;95-B:906–10


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 4 | Pages 557 - 560
1 Apr 2007
Davis ET Gallie P Macgroarty K Waddell JP Schemitsch E

A cadaver study using six pairs of lower limbs was conducted to investigate the accuracy of computer navigation and standard instrumentation for the placement of the Birmingham Hip Resurfacing femoral component. The aim was to place all the femoral components with a stem-shaft angle of 135°. The mean stem-shaft angle obtained in the standard instrumentation group was 127.7° (120° to 132°), compared with 133.3° (131° to 139°) in the computer navigation group (p = 0.03). The scatter obtained with computer-assisted navigation was approximately half that found using the conventional jig. Computer navigation was more accurate and more consistent in its placement of the femoral component than standard instrumentation. We suggest that image-free computer-assisted navigation may have an application in aligning the femoral component during hip resurfacing


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 4 | Pages 471 - 476
1 Apr 2007
Kim Y Kim J Yoon S

Bilateral sequential total knee replacement was carried out under one anaesthetic in 100 patients. One knee was replaced using a CT-free computer-assisted navigation system and the other conventionally without navigation. The two methods were compared for accuracy of orientation and alignment of the components. There were 85 women and 15 men with a mean age of 67.6 years (54 to 83). Radiological and CT imaging was carried out to determine the alignment of the components. The mean follow-up was 2.3 years (2 to 3). The operating and tourniquet times were significantly longer in the navigation group (p < 0.001). There were no significant pre- or post-operative differences between the knee scores of the two groups (p = 0.288 and p = 0.429, respectively). The results of imaging and the number of outliers for all radiological parameters were not statistically different (p = 0.109 to p = 0.920). In this series computer-assisted navigated total knee replacement did not result in more accurate orientation and alignment of the components than that achieved by conventional total knee replacement


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 3 | Pages 310 - 315
1 Mar 2009
Olsen M Davis ET Waddell JP Schemitsch EH

We have investigated the accuracy of placement of the femoral component using imageless navigation in 100 consecutive Birmingham Hip Resurfacings. Pre-operative templating determined the native neck-shaft angle and planned stem-shaft angle of the implant. The latter were verified post-operatively using digital anteroposterior unilateral radiographs of the hip. The mean neck-shaft angle determined before operation was 132.7° (118° to 160°). The mean planned stem-shaft angle was a relative valgus alignment of 9.7° (. sd. 2.6). The stem-shaft angle after operation differed from that planned by a mean of 2.8° (. sd. 2.0) and in 86% of cases the final angle measured within ± 5° of that planned. We had no instances of notching of the neck or varus alignment of the implant in our series. A learning curve was observed in the time taken for navigation, but not for accurate placement of the implant. Navigation in hip resurfacing may afford the surgeon a reliable and accurate method of placement of the femoral component


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 7 | Pages 943 - 947
1 Jul 2007
Wong KC Kumta SM Chiu KH Antonio GE Unwin P Leung KS

The use of a navigation system in musculoskeletal tumour surgery enables the integration of pre-operative CT and MRI images to generate a precise three-dimensional anatomical model of the site and the extent of the tumour. We carried out six consecutive resections of musculoskeletal tumour in five patients using an existing commercial computer navigation system. There were three women and two men with a mean age of 41 years (24 to 47). Reconstruction was performed using a tumour prosthesis in three lesions and a vascularised fibular graft in one. No reconstruction was needed in two cases. The mean follow-up was 6.9 months (3.5 to 10). The mean duration of surgery was 28 minutes (13 to 50). Examination of the resected specimens showed clear margins in all the tumour lesions and a resection that was exactly as planned


Aims

Nearly 99,000 total knee arthroplasties (TKAs) are performed in UK annually. Despite plenty of research, the satisfaction rate of this surgery is around 80%. One of the important intraoperative factors affecting the outcome is alignment. The relationship between joint obliquity and functional outcomes is not well understood. Therefore, a study is required to investigate and compare the effects of two types of alignment (mechanical and kinematic) on functional outcomes and range of motion.

Methods

The aim of the study is to compare navigated kinematically aligned TKAs (KA TKAs) with navigated mechanically aligned TKA (MA TKA) in terms of function and ROM. We aim to recruit a total of 96 patients in the trial. The patients will be recruited from clinics of various consultants working in the trust after screening them for eligibility criteria and obtaining their informed consent to participate in this study. Randomization will be done prior to surgery by a software. The primary outcome measure will be the Knee injury and Osteoarthritis Outcome Score The secondary outcome measures include Oxford Knee Score, ROM, EuroQol five-dimension questionnaire, EuroQol visual analogue scale, 12-Item Short-Form Health Survey (SF-12), and Forgotten Joint Score. The scores will be calculated preoperatively and then at six weeks, six months, and one year after surgery. The scores will undergo a statistical analysis.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 8 | Pages 1025 - 1031
1 Aug 2008
Mizu-uchi H Matsuda S Miura H Okazaki K Akasaki Y Iwamoto Y

We compared the alignment of 39 total knee replacements implanted using the conventional alignment guide system with 37 implanted using a CT-based navigation system, performed by a single surgeon. The knees were evaluated using full-length weight-bearing anteroposterior radiographs, lateral radiographs and CT scans. The mean hip-knee-ankle angle, coronal femoral component angle and coronal tibial component angle were 181.8° (174.2° to 188.3°), 88.5° (84.0° to 91.8°) and 89.7° (86.3° to 95.1°), respectively for the conventional group and 180.8° (178.2° to 185.1°), 89.3° (85.8° to 92.0°) and 89.9° (88.0° to 93.0°), respectively for the navigated group. The mean sagittal femoral component angle was 85.5° (80.6° to 92.8°) for the conventional group and 89.6° (85.5° to 94.0°) for the navigated group. The mean rotational femoral and tibial component angles were −0.7° (−8.8° to 9.8°) and −3.3° (−16.8° to 5.8°) for the conventional group and −0.6° (−3.5° to 3.0°) and 0.3° (−5.3° to 7.7°) for the navigated group. The ideal angles of all alignments in the navigated group were obtained at significantly higher rates than in the conventional group. Our results demonstrated significant improvements in component positioning with a CT-based navigation system, especially with respect to rotational alignment


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 6 | Pages 830 - 835
1 Aug 2003
Sparmann M Wolke B Czupalla H Banzer D Zink A

We conducted this prospective randomised and externally evaluated study to investigate whether the use of a navigation system during total knee arthroplasty leads to significantly better results than the hand-guided technique. A total of 240 patients was included in the study. All patients received a condylar knee prosthesis. Two surgeons performed all the operations using the Stryker knee navigation system. Exclusion criteria included the necessity for the primary use of constrained implants. The results revealed a highly significant difference between the two groups in favour of navigation with regard to the mechanical axis, the frontal and sagittal femoral axis and the frontal tibial axis (p < 0.0001). The use of a navigation system was therefore shown to improve the alignment of the implant


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 10 | Pages 1281 - 1286
1 Oct 2009
Olsen M Davis ET Chiu M Gamble P Tumia N Boyle RA Schemitsch EH

The computed neck-shaft angle and the size of the femoral component were recorded in 100 consecutive hip resurfacings using imageless computer-navigation and compared with the angle measured before operation and with actual component implanted. The reliability of the registration was further analysed using ten cadaver femora. The mean absolute difference between the measured and navigated neck-shaft angle was 16.3° (0° to 52°). Navigation underestimated the measured neck-shaft angle in 38 patients and the correct implant size in 11. Registration of the cadaver femora tended to overestimate the correct implant size and provided a low level of repeatability in computing the neck-shaft angle. Prudent pre-operative planning is advisable for use in conjunction with imageless navigation since misleading information may be registered intraoperatively, which could lead to inappropriate sizing and positioning of the femoral component in hip resurfacing


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 7 | Pages 972 - 975
1 Jul 2006
Spencer JMF Day RE Sloan KE Beaver RJ

Our aim was to assess the intra- and inter-observer reliability in the establishment of the anterior pelvic plane used in imageless computer-assisted navigation. From this we determined the subsequent effects on version and inclination of the acetabular component. A cadaver model was developed with a specifically-designed rod which held the component tracker at a fixed orientation to the pelvis, leaving the anterior pelvic plane as the only variable. Eight surgeons determined the anterior pelvic plane by palpating and registering the bony landmarks as reference points. The exact anterior pelvic plane was then established by using anatomically-placed bone screws as reference points. The difference between the surgeons was found to be highly significant (p < 0.001). The variation was significantly larger for anteversion (. sd. 9.6°) than for inclination (. sd. 6.3°). The present method for registering pelvic landmarks shows significant inaccuracy, which highlights the need for improved methods of registration before this technique is considered to be safe


The Bone & Joint Journal
Vol. 102-B, Issue 3 | Pages 371 - 375
1 Mar 2020
Cawley D Dhokia R Sales J Darwish N Molloy S

With the identification of literature shortfalls on the techniques employed in intraoperative navigated (ION) spinal surgery, we outline a number of measures which have been synthesised into a coherent operative technique. These include positioning, dissection, management of the reference frame, the grip, the angle of attack, the drill, the template, the pedicle screw, the wire, and navigated intrathecal analgesia. Optimizing techniques to improve accuracy allow an overall reduction of the repetition of the surgical steps with its associated productivity benefits including time, cost, radiation, and safety.

Cite this article: Bone Joint J 2020;102-B(3):371–375.


The Bone & Joint Journal
Vol. 101-B, Issue 3 | Pages 331 - 339
1 Mar 2019
McEwen P Balendra G Doma K

Aims

The results of kinematic total knee arthroplasty (KTKA) have been reported in terms of limb and component alignment parameters but not in terms of gap laxities and differentials. In kinematic alignment (KA), balance should reflect the asymmetrical balance of the normal knee, not the classic rectangular flexion and extension gaps sought with gap-balanced mechanical axis total knee arthroplasty (MATKA). This paper aims to address the following questions: 1) what factors determine coronal joint congruence as measured on standing radiographs?; 2) is flexion gap asymmetry produced with KA?; 3) does lateral flexion gap laxity affect outcomes?; 4) is lateral flexion gap laxity associated with lateral extension gap laxity?; and 5) can consistent ligament balance be produced without releases?

Patients and Methods

A total of 192 KTKAs completed by a single surgeon using a computer-assisted technique were followed for a mean of 3.5 years (2 to 5). There were 116 male patients (60%) and 76 female patients (40%) with a mean age of 65 years (48 to 88). Outcome measures included intraoperative gap laxity measurements and component positions, as well as joint angles from postoperative three-foot standing radiographs. Patient-reported outcome measures (PROMs) were analyzed in terms of alignment and balance: EuroQol (EQ)-5D visual analogue scale (VAS), Knee Injury and Osteoarthritis Outcome Score (KOOS), KOOS Joint Replacement (JR), and Oxford Knee Score (OKS).


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 11_Supple_A | Pages 151 - 152
1 Nov 2012
Lackey WG Berend ME


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 10 | Pages 1332 - 1337
1 Oct 2010
Leung KS Tang N Cheung LWH Ng E

Fluoronavigation is an image-guided technology which uses intra-operative fluoroscopic images taken under a real-time tracking system and registration to guide surgical procedures. With the skeleton and the instrument registered, guidance under an optical tracking system is possible, allowing fixation of the fracture and insertion of an implant. This technology helps to minimise exposure to x-rays, providing multiplanar views for monitoring and accurate positioning of implants. It allows real-time interactive quantitative data for decision-making and expands the application of minimally invasive surgery. In orthopaedic trauma its use can be further enhanced by combining newer imaging technologies such as intra-operative three-dimensional fluoroscopy and optical image guidance, new advances in software for fracture reduction, and new tracking mechanisms using electromagnetic technology. The major obstacles for general and wider applications are the inability to track individual fracture fragments, no navigated real-time fracture reduction, and the lack of an objective assessment method for cost-effectiveness.

We believe that its application will go beyond the operating theatre and cover all aspects of patient management, from pre-operative planning to intra-operative guidance and postoperative rehabilitation.


Bone & Joint Research
Vol. 9, Issue 6 | Pages 282 - 284
1 Jun 2020
Clement ND Calliess T Christen B Deehan DJ


The Bone & Joint Journal
Vol. 98-B, Issue 5 | Pages 628 - 633
1 May 2016
Heijens E Kornherr P Meister C

Aims

In patients undergoing medial opening wedge high tibial osteotomy (MOWHTO), soft tissue opening on the medial side of the knee is difficult to predict. When the load bearing axis is corrected beyond a certain point, the knee joint tilts open on the medial side. We therefore hypothesised that there is a tipping point and defined this as the coronal hypomochlion.

Patients and Methods

In this prospective study of 150 navigated MOWHTOs (144 consecutive patients), data were collected before surgery and at three months post-operatively. In order to calculate the hypomochlion, we compared the respective changes to the joint line convergence angle (JLCA) with the post-operative axis of the leg. The change to the medial proximal tibial angle accounts for only about 80% of the change to the femorotibial angle; 20% of the correction can therefore be attributed to non-osseous, soft-tissue changes.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 4 | Pages 477 - 480
1 Apr 2007
Spencer JM Chauhan SK Sloan K Taylor A Beaver RJ

We previously compared the component alignment in total knee replacement using a computer-navigated technique with a conventional jig-based method. We randomly allocated 71 patients to undergo either computer-navigated or conventional replacement. An improved alignment was seen in the computer-navigated group.

The patients were then followed up post-operatively for two years, using the Knee Society score, the Short Form-36 health survey, the Western Ontario and McMaster Universities osteoarthritis index, the Bartlett Patellar pain questionnaire and the Oxford knee score, to assess functional outcome.

At two years post-operatively 60 patients were available for assessment, 30 in each group and 62 patients completed a postal survey. No patient in either group had undergone revision. All variables were analysed for differences between the groups either by Student’s t-test or the Mann-Whitney U test. Differences between the two groups did not reach significance for any of the outcome measures at any time point. At two years postoperatively, the frequency of mild to severe anterior pain was not significantly different (p = 0.818), varying between 44% (14) for the computer-navigated group, and 47% (14) for the conventionally-replaced group. The Bartlett Patellar score and the Oxford knee score were also not significantly different (t-test p = 0.161 and p = 0.607, respectively).

The clinical outcome of the patients with a computer-navigated knee replacement appears to be no different to that of a more conventional jig-based technique at two years post-operatively, despite the better alignment achieved with computer-navigated surgery.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 8 | Pages 1130 - 1130
1 Aug 2007
COBB JP


Bone & Joint Open
Vol. 5, Issue 4 | Pages 260 - 268
1 Apr 2024
Broekhuis D Meurs WMH Kaptein BL Karunaratne S Carey Smith RL Sommerville S Boyle R Nelissen RGHH

Aims. Custom triflange acetabular components (CTACs) play an important role in reconstructive orthopaedic surgery, particularly in revision total hip arthroplasty (rTHA) and pelvic tumour resection procedures. Accurate CTAC positioning is essential to successful surgical outcomes. While prior studies have explored CTAC positioning in rTHA, research focusing on tumour cases and implant flange positioning precision remains limited. Additionally, the impact of intraoperative navigation on positioning accuracy warrants further investigation. This study assesses CTAC positioning accuracy in tumour resection and rTHA cases, focusing on the differences between preoperative planning and postoperative implant positions. Methods. A multicentre observational cohort study in Australia between February 2017 and March 2021 included consecutive patients undergoing acetabular reconstruction with CTACs in rTHA (Paprosky 3A/3B defects) or tumour resection (including Enneking P2 peri-acetabular area). Of 103 eligible patients (104 hips), 34 patients (35 hips) were analyzed. Results. CTAC positioning was generally accurate, with minor deviations in cup inclination (mean 2.7°; SD 2.84°), anteversion (mean 3.6°; SD 5.04°), and rotation (mean 2.1°; SD 2.47°). Deviation of the hip centre of rotation (COR) showed a mean vector length of 5.9 mm (SD 7.24). Flange positions showed small deviations, with the ischial flange exhibiting the largest deviation (mean vector length of 7.0 mm; SD 8.65). Overall, 83% of the implants were accurately positioned, with 17% exceeding malpositioning thresholds. CTACs used in tumour resections exhibited higher positioning accuracy than rTHA cases, with significant differences in inclination (1.5° for tumour vs 3.4° for rTHA) and rotation (1.3° for tumour vs 2.4° for rTHA). The use of intraoperative navigation appeared to enhance positioning accuracy, but this did not reach statistical significance. Conclusion. This study demonstrates favourable CTAC positioning accuracy, with potential for improved accuracy through intraoperative navigation. Further research is needed to understand the implications of positioning accuracy on implant performance and long-term survival. Cite this article: Bone Jt Open 2024;5(4):260–268


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 892 - 897
1 Sep 2024
Mancino F Fontalis A Kayani B Magan A Plastow R Haddad FS

Advanced 3D imaging and CT-based navigation have emerged as valuable tools to use in total knee arthroplasty (TKA), for both preoperative planning and the intraoperative execution of different philosophies of alignment. Preoperative planning using CT-based 3D imaging enables more accurate prediction of the size of components, enhancing surgical workflow and optimizing the precision of the positioning of components. Surgeons can assess alignment, osteophytes, and arthritic changes better. These scans provide improved insights into the patellofemoral joint and facilitate tibial sizing and the evaluation of implant-bone contact area in cementless TKA. Preoperative CT imaging is also required for the development of patient-specific instrumentation cutting guides, aiming to reduce intraoperative blood loss and improve the surgical technique in complex cases. Intraoperative CT-based navigation and haptic guidance facilitates precise execution of the preoperative plan, aiming for optimal positioning of the components and accurate alignment, as determined by the surgeon’s philosophy. It also helps reduce iatrogenic injury to the periarticular soft-tissue structures with subsequent reduction in the local and systemic inflammatory response, enhancing early outcomes. Despite the increased costs and radiation exposure associated with CT-based navigation, these many benefits have facilitated the adoption of imaged based robotic surgery into routine practice. Further research on ultra-low-dose CT scans and exploration of the possible translation of the use of 3D imaging into improved clinical outcomes are required to justify its broader implementation. Cite this article: Bone Joint J 2024;106-B(9):892–897


Bone & Joint Open
Vol. 5, Issue 8 | Pages 715 - 720
23 Aug 2024
Shen TS Cheng R Chiu Y McLawhorn AS Figgie MP Westrich GH

Aims. Implant waste during total hip arthroplasty (THA) represents a significant cost to the USA healthcare system. While studies have explored methods to improve THA cost-effectiveness, the literature comparing the proportions of implant waste by intraoperative technology used during THA is limited. The aims of this study were to: 1) examine whether the use of enabling technologies during THA results in a smaller proportion of wasted implants compared to navigation-guided and conventional manual THA; 2) determine the proportion of wasted implants by implant type; and 3) examine the effects of surgeon experience on rates of implant waste by technology used. Methods. We identified 104,420 implants either implanted or wasted during 18,329 primary THAs performed on 16,724 patients between January 2018 and June 2022 at our institution. THAs were separated by technology used: robotic-assisted (n = 4,171), imageless navigation (n = 6,887), and manual (n = 7,721). The primary outcome of interest was the rate of implant waste during primary THA. Results. Robotic-assisted THA resulted in a lower proportion (1.5%) of implant waste compared to navigation-guided THA (2.0%) and manual THA (1.9%) (all p < 0.001). Both navigated and manual THA were more likely to waste acetabular shells (odds ratio (OR) 4.5 vs 3.1) and polyethylene liners (OR 2.2 vs 2.0) compared to robotic-assisted THA after adjusting for demographic and perioperative factors, such as surgeon experience (p < 0.001). While implant waste decreased with increasing experience for procedures performed manually (p < 0.001) or with navigation (p < 0.001), waste rates for robotic-assisted THA did not differ based on surgical experience. Conclusion. Robotic-assisted THAs wasted a smaller proportion of acetabular shells and polyethylene liners than navigation-guided and manual THAs. Individual implant waste rates vary depending on the type of technology used intraoperatively. Future studies on implant waste during THA should examine reasons for non-implantation in order to better understand and develop methods for cost-saving. Cite this article: Bone Jt Open 2024;5(8):715–720


Bone & Joint 360
Vol. 13, Issue 3 | Pages 35 - 36
3 Jun 2024

The June 2024 Spine Roundup. 360. looks at: Intraoperative navigation increases the projected lifetime cancer risk in patients undergoing surgery for adolescent idiopathic scoliosis; Intrawound vancomycin powder reduces delayed deep surgical site infections following posterior spinal fusion for adolescent idiopathic scoliosis; Characterizing negative online reviews of spine surgeons; Proximal junctional failure after surgical instrumentation in adult spinal deformity: biomechanical assessment of proximal instrumentation stiffness; Nutritional supplementation and wound healing: a randomized controlled trial


Bone & Joint 360
Vol. 13, Issue 1 | Pages 35 - 38
1 Feb 2024

The February 2024 Oncology Roundup. 360. looks at: Does primary tumour resection improve survival for patients with sarcomas of the pelvis with metastasis at diagnosis?; Proximal femur replacements for an oncologic indication offer a durable endoprosthetic reconstruction option: a 40-year experience; The importance of awaiting biopsy results in solitary pathological proximal femoral fractures: do we need to biopsy solitary pathological fractures?; Effect of radiotherapy on local recurrence, distant metastasis, and overall survival in 1,200 extremity soft-tissue sarcoma patients; What to choose in bone tumour resections? Patient-specific instrumentation versus surgical navigation; Optimal timing of re-excision in synovial sarcoma patients: immediate intervention versus waiting for local recurrence; Survival differences of patients with resected extraskeletal osteosarcoma receiving two different (neo) adjuvant chemotherapy regimens; Solitary versus multiple bone metastases in the appendicular skeleton: should the surgical treatment be different?


Bone & Joint Open
Vol. 3, Issue 10 | Pages 767 - 776
5 Oct 2022
Jang SJ Kunze KN Brilliant ZR Henson M Mayman DJ Jerabek SA Vigdorchik JM Sculco PK

Aims. Accurate identification of the ankle joint centre is critical for estimating tibial coronal alignment in total knee arthroplasty (TKA). The purpose of the current study was to leverage artificial intelligence (AI) to determine the accuracy and effect of using different radiological anatomical landmarks to quantify mechanical alignment in relation to a traditionally defined radiological ankle centre. Methods. Patients with full-limb radiographs from the Osteoarthritis Initiative were included. A sub-cohort of 250 radiographs were annotated for landmarks relevant to knee alignment and used to train a deep learning (U-Net) workflow for angle calculation on the entire database. The radiological ankle centre was defined as the midpoint of the superior talus edge/tibial plafond. Knee alignment (hip-knee-ankle angle) was compared against 1) midpoint of the most prominent malleoli points, 2) midpoint of the soft-tissue overlying malleoli, and 3) midpoint of the soft-tissue sulcus above the malleoli. Results. A total of 932 bilateral full-limb radiographs (1,864 knees) were measured at a rate of 20.63 seconds/image. The knee alignment using the radiological ankle centre was accurate against ground truth radiologist measurements (inter-class correlation coefficient (ICC) = 0.99 (0.98 to 0.99)). Compared to the radiological ankle centre, the mean midpoint of the malleoli was 2.3 mm (SD 1.3) lateral and 5.2 mm (SD 2.4) distal, shifting alignment by 0.34. o. (SD 2.4. o. ) valgus, whereas the midpoint of the soft-tissue sulcus was 4.69 mm (SD 3.55) lateral and 32.4 mm (SD 12.4) proximal, shifting alignment by 0.65. o. (SD 0.55. o. ) valgus. On the intermalleolar line, measuring a point at 46% (SD 2%) of the intermalleolar width from the medial malleoli (2.38 mm medial adjustment from midpoint) resulted in knee alignment identical to using the radiological ankle centre. Conclusion. The current study leveraged AI to create a consistent and objective model that can estimate patient-specific adjustments necessary for optimal landmark usage in extramedullary and computer-guided navigation for tibial coronal alignment to match radiological planning. Cite this article: Bone Jt Open 2022;3(10):767–776


The Bone & Joint Journal
Vol. 104-B, Issue 1 | Pages 8 - 11
1 Jan 2022
Wright-Chisem J Elbuluk AM Mayman DJ Jerabek SA Sculco PK Vigdorchik JM

Dislocation following total hip arthroplasty (THA) is a well-known and potentially devastating complication. Clinicians have used many strategies in attempts to prevent dislocation since the introduction of THA. While the importance of postoperative care cannot be ignored, particular emphasis has been placed on preoperative planning in the prevention of dislocation. The strategies have progressed from more traditional approaches, including modular implants, the size of the femoral head, and augmentation of the offset, to newer concepts, including patient-specific component positioning combined with computer navigation, robotics, and the use of dual-mobility implants. As clinicians continue to pursue improved outcomes and reduced complications, these concepts will lay the foundation for future innovation in THA and ultimately improved outcomes. Cite this article: Bone Joint J 2022;104-B(1):8–11


Bone & Joint Research
Vol. 10, Issue 10 | Pages 629 - 638
20 Oct 2021
Hayashi S Hashimoto S Kuroda Y Nakano N Matsumoto T Ishida K Shibanuma N Kuroda R

Aims. This study aimed to evaluate the accuracy of implant placement with robotic-arm assisted total hip arthroplasty (THA) in patients with developmental dysplasia of the hip (DDH). Methods. The study analyzed a consecutive series of 69 patients who underwent robotic-arm assisted THA between September 2018 and December 2019. Of these, 30 patients had DDH and were classified according to the Crowe type. Acetabular component alignment and 3D positions were measured using pre- and postoperative CT data. The absolute differences of cup alignment and 3D position were compared between DDH and non-DDH patients. Moreover, these differences were analyzed in relation to the severity of DDH. The discrepancy of leg length and combined offset compared with contralateral hip were measured. Results. The mean values of absolute differences (postoperative CT-preoperative plan) were 1.7° (standard deviation (SD) 2.0) (inclination) and 2.5° (SD 2.1°) (anteversion) in DDH patients, and no significant differences were found between non-DDH and DDH patients. The mean absolute differences for 3D cup position were 1.1 mm (SD 1.0) (coronal plane) and 1.2 mm (SD 2.1) (axial plane) in DDH patients, and no significant differences were found between two groups. No significant difference was found either in cup alignment between postoperative CT and navigation record after cup screws or in the severity of DDH. Excellent restoration of leg length and combined offset were achieved in both groups. Conclusion. We demonstrated that robotic-assisted THA may achieve precise cup positioning in DDH patients, and may be useful in those with severe DDH. Cite this article: Bone Joint Res 2021;10(10):629–638


Bone & Joint Open
Vol. 2, Issue 11 | Pages 974 - 980
25 Nov 2021
Allom RJ Wood JA Chen DB MacDessi SJ

Aims. It is unknown whether gap laxities measured in robotic arm-assisted total knee arthroplasty (TKA) correlate to load sensor measurements. The aim of this study was to determine whether symmetry of the maximum medial and lateral gaps in extension and flexion was predictive of knee balance in extension and flexion respectively using different maximum thresholds of intercompartmental load difference (ICLD) to define balance. Methods. A prospective cohort study of 165 patients undergoing functionally-aligned TKA was performed (176 TKAs). With trial components in situ, medial and lateral extension and flexion gaps were measured using robotic navigation while applying valgus and varus forces. The ICLD between medial and lateral compartments was measured in extension and flexion with the load sensor. The null hypothesis was that stressed gap symmetry would not correlate directly with sensor-defined soft tissue balance. Results. In TKAs with a stressed medial-lateral gap difference of ≤1 mm, 147 (89%) had an ICLD of ≤15 lb in extension, and 112 (84%) had an ICLD of ≤ 15 lb in flexion; 157 (95%) had an ICLD ≤ 30 lb in extension, and 126 (94%) had an ICLD ≤ 30 lb in flexion; and 165 (100%) had an ICLD ≤ 60 lb in extension, and 133 (99%) had an ICLD ≤ 60 lb in flexion. With a 0 mm difference between the medial and lateral stressed gaps, 103 (91%) of TKA had an ICLD ≤ 15 lb in extension, decreasing to 155 (88%) when the difference between the medial and lateral stressed extension gaps increased to ± 3 mm. In flexion, 47 (77%) had an ICLD ≤ 15 lb with a medial-lateral gap difference of 0 mm, increasing to 147 (84%) at ± 3 mm. Conclusion. This study found a strong relationship between intercompartmental loads and gap symmetry in extension and flexion measured with prostheses in situ. The results suggest that ICLD and medial-lateral gap difference provide similar assessment of soft-tissue balance in robotic arm-assisted TKA. Cite this article: Bone Jt Open 2021;2(11):974–980


Bone & Joint Research
Vol. 9, Issue 10 | Pages 653 - 666
7 Oct 2020
Li W Li G Chen W Cong L

Aims. The aim of this study was to systematically compare the safety and accuracy of robot-assisted (RA) technique with conventional freehand with/without fluoroscopy-assisted (CT) pedicle screw insertion for spine disease. Methods. A systematic search was performed on PubMed, EMBASE, the Cochrane Library, MEDLINE, China National Knowledge Infrastructure (CNKI), and WANFANG for randomized controlled trials (RCTs) that investigated the safety and accuracy of RA compared with conventional freehand with/without fluoroscopy-assisted pedicle screw insertion for spine disease from 2012 to 2019. This meta-analysis used Mantel-Haenszel or inverse variance method with mixed-effects model for heterogeneity, calculating the odds ratio (OR), mean difference (MD), standardized mean difference (SMD), and 95% confidence intervals (CIs). The results of heterogeneity, subgroup analysis, and risk of bias were analyzed. Results. Ten RCTs with 713 patients and 3,331 pedicle screws were included. Compared with CT, the accuracy rate of RA was superior in Grade A with statistical significance and Grade A + B without statistical significance. Compared with CT, the operating time of RA was longer. The difference between RA and CT was statistically significant in radiation dose. Proximal facet joint violation occurred less in RA than in CT. The postoperative Oswestry Disability Index (ODI) of RA was smaller than that of CT, and there were some interesting outcomes in our subgroup analysis. Conclusion. RA technique could be viewed as an accurate and safe pedicle screw implantation method compared to CT. A robotic system equipped with optical intraoperative navigation is superior to CT in accuracy. RA pedicle screw insertion can improve accuracy and maintain stability for some challenging areas. Cite this article: Bone Joint Res 2020;9(10):653–666


Bone & Joint Research
Vol. 9, Issue 6 | Pages 272 - 278
1 Jun 2020
Tapasvi S Shekhar A Patil S Pandit H

Aims. The mobile bearing Oxford unicompartmental knee arthroplasty (OUKA) is recommended to be performed with the leg in the hanging leg (HL) position, and the thigh placed in a stirrup. This comparative cadaveric study assesses implant positioning and intraoperative kinematics of OUKA implanted either in the HL position or in the supine leg (SL) position. Methods. A total of 16 fresh-frozen knees in eight human cadavers, without macroscopic anatomical defects, were selected. The knees from each cadaver were randomized to have the OUKA implanted in the HL or SL position. Results. Tibial base plate rotation was significantly more variable in the SL group with 75% of tibiae mal-rotated. Multivariate analysis of navigation data found no difference based on all kinematic parameters across the range of motion (ROM). However, area under the curve analysis showed that knees placed in the HL position had much smaller differences between the pre- and post-surgery conditions for kinematics mean values across the entire ROM. Conclusion. The sagittal tibia cut, not dependent on standard instrumentation, determines the tibial component rotation. The HL position improves accuracy of this step compared to the SL position, probably due to better visuospatial orientation of the hip and knee to the surgeon. The HL position is better for replicating native kinematics of the knee as shown by the area under the curve analysis. In the supine knee position, care must be taken during the sagittal tibia cut, while checking flexion balance and when sizing the tibial component


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 9 | Pages 1164 - 1171
1 Sep 2009
Bae DK Song SJ Yoon KH

We assessed the reliability, accuracy and variability of closed-wedge high tibial osteotomy (HTO) using computer-assisted surgery compared to the conventional technique. A total of 50 closed-wedge HTO procedures were performed using the navigation system, and compared with 50 HTOs that had been performed with the conventional technique. In the navigation group, the mean mechanical axis prior to osteotomy was varus 8.2°, and the mean mechanical axis following fixation was valgus 3.6°. On the radiographs the mean pre-operative mechanical axis was varus 7.3°, and the mean post-operative mechanical axis was valgus 2.1°. There was a positive correlation between the measured data taken under navigation and by radiographs (r > 0.3, p < 0.05). The mean correction angle was significantly more accurate in the navigation group (p < 0.002). The variability of the correction was significantly lower in the navigation group (2.3° vs 3.7°, p = 0,012). We conclude that navigation provides reliable real-time intra-operative information, may increase accuracy, and improves the precision of a closed-wedge HTO


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 67 - 73
1 Jun 2021
Lee G Wakelin E Randall A Plaskos C

Aims. Neither a surgeon’s intraoperative impression nor the parameters of computer navigation have been shown to be predictive of the outcomes following total knee arthroplasty (TKA). The aim of this study was to determine whether a surgeon, with robotic assistance, can predict the outcome as assessed using the Knee Injury and Osteoarthritis Outcome Score (KOOS) for pain (KPS), one year postoperatively, and establish what factors correlate with poor KOOS scores in a well-aligned and balanced TKA. Methods. A total of 134 consecutive patients who underwent TKA using a dynamic ligament tensioning robotic system with a tibia first resection technique and a cruciate sacrificing ultracongruent TKA system were enrolled into a prospective study. Each TKA was graded based on the final mediolateral ligament balance at 10° and 90° of flexion: 1) < 1 mm difference in the thickness of the tibial insert and that which was planned (n = 75); 2) < 1 mm difference (n = 26); 3) between 1 mm to 2 mm difference (n = 26); and 4) > 2 mm difference (n = 7). The mean one-year KPS score for each grade of TKA was compared and the likelihood of achieving an KPS score of > 90 was calculated. Finally, the factors associated with lower KPS despite achieving a high-grade TKA (grade A and B) were analyzed. Results. Patients with a grade of A or B TKA had significantly higher mean one-year KPS scores compared with those with C or D grades (p = 0.031). There was no difference in KPS scores in grade A or B TKAs, but 33% of these patients did not have a KPS score of > 90. While there was no correlation with age, sex, preoperative deformity, and preoperative KOOS and Patient-Reported Outcomes Measurement Information System (PROMIS) physical scores, patients with a KPS score of < 90, despite a grade A or B TKA, had lower PROMIS mental health scores compared with those with KPS scores of > 90 (54.1 vs 50.8; p = 0.043). Patients with grade A and B TKAs with KPS > 90 were significantly more likely to respond with “my expectations were too low”, and with “the knee is performing better than expected” compared with patients with these grades of TKA who had a KPS score of < 90 (40% vs 22%; p = 0.004). Conclusion. A TKA balanced with robotic assistance to within 1 mm of difference between the medial and lateral sides in both flexion and extension had a higher KPS score one year postoperatively. Despite accurate ligament balance information, a robotic system could not guarantee excellent pain relief. Patient expectations and mental status also significantly affected the perceived success of TKA. Cite this article: Bone Joint J 2021;103-B(6 Supple A):67–73


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 49 - 58
1 Jun 2020
Mullaji A

Aims. The aims of this study were to determine the effect of osteophyte excision on deformity correction and soft tissue gap balance in varus knees undergoing computer-assisted total knee arthroplasty (TKA). Methods. A total of 492 consecutive, cemented, cruciate-substituting TKAs performed for varus osteoarthritis were studied. After exposure and excision of both cruciates and menisci, it was noted from operative records the corrective interventions performed in each case. Knees in which no releases after the initial exposure, those which had only osteophyte excision, and those in which further interventions were performed were identified. From recorded navigation data, coronal and sagittal limb alignment, knee flexion range, and medial and lateral gap distances in maximum knee extension and 90° knee flexion with maximal varus and valgus stresses, were established, initially after exposure and excision of both cruciate ligaments, and then also at trialling. Knees were defined as ‘aligned’ if the hip-knee-ankle axis was between 177° and 180°, (0° to 3° varus) and ‘balanced’ if medial and lateral gaps in extension and at 90° flexion were within 2 mm of each other. Results. Of 50 knees (10%) with no soft tissue releases (other than cruciate ligaments), 90% were aligned, 81% were balanced, and 73% were aligned and balanced. In 288 knees (59%) only osteophyte excision was performed by subperiosteally releasing the deep medial collateral ligament. Of these, 98% were aligned, 80% were balanced, and 79% were aligned and balanced. In 154 knees (31%), additional procedures were performed (reduction osteotomy, posterior capsular release, and semimembranosus release). Of these, 89% were aligned, 68% were balanced, and 66% were aligned and balanced. The superficial medial collateral ligament was not released in any case. Conclusion. Two-thirds of all knees could be aligned and balanced with release of the cruciate ligaments alone and excision of osteophytes. Excision of osteophytes can be a useful step towards achieving deformity correction and gap balance without having to resort to soft tissue release in varus knees while maintaining classical coronal and sagittal alignment of components. Cite this article: Bone Joint J 2020;102-B(6 Supple A):49–58


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 81 - 86
1 Jun 2021
Mahfouz MR Abdel Fatah EE Johnson JM Komistek RD

Aims. The objective of this study is to assess the use of ultrasound (US) as a radiation-free imaging modality to reconstruct 3D anatomy of the knee for use in preoperative templating in knee arthroplasty. Methods. Using an US system, which is fitted with an electromagnetic (EM) tracker that is integrated into the US probe, allows 3D tracking of the probe, femur, and tibia. The raw US radiofrequency (RF) signals are acquired and, using real-time signal processing, bone boundaries are extracted. Bone boundaries and the tracking information are fused in a 3D point cloud for the femur and tibia. Using a statistical shaping model, the patient-specific surface is reconstructed by optimizing bone geometry to match the point clouds. An accuracy analysis was conducted for 17 cadavers by comparing the 3D US models with those created using CT. US scans from 15 users were compared in order to examine the effect of operator variability on the output. Results. The results revealed that the US bone models were accurate compared with the CT models (root mean squared error (RM)S: femur, 1.07 mm (SD 0.15); tibia, 1.02 mm (SD 0.13). Additionally, femoral landmarking proved to be accurate (transepicondylar axis: 1.07° (SD 0.65°); posterior condylar axis: 0.73° (SD 0.41°); distal condylar axis: 0.96° (SD 0.89°); medial anteroposterior (AP): 1.22 mm (SD 0.69); lateral AP: 1.21 mm (SD 1.02)). Tibial landmarking errors were slightly higher (posterior slope axis: 1.92° (SD 1.31°); and tubercle axis: 1.91° (SD 1.24°)). For implant sizing, 90% of the femora and 60% of the tibiae were sized correctly, while the remainder were only one size different from the required implant size. No difference was observed between moderate and skilled users. Conclusion. The 3D US bone models were proven to be closely matched compared with CT and suitable for preoperative planning. The 3D US is radiation-free and offers numerous clinical opportunities for bone visualization rapidly during clinic visits, to enable preoperative planning with implant sizing. There is potential to extend its application to 3D dynamic ligament balancing, and intraoperative registration for use with robots and navigation systems. Cite this article: Bone Joint J 2021;103-B(6 Supple A):81–86


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 2 | Pages 194 - 199
1 Feb 2012
Hoffart H Langenstein E Vasak N

The aim of this prospective single-centre study was to assess the difference in clinical outcome between total knee replacement (TKR) using computerised navigation and that of conventional TKR. We hypothesised that navigation would give a better result at every stage within the first five years. A total of 195 patients (195 knees) with a mean age of 70.0 years (39 to 89) were allocated alternately into two treatment groups, which used either conventional instrumentation (group A, 97 knees) or a navigation system (group B, 98 knees). After five years, complete clinical scores were available for 121 patients (62%). A total of 18 patients were lost to follow-up. Compared with conventional surgery, navigated TKR resulted in a better mean Knee Society score (p = 0.008). The difference in mean Knee Society scores over time between the two groups was not constant (p = 0.006), which suggests that these groups differed in their response to surgery with time. No significant difference in the frequency of malalignment was seen between the two groups. In summary, computerised navigation resulted in a better functional outcome at five years than conventional techniques. Given the similarity in mechanical alignment between the two groups, rotational alignment may prove to be a better method of identifying differences in clinical outcome after navigated surgery