Advertisement for orthosearch.org.uk
Results 1 - 50 of 283
Results per page:
The Bone & Joint Journal
Vol. 98-B, Issue 10 | Pages 1342 - 1346
1 Oct 2016
Spencer-Gardner L Pierrepont J Topham M Baré J McMahon S Shimmin AJ

Aims. Accurate placement of the acetabular component during total hip arthroplasty (THA) is an important factor in the success of the procedure. However, the reported accuracy varies greatly and is dependent upon whether free hand or navigated techniques are used. The aim of this study was to assess the accuracy of an instrument system that incorporates 3D printed, patient-specific guides designed to optimise the placement of the acetabular component. Patients and Methods. A total of 100 consecutive patients were prospectively enrolled and the accuracy of placement of the acetabular component was measured using post-operative CT scans. Results. The mean absolute deviation from the planned inclination and anteversion was 3.9° (0.0° to 13.6°) and 3.6° (0.0° to 12.9°), respectively. In 91% of cases the planned target of +/-10° was achieved for both inclination and anteversion. Conclusion. Accurate placement of the acetabular component can be achieved using patient-specific guides and is superior to free hand techniques and comparable to navigated and robotic techniques. Cite this article: Bone Joint J 2016;98-B:1342–6


Bone & Joint Research
Vol. 1, Issue 8 | Pages 180 - 191
1 Aug 2012
Stilling M Kold S de Raedt S Andersen NT Rahbek O Søballe K

Objectives. The accuracy and precision of two new methods of model-based radiostereometric analysis (RSA) were hypothesised to be superior to a plain radiograph method in the assessment of polyethylene (PE) wear. Methods. A phantom device was constructed to simulate three-dimensional (3D) PE wear. Images were obtained consecutively for each simulated wear position for each modality. Three commercially available packages were evaluated: model-based RSA using laser-scanned cup models (MB-RSA), model-based RSA using computer-generated elementary geometrical shape models (EGS-RSA), and PolyWare. Precision (95% repeatability limits) and accuracy (Root Mean Square Errors) for two-dimensional (2D) and 3D wear measurements were assessed. Results. The precision for 2D wear measures was 0.078 mm, 0.102 mm, and 0.076 mm for EGS-RSA, MB-RSA, and PolyWare, respectively. For the 3D wear measures the precision was 0.185 mm, 0.189 mm, and 0.244 mm for EGS-RSA, MB-RSA, and PolyWare respectively. Repeatability was similar for all methods within the same dimension, when compared between 2D and 3D (all p > 0.28). For the 2D RSA methods, accuracy was below 0.055 mm and at least 0.335 mm for PolyWare. For 3D measurements, accuracy was 0.1 mm, 0.2 mm, and 0.3 mm for EGS-RSA, MB-RSA and PolyWare respectively. PolyWare was less accurate compared with RSA methods (p = 0.036). No difference was observed between the RSA methods (p = 0.10). Conclusions. For all methods, precision and accuracy were better in 2D, with RSA methods being superior in accuracy. Although less accurate and precise, 3D RSA defines the clinically relevant wear pattern (multidirectional). PolyWare is a good and low-cost alternative to RSA, despite being less accurate and requiring a larger sample size


Bone & Joint Open
Vol. 5, Issue 4 | Pages 260 - 268
1 Apr 2024
Broekhuis D Meurs WMH Kaptein BL Karunaratne S Carey Smith RL Sommerville S Boyle R Nelissen RGHH

Aims. Custom triflange acetabular components (CTACs) play an important role in reconstructive orthopaedic surgery, particularly in revision total hip arthroplasty (rTHA) and pelvic tumour resection procedures. Accurate CTAC positioning is essential to successful surgical outcomes. While prior studies have explored CTAC positioning in rTHA, research focusing on tumour cases and implant flange positioning precision remains limited. Additionally, the impact of intraoperative navigation on positioning accuracy warrants further investigation. This study assesses CTAC positioning accuracy in tumour resection and rTHA cases, focusing on the differences between preoperative planning and postoperative implant positions. Methods. A multicentre observational cohort study in Australia between February 2017 and March 2021 included consecutive patients undergoing acetabular reconstruction with CTACs in rTHA (Paprosky 3A/3B defects) or tumour resection (including Enneking P2 peri-acetabular area). Of 103 eligible patients (104 hips), 34 patients (35 hips) were analyzed. Results. CTAC positioning was generally accurate, with minor deviations in cup inclination (mean 2.7°; SD 2.84°), anteversion (mean 3.6°; SD 5.04°), and rotation (mean 2.1°; SD 2.47°). Deviation of the hip centre of rotation (COR) showed a mean vector length of 5.9 mm (SD 7.24). Flange positions showed small deviations, with the ischial flange exhibiting the largest deviation (mean vector length of 7.0 mm; SD 8.65). Overall, 83% of the implants were accurately positioned, with 17% exceeding malpositioning thresholds. CTACs used in tumour resections exhibited higher positioning accuracy than rTHA cases, with significant differences in inclination (1.5° for tumour vs 3.4° for rTHA) and rotation (1.3° for tumour vs 2.4° for rTHA). The use of intraoperative navigation appeared to enhance positioning accuracy, but this did not reach statistical significance. Conclusion. This study demonstrates favourable CTAC positioning accuracy, with potential for improved accuracy through intraoperative navigation. Further research is needed to understand the implications of positioning accuracy on implant performance and long-term survival. Cite this article: Bone Jt Open 2024;5(4):260–268


Bone & Joint Open
Vol. 3, Issue 6 | Pages 475 - 484
13 Jun 2022
Jang SJ Vigdorchik JM Windsor EW Schwarzkopf R Mayman DJ Sculco PK

Aims. Navigation devices are designed to improve a surgeon’s accuracy in positioning the acetabular and femoral components in total hip arthroplasty (THA). The purpose of this study was to both evaluate the accuracy of an optical computer-assisted surgery (CAS) navigation system and determine whether preoperative spinopelvic mobility (categorized as hypermobile, normal, or stiff) increased the risk of acetabular component placement error. Methods. A total of 356 patients undergoing primary THA were prospectively enrolled from November 2016 to March 2018. Clinically relevant error using the CAS system was defined as a difference of > 5° between CAS and 3D radiological reconstruction measurements for acetabular component inclination and anteversion. Univariate and multiple logistic regression analyses were conducted to determine whether hypermobile (. Δ. sacral slope(SS). stand-sit. > 30°), or stiff (. ∆. SS. stand-sit. < 10°) spinopelvic mobility contributed to increased error rates. Results. The paired absolute difference between CAS and postoperative imaging measurements was 2.3° (standard deviation (SD) 2.6°) for inclination and 3.1° (SD 4.2°) for anteversion. Using a target zone of 40° (± 10°) (inclination) and 20° (± 10°) (anteversion), postoperative standing radiographs measured 96% of acetabular components within the target zone for both inclination and anteversion. Multiple logistic regression analysis controlling for BMI and sex revealed that hypermobile spinopelvic mobility significantly increased error rates for anteversion (odds ratio (OR) 2.48, p = 0.009) and inclination (OR 2.44, p = 0.016), whereas stiff spinopelvic mobility increased error rates for anteversion (OR 1.97, p = 0.028). There were no dislocations at a minimum three-year follow-up. Conclusion. Despite high reliability in acetabular positioning for inclination in a large patient cohort using an optical CAS system, hypermobile and stiff spinopelvic mobility significantly increased the risk of clinically relevant errors. In patients with abnormal spinopelvic mobility, CAS systems should be adjusted for use to avoid acetabular component misalignment and subsequent risk for long-term dislocation. Cite this article: Bone Jt Open 2022;3(6):475–484


Bone & Joint Research
Vol. 11, Issue 3 | Pages 180 - 188
1 Mar 2022
Rajpura A Asle SG Ait Si Selmi T Board T

Aims. Hip arthroplasty aims to accurately recreate joint biomechanics. Considerable attention has been paid to vertical and horizontal offset, but femoral head centre in the anteroposterior (AP) plane has received little attention. This study investigates the accuracy of restoration of joint centre of rotation in the AP plane. Methods. Postoperative CT scans of 40 patients who underwent unilateral uncemented total hip arthroplasty were analyzed. Anteroposterior offset (APO) and femoral anteversion were measured on both the operated and non-operated sides. Sagittal tilt of the femoral stem was also measured. APO measured on axial slices was defined as the perpendicular distance between a line drawn from the anterior most point of the proximal femur (anterior reference line) to the centre of the femoral head. The anterior reference line was made parallel to the posterior condylar axis of the knee to correct for rotation. Results. Overall, 26/40 hips had a centre of rotation displaced posteriorly compared to the contralateral hip, increasing to 33/40 once corrected for sagittal tilt, with a mean posterior displacement of 7 mm. Linear regression analysis indicated that stem anteversion needed to be increased by 10.8° to recreate the head centre in the AP plane. Merely matching the native version would result in a 12 mm posterior displacement. Conclusion. This study demonstrates the significant incidence of posterior displacement of the head centre in uncemented hip arthroplasty. Effects of such displacement include a reduction in impingement free range of motion, potential alterations in muscle force vectors and lever arms, and impaired proprioception due to muscle fibre reorientation. Cite this article: Bone Joint Res 2022;11(3):180–188


The Bone & Joint Journal
Vol. 101-B, Issue 10 | Pages 1218 - 1229
1 Oct 2019
Lerch TD Eichelberger P Baur H Schmaranzer F Liechti EF Schwab JM Siebenrock KA Tannast M

Aims. Abnormal femoral torsion (FT) is increasingly recognized as an additional cause for femoroacetabular impingement (FAI). It is unknown if in-toeing of the foot is a specific diagnostic sign for increased FT in patients with symptomatic FAI. The aims of this study were to determine: 1) the prevalence and diagnostic accuracy of in-toeing to detect increased FT; 2) if foot progression angle (FPA) and tibial torsion (TT) are different among patients with abnormal FT; and 3) if FPA correlates with FT. Patients and Methods. A retrospective, institutional review board (IRB)-approved, controlled study of 85 symptomatic patients (148 hips) with FAI or hip dysplasia was performed in the gait laboratory. All patients had a measurement of FT (pelvic CT scan), TT (CT scan), and FPA (optical motion capture system). We allocated all patients to three groups with decreased FT (< 10°, 37 hips), increased FT (> 25°, 61 hips), and normal FT (10° to 25°, 50 hips). Cluster analysis was performed. Results. We found a specificity of 99%, positive predictive value (PPV) of 93%, and sensitivity of 23% for in-toeing (FPA < 0°) to detect increased FT > 25°. Most of the hips with normal or decreased FT had no in-toeing (false-positive rate of 1%). Patients with increased FT had significantly (p < 0.001) more in-toeing than patients with decreased FT. The majority of the patients (77%) with increased FT walk with a normal foot position. The correlation between FPA and FT was significant (r = 0.404, p < 0.001). Five cluster groups were identified. Conclusion. In-toeing has a high specificity and high PPV to detect increased FT, but increased FT can be missed because of the low sensitivity and high false-negative rate. These results can be used for diagnosis of abnormal FT in patients with FAI or hip dysplasia undergoing hip arthroscopy or femoral derotation osteotomy. However, most of the patients with increased FT walk with a normal foot position. This can lead to underestimation or misdiagnosis of abnormal FT. We recommend measuring FT with CT/MRI scans in all patients with FAI. Cite this article: Bone Joint J 2019;101-B:1218–1229


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 3 | Pages 333 - 340
1 Mar 2009
Sariali E Mouttet A Pasquier G Durante E Catone Y

Pre-operative computerised three-dimensional planning was carried out in 223 patients undergoing total hip replacement with a cementless acetabular component and a cementless modular-neck femoral stem. Components were chosen which best restored leg length and femoral offset. The post-operative restoration of the anatomy was assessed by CT and compared with the pre-operative plan. The component implanted was the same as that planned in 86% of the hips for the acetabular implant, 94% for the stem, and 93% for the neck-shaft angle. The rotational centre of the hip was restored with a mean accuracy of 0.73 mm (. sd. 3.5) craniocaudally and 1.2 mm (. sd. 2) laterally. Limb length was restored with a mean accuracy of 0.3 mm (. sd. 3.3) and femoral offset with a mean accuracy of 0.8 mm (. sd. 3.1). This method appears to offer high accuracy in hip reconstruction as the difficulties likely to be encountered when restoring the anatomy can be anticipated and solved pre-operatively by optimising the selection of implants. Modularity of the femoral neck helped to restore the femoral offset and limb length


The Bone & Joint Journal
Vol. 96-B, Issue 5 | Pages 597 - 603
1 May 2014
Nomura T Naito M Nakamura Y Ida T Kuroda D Kobayashi T Sakamoto T Seo H

Several radiological methods of measuring anteversion of the acetabular component after total hip replacement (THR) have been described. These studies used different definitions and reference planes to compare methods, allowing for misinterpretation of the results. We compared the reliability and accuracy of five current methods using plain radiographs (those of Lewinnek, Widmer, Liaw, Pradhan, and Woo and Morrey) with CT measurements, using the same definition and reference plane. We retrospectively studied the plain radiographs and CT scans in 84 hips of 84 patients who underwent primary THR. Intra- and inter-observer reliability were high for the measurement of inclination and anteversion with all methods on plain radiographs and CT scans. The measurements of inclination on plain radiographs were similar to the measurements using CT (p = 0.043). The mean difference between CT measurements was 0.6° (-5.9° to 6.8°). Measurements using Widmer’s method were the most similar to those using CT (p = 0.088), with a mean difference between CT measurements of -0.9° (-10.4° to 9.1°), whereas the other four methods differed significantly from those using CT (p < 0.001). This study has shown that Widmer’s method is the best for evaluating the anteversion of the acetabular component on plain radiographs. Cite this article: Bone Joint J 2014; 96-B:597–603


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 5 | Pages 581 - 585
1 May 2006
Oddy MJ Jones MJ Pendegrass CJ Pilling JR Wimhurst JA

In 20 patients undergoing hybrid total hip arthroplasty, the reproducibility and accuracy of templating using digital radiographs were assessed. Digital images were manipulated using either a ten-pence coin as a marker to scale for magnification, or two digital-line methods using computer software. On-screen images were templated with standard acetate templates and compared with templating performed on hard-copy digital prints. The digital-line methods were the least reliable and accuracy of sizing compared with the inserted prostheses varied between −1.6% and +10.2%. The hard-copy radiographs showed better reproducibility than the ten-pence coin method, but were less accurate with 3.7% undersizing. The ten-pence coin method was the most accurate, with no significant differences for offset or acetabulum, and undersizing of only 0.9%. On-screen templating of digital radiographs with standard acetate templates is accurate and reproducible if a radiopaque marker such as a ten-pence coin is included when the original radiograph is taken


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 2 | Pages 266 - 272
1 Mar 1999
Biedermann R Krismer M Stöckl B Mayrhofer P Ornstein E Franzén H

Several methods of measuring the migration of the femoral component after total hip replacement have been described, but they use different reference lines, and have differing accuracies, some unproven. Statistical comparison of different studies is rarely possible. We report a study of the EBRA-FCA method (femoral component analysis using Einzel-Bild-Röntgen-Analyse) to determine its accuracy using three independent assessments, including a direct comparison with the results of roentgen stereophotogrammetric analysis (RSA). The accuracy of EBRA-FCA was better than ±1.5 mm (95% percentile) with a Cronbach’s coefficient alpha for interobserver reliability of 0.84; a very good result. The method had a specificity of 100% and a sensitivity of 78% compared with RSA for the detection of migration of over 1 mm. This is accurate enough to assess the stability of a prosthesis within a relatively limited period. The best reference line for downward migration is between the greater trochanter and the shoulder of the stem, as confirmed by two experimental analyses and a computer-assisted design


The Bone & Joint Journal
Vol. 103-B, Issue 7 Supple B | Pages 59 - 65
1 Jul 2021
Bracey DN Hegde V Shimmin AJ Jennings JM Pierrepont JW Dennis DA

Aims

Cross-table lateral (CTL) radiographs are commonly used to measure acetabular component anteversion after total hip arthroplasty (THA). The CTL measurements may differ by > 10° from CT scan measurements but the reasons for this discrepancy are poorly understood. Anteversion measurements from CTL radiographs and CT scans are compared to identify spinopelvic parameters predictive of inaccuracy.

Methods

THA patients (n = 47; 27 males, 20 females; mean age 62.9 years (SD 6.95)) with preoperative spinopelvic mobility, radiological analysis, and postoperative CT scans were retrospectively reviewed. Acetabular component anteversion was measured on postoperative CTL radiographs and CT scans using 3D reconstructions of the pelvis. Two cohorts were identified based on a CTL-CT error of ≥ 10° (n = 11) or < 10° (n = 36). Spinopelvic mobility parameters were compared using independent-samples t-tests. Correlation between error and mobility parameters were assessed with Pearson’s coefficient.


The Bone & Joint Journal
Vol. 97-B, Issue 6 | Pages 780 - 785
1 Jun 2015
Baauw M van Hellemondt GG van Hooff ML Spruit M

We evaluated the accuracy with which a custom-made acetabular component could be positioned at revision arthroplasty of the hip in patients with a Paprosky type 3 acetabular defect. A total of 16 patients with a Paprosky type 3 defect underwent revision surgery using a custom-made trabecular titanium implant. There were four men and 12 women with a median age of 67 years (48 to 79). The planned inclination (INCL), anteversion (AV), rotation and centre of rotation (COR) of the implant were compared with the post-operative position using CT scans. A total of seven implants were malpositioned in one or more parameters: one with respect to INCL, three with respect to AV, four with respect to rotation and five with respect to the COR. To the best of our knowledge, this is the first study in which CT data acquired for the pre-operative planning of a custom-made revision acetabular implant have been compared with CT data on the post-operative position. The results are encouraging. Cite this article: Bone Joint J 2015; 97-B:780–5


The Bone & Joint Journal
Vol. 96-B, Issue 10 | Pages 1290 - 1297
1 Oct 2014
Grammatopoulos G Pandit HG da Assunção R McLardy-Smith P De Smet KA Gill HS Murray DW

There is great variability in acetabular component orientation following hip replacement. The aims of this study were to compare the component orientation at impaction with the orientation measured on post-operative radiographs and identify factors that influence the difference between the two. A total of 67 hip replacements (52 total hip replacements and 15 hip resurfacings) were prospectively studied. Intra-operatively, the orientation of the acetabular component after impaction relative to the operating table was measured using a validated stereo-photogrammetry protocol. Post-operatively, the radiographic orientation was measured; the mean inclination/anteversion was 43° (sd 6°)/ 19° (sd 7°). A simulated radiographic orientation was calculated based on how the orientation would have appeared had an on-table radiograph been taken intra-operatively. The mean difference between radiographic and intra-operative inclination/anteversion was 5° (sd 5°)/ -8° (sd 8°). The mean difference between simulated radiographic and intra-operative inclination/anteversion, which quantifies the effect of the different way acetabular orientation is measured, was 3°/-6° (sd 2°). The mean difference between radiographic and simulated radiographic orientation inclination/anteversion, which is a manifestation of the change in pelvic position between component impaction and radiograph, was 1°/-2° (sd 7°).

This study demonstrated that in order to achieve a specific radiographic orientation target, surgeons should implant the acetabular component 5° less inclined and 8° more anteverted than their target. Great variability (2 sd about ± 15°) in the post-operative radiographic cup orientation was seen. The two equally contributing causes for this are variability in the orientation at which the cup is implanted, and the change in pelvic position between impaction and post-operative radiograph.

Cite this article: Bone Joint J 2014;96-B:1290–7


The Bone & Joint Journal
Vol. 97-B, Issue 5 | Pages 611 - 616
1 May 2015
Shin WC Lee SM Lee KW Cho HJ Lee JS Suh KT

There is no single standardised method of measuring the orientation of the acetabular component on plain radiographs after total hip arthroplasty. We assessed the reliability and accuracy of three methods of assessing anteversion of the acetabular component for 551 THAs using the PolyWare software and the methods of Liaw et al, and of Woo and Morrey. All measurements of the three methods had excellent intra- and inter-observer reliability. The values of the PolyWare software, which determines version of the acetabular component by edge detection were regarded as the reference standard. Although the PolyWare software and the method of Liaw et al were similarly precise, the method of Woo and Morrey was significantly less accurate (p < 0.001). The method of Liaw et al seemed to be more accurate than that of Woo and Morrey when compared with the measurements using the PolyWare software. If the qualified lateral radiograph was selected, anteversion measured using the method of Woo and Morrey was considered to be relatively reliable.

Cite this article: Bone Joint J 2015; 97-B:611–16.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 6 | Pages 781 - 785
1 Jun 2005
Temmerman OPP Raijmakers PGHM Berkhof J Hoekstra OS Teule GJJ Heyligers IC

In this meta-analysis we included 32 English-language articles published between January 1975 and June 2004 on the diagnostic performance of plain radiography, subtraction arthrography, nuclear arthrography and bone scintigraphy in detecting aseptic loosening of the femoral component, using criteria based on the Cochrane systematic review of screening and diagnostic tests.

The mean sensitivity and specificity were, respectively, 82% (95% confidence interval (CI) 76 to 87) and 81% (95% CI 73 to 87) for plain radiography and 85% (95% CI 75 to 91) and 83% (95% CI 75 to 89) for nuclear arthrography. Pooled sensitivity and specificity were, respectively, 86% (95% CI 74 to 93) and 85% (95% CI 77 to 91) for subtraction arthrography and 85% (95% CI 79 to 89) and 72% (95% CI 64 to 79) for bone scintigraphy. Although the diagnostic performance of the imaging techniques was not significantly different, plain radiography and bone scintigraphy are preferred for the assessment of a femoral component because of their efficacy and lower risk of patient morbidity.


Bone & Joint Open
Vol. 5, Issue 8 | Pages 671 - 680
14 Aug 2024
Fontalis A Zhao B Putzeys P Mancino F Zhang S Vanspauwen T Glod F Plastow R Mazomenos E Haddad FS

Aims. Precise implant positioning, tailored to individual spinopelvic biomechanics and phenotype, is paramount for stability in total hip arthroplasty (THA). Despite a few studies on instability prediction, there is a notable gap in research utilizing artificial intelligence (AI). The objective of our pilot study was to evaluate the feasibility of developing an AI algorithm tailored to individual spinopelvic mechanics and patient phenotype for predicting impingement. Methods. This international, multicentre prospective cohort study across two centres encompassed 157 adults undergoing primary robotic arm-assisted THA. Impingement during specific flexion and extension stances was identified using the virtual range of motion (ROM) tool of the robotic software. The primary AI model, the Light Gradient-Boosting Machine (LGBM), used tabular data to predict impingement presence, direction (flexion or extension), and type. A secondary model integrating tabular data with plain anteroposterior pelvis radiographs was evaluated to assess for any potential enhancement in prediction accuracy. Results. We identified nine predictors from an analysis of baseline spinopelvic characteristics and surgical planning parameters. Using fivefold cross-validation, the LGBM achieved 70.2% impingement prediction accuracy. With impingement data, the LGBM estimated direction with 85% accuracy, while the support vector machine (SVM) determined impingement type with 72.9% accuracy. After integrating imaging data with a multilayer perceptron (tabular) and a convolutional neural network (radiograph), the LGBM’s prediction was 68.1%. Both combined and LGBM-only had similar impingement direction prediction rates (around 84.5%). Conclusion. This study is a pioneering effort in leveraging AI for impingement prediction in THA, utilizing a comprehensive, real-world clinical dataset. Our machine-learning algorithm demonstrated promising accuracy in predicting impingement, its type, and direction. While the addition of imaging data to our deep-learning algorithm did not boost accuracy, the potential for refined annotations, such as landmark markings, offers avenues for future enhancement. Prior to clinical integration, external validation and larger-scale testing of this algorithm are essential. Cite this article: Bone Jt Open 2024;5(8):671–680


The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 324 - 335
1 Apr 2024
Fontalis A Kayani B Plastow R Giebaly DE Tahmassebi J Haddad IC Chambers A Mancino F Konan S Haddad FS

Aims. Achieving accurate implant positioning and restoring native hip biomechanics are key surgeon-controlled technical objectives in total hip arthroplasty (THA). The primary objective of this study was to compare the reproducibility of the planned preoperative centre of hip rotation (COR) in patients undergoing robotic arm-assisted THA versus conventional THA. Methods. This prospective randomized controlled trial (RCT) included 60 patients with symptomatic hip osteoarthritis undergoing conventional THA (CO THA) versus robotic arm-assisted THA (RO THA). Patients in both arms underwent pre- and postoperative CT scans, and a patient-specific plan was created using the robotic software. The COR, combined offset, acetabular orientation, and leg length discrepancy were measured on the pre- and postoperative CT scanogram at six weeks following surgery. Results. There were no significant differences for any of the baseline characteristics including spinopelvic mobility. The absolute error for achieving the planned horizontal COR was median 1.4 mm (interquartile range (IQR) 0.87 to 3.42) in RO THA versus 4.3 mm (IQR 3 to 6.8; p < 0.001); vertical COR mean 0.91 mm (SD 0.73) in RO THA versus 2.3 mm (SD 1.3; p < 0.001); and combined offset median 2 mm (IQR 0.97 to 5.45) in RO THA versus 3.9 mm (IQR 2 to 7.9; p = 0.019). Improved accuracy was observed with RO THA in achieving the desired acetabular component positioning (root mean square error for anteversion and inclination was 2.6 and 1.3 vs 8.9 and 5.3, repectively) and leg length (mean 0.6 mm vs 1.4 mm; p < 0.001). Patient-reported outcome measures were comparable between the two groups at baseline and one year. Participants in the RO THA group needed fewer physiotherapy sessions postoperatively (median six (IQR 4.5 to 8) vs eight (IQR 6 to 11; p = 0.005). Conclusion. This RCT suggested that robotic-arm assistance in THA was associated with improved accuracy in restoring the native COR, better preservation of the combined offset, leg length correction, and superior accuracy in achieving the desired acetabular component positioning. Further evaluation through long-term and registry data is necessary to assess whether these findings translate into improved implant survival and functional outcomes. Cite this article: Bone Joint J 2024;106-B(4):324–335


Bone & Joint Research
Vol. 13, Issue 4 | Pages 193 - 200
23 Apr 2024
Reynolds A Doyle R Boughton O Cobb J Muirhead-Allwood S Jeffers J

Aims. Manual impaction, with a mallet and introducer, remains the standard method of installing cementless acetabular cups during total hip arthroplasty (THA). This study aims to quantify the accuracy and precision of manual impaction strikes during the seating of an acetabular component. This understanding aims to help improve impaction surgical techniques and inform the development of future technologies. Methods. Posterior approach THAs were carried out on three cadavers by an expert orthopaedic surgeon. An instrumented mallet and introducer were used to insert cementless acetabular cups. The motion of the mallet, relative to the introducer, was analyzed for a total of 110 strikes split into low-, medium-, and high-effort strikes. Three parameters were extracted from these data: strike vector, strike offset, and mallet face alignment. Results. The force vector of the mallet strike, relative to the introducer axis, was misaligned by an average of 18.1°, resulting in an average wasted strike energy of 6.1%. Furthermore, the mean strike offset was 19.8 mm from the centre of the introducer axis and the mallet face, relative to the introducer strike face, was misaligned by a mean angle of 15.2° from the introducer strike face. Conclusion. The direction of the impact vector in manual impaction lacks both accuracy and precision. There is an opportunity to improve this through more advanced impaction instruments or surgical training. Cite this article: Bone Joint Res 2024;13(4):193–200


The Bone & Joint Journal
Vol. 104-B, Issue 10 | Pages 1110 - 1117
12 Oct 2022
Wessling M Gebert C Hakenes T Dudda M Hardes J Frieler S Jeys LM Hanusrichter Y

Aims. The aim of this study was to examine the implant accuracy of custom-made partial pelvis replacements (PPRs) in revision total hip arthroplasty (rTHA). Custom-made implants offer an option to achieve a reconstruction in cases with severe acetabular bone loss. By analyzing implant deviation in CT and radiograph imaging and correlating early clinical complications, we aimed to optimize the usage of custom-made implants. Methods. A consecutive series of 45 (2014 to 2019) PPRs for Paprosky III defects at rTHA were analyzed comparing the preoperative planning CT scans used to manufacture the implants with postoperative CT scans and radiographs. The anteversion (AV), inclination (IC), deviation from the preoperatively planned implant position, and deviation of the centre of rotation (COR) were explored. Early postoperative complications were recorded, and factors for malpositioning were sought. The mean follow-up was 30 months (SD 19; 6 to 74), with four patients lost to follow-up. Results. Mean CT defined discrepancy (Δ) between planned and achieved AV and IC was 4.5° (SD 3°; 0° to 12°) and 4° (SD 3.5°; 1° to 12°), respectively. Malpositioning (Δ > 10°) occurred in five hips (10.6%). Native COR reconstruction was planned in 42 cases (93%), and the mean 3D deviation vector was 15.5 mm (SD 8.5; 4 to 35). There was no significant influence in malpositioning found for femoral stem retention, surgical approach, or fixation method. Conclusion. At short-term follow-up, we found that PPR offers a viable solution for rTHA in cases with massive acetabular bone loss, as highly accurate positioning can be accomplished with meticulous planning, achieving anatomical reconstruction. Accuracy of achieved placement contributed to reduced complications with no injury to vital structures by screw fixation. Cite this article: Bone Joint J 2022;104-B(10):1110–1117


Bone & Joint Research
Vol. 12, Issue 9 | Pages 590 - 597
20 Sep 2023
Uemura K Otake Y Takashima K Hamada H Imagama T Takao M Sakai T Sato Y Okada S Sugano N

Aims. This study aimed to develop and validate a fully automated system that quantifies proximal femoral bone mineral density (BMD) from CT images. Methods. The study analyzed 978 pairs of hip CT and dual-energy X-ray absorptiometry (DXA) measurements of the proximal femur (DXA-BMD) collected from three institutions. From the CT images, the femur and a calibration phantom were automatically segmented using previously trained deep-learning models. The Hounsfield units of each voxel were converted into density (mg/cm. 3. ). Then, a deep-learning model trained by manual landmark selection of 315 cases was developed to select the landmarks at the proximal femur to rotate the CT volume to the neutral position. Finally, the CT volume of the femur was projected onto the coronal plane, and the areal BMD of the proximal femur (CT-aBMD) was quantified. CT-aBMD correlated to DXA-BMD, and a receiver operating characteristic (ROC) analysis quantified the accuracy in diagnosing osteoporosis. Results. CT-aBMD was successfully measured in 976/978 hips (99.8%). A significant correlation was found between CT-aBMD and DXA-BMD (r = 0.941; p < 0.001). In the ROC analysis, the area under the curve to diagnose osteoporosis was 0.976. The diagnostic sensitivity and specificity were 88.9% and 96%, respectively, with the cutoff set at 0.625 g/cm. 2. . Conclusion. Accurate DXA-BMD measurements and diagnosis of osteoporosis were performed from CT images using the system developed herein. As the models are open-source, clinicians can use the proposed system to screen osteoporosis and determine the surgical strategy for hip surgery. Cite this article: Bone Joint Res 2023;12(9):590–597


The Bone & Joint Journal
Vol. 105-B, Issue 7 | Pages 735 - 742
1 Jul 2023
Andronic O Germann C Jud L Zingg PO

Aims. This study reports mid-term outcomes after periacetabular osteotomy (PAO) exclusively in a borderline hip dysplasia (BHD) population to provide a contrast to published outcomes for arthroscopic surgery of the hip in BHD. Methods. We identified 42 hips in 40 patients treated between January 2009 and January 2016 with BHD defined as a lateral centre-edge angle (LCEA) of ≥ 18° but < 25°. A minimum five-year follow-up was available. Patient-reported outcomes (PROMs) including Tegner score, subjective hip value (SHV), modified Harris Hip Score (mHHS), and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) were assessed. The following morphological parameters were evaluated: LCEA, acetabular index (AI), α angle, Tönnis staging, acetabular retroversion, femoral version, femoroepiphyseal acetabular roof index (FEAR), iliocapsularis to rectus femoris ratio (IC/RF), and labral and ligamentum teres (LT) pathology. Results. The mean follow-up was 96 months (67 to 139). The SHV, mHHS, WOMAC, and Tegner scores significantly improved (p < 0.001) at last follow-up. According to SHV and mHHS, there were three hips (7%) with poor results (SHV < 70), three (7%) with a fair score (70 to 79), eight (19%) with good results (80 to 89), and 28 (67%) who scored excellent (> 90) at the last follow-up. There were 11 subsequent operations: nine implant removals due to local irritation, one resection of postoperative heterotopic ossification, and one hip arthroscopy for intra-articular adhesions. No hips were converted to total hip arthroplasty at last follow-up. The presence of preoperative labral lesions or LT lesions did not influence any PROMs at last follow-up. From the three hips that had poor PROMs, two have developed severe osteoarthritis (> Tönnis II), presumably due to surgical overcorrection (postoperative AI < -10°). Conclusion. PAO is reliable in treating BHD with favourable mid-term outcomes. Concomitant LT and labral lesions did not negatively influence outcomes in our cohort. Technical accuracy with avoidance of overcorrection is essential in achieving successful outcomes. Cite this article: Bone Joint J 2023;105-B(7):735–742


The Bone & Joint Journal
Vol. 104-B, Issue 11 | Pages 1196 - 1201
1 Nov 2022
Anderson CG Brilliant ZR Jang SJ Sokrab R Mayman DJ Vigdorchik JM Sculco PK Jerabek SA

Aims. Although CT is considered the benchmark to measure femoral version, 3D biplanar radiography (hipEOS) has recently emerged as a possible alternative with reduced exposure to ionizing radiation and shorter examination time. The aim of our study was to evaluate femoral stem version in postoperative total hip arthroplasty (THA) patients and compare the accuracy of hipEOS to CT. We hypothesize that there will be no significant difference in calculated femoral stem version measurements between the two imaging methods. Methods. In this study, 45 patients who underwent THA between February 2016 and February 2020 and had both a postoperative CT and EOS scan were included for evaluation. A fellowship-trained musculoskeletal radiologist and radiological technician measured femoral version for CT and 3D EOS, respectively. Comparison of values for each imaging modality were assessed for statistical significance. Results. Comparison of the mean postoperative femoral stem version measurements between CT and 3D hipEOS showed no significant difference (p = 0.862). In addition, the two version measurements were strongly correlated (r = 0.95; p < 0.001), and the mean paired difference in postoperative femoral version for CT scan and 3D biplanar radiography was -0.09° (95% confidence interval -1.09 to 0.91). Only three stem measurements (6.7%) were considered outliers with a > 5° difference. Conclusion. Our study supports the use of low-dose biplanar radiography for the postoperative assessment of femoral stem version after THA, demonstrating high correlation with CT. We found no significant difference for postoperative femoral version when comparing CT to 3D EOS. We believe 3D EOS is a reliable option to measure postoperative femoral version given its advantages of lower radiation dosage and shorter examination time. Cite this article: Bone Joint J 2022;104-B(11):1196–1201


Bone & Joint Open
Vol. 4, Issue 1 | Pages 3 - 12
4 Jan 2023
Hardwick-Morris M Twiggs J Miles B Al-Dirini RMA Taylor M Balakumar J Walter WL

Aims. Iliopsoas impingement occurs in 4% to 30% of patients after undergoing total hip arthroplasty (THA). Despite a relatively high incidence, there are few attempts at modelling impingement between the iliopsoas and acetabular component, and no attempts at modelling this in a representative cohort of subjects. The purpose of this study was to develop a novel computational model for quantifying the impingement between the iliopsoas and acetabular component and validate its utility in a case-controlled investigation. Methods. This was a retrospective cohort study of patients who underwent THA surgery that included 23 symptomatic patients diagnosed with iliopsoas tendonitis, and 23 patients not diagnosed with iliopsoas tendonitis. All patients received postoperative CT imaging, postoperative standing radiography, and had minimum six months’ follow-up. 3D models of each patient’s prosthetic and bony anatomy were generated, landmarked, and simulated in a novel iliopsoas impingement detection model in supine and standing pelvic positions. Logistic regression models were implemented to determine if the probability of pain could be significantly predicted. Receiver operating characteristic curves were generated to determine the model’s sensitivity, specificity, and area under the curve (AUC). Results. Highly significant differences between the symptomatic and asymptomatic cohorts were observed for iliopsoas impingement. Logistic regression models determined that the impingement values significantly predicted the probability of groin pain. The simulation had a sensitivity of 74%, specificity of 100%, and an AUC of 0.86. Conclusion. We developed a computational model that can quantify iliopsoas impingement and verified its accuracy in a case-controlled investigation. This tool has the potential to be used preoperatively, to guide decisions about optimal cup placement, and postoperatively, to assist in the diagnosis of iliopsoas tendonitis. Cite this article: Bone Jt Open 2023;4(1):3–12


The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 336 - 343
1 Apr 2024
Haertlé M Becker N Windhagen H Ahmad SS

Aims. Periacetabular osteotomy (PAO) is widely recognized as a demanding surgical procedure for acetabular reorientation. Reports about the learning curve have primarily focused on complication rates during the initial learning phase. Therefore, our aim was to assess the PAO learning curve from an analytical perspective by determining the number of PAOs required for the duration of surgery to plateau and the accuracy to improve. Methods. The study included 118 consecutive PAOs in 106 patients. Of these, 28 were male (23.7%) and 90 were female (76.3%). The primary endpoint was surgical time. Secondary outcome measures included radiological parameters. Cumulative summation analysis was used to determine changes in surgical duration. A multivariate linear regression model was used to identify independent factors influencing surgical time. Results. The learning curve in this series was 26 PAOs in a period of six months. After 26 PAO procedures, a significant drop in surgical time was observed and a plateau was also achieved. The mean duration of surgery during the learning curve was 103.8 minutes (SD 33.2), and 69.7 minutes (SD 18.6) thereafter (p < 0.001). Radiological correction of acetabular retroversion showed a significant improvement after having performed a total of 93 PAOs, including anteverting PAOs on 35 hips with a retroverted acetabular morphology (p = 0.005). Several factors were identified as independent variables influencing duration of surgery, including patient weight (β = 0.5 (95% confidence interval (CI) 0.2 to 0.7); p < 0.001), learning curve procedure phase of 26 procedures (β = 34.0 (95% CI 24.3 to 43.8); p < 0.001), and the degree of lateral correction expressed as the change in the lateral centre-edge angle (β = 0.7 (95% CI 0.001 to 1.3); p = 0.048). Conclusion. The learning curve for PAO surgery requires extensive surgical training at a high-volume centre, with a minimum of 50 PAOs per surgeon per year. This study defined a cut-off value of 26 PAO procedures, after which a significant drop in surgical duration occurred. Furthermore, it was observed that a retroverted morphology of the acetabulum required a greater number of procedures to acquire proficiency in consistently eliminating the crossover sign. These findings are relevant for fellows and fellowship programme directors in establishing the extent of training required to impart competence in PAO. Cite this article: Bone Joint J 2024;106-B(4):336–343


The Bone & Joint Journal
Vol. 102-B, Issue 7 Supple B | Pages 99 - 104
1 Jul 2020
Shah RF Bini S Vail T

Aims. Natural Language Processing (NLP) offers an automated method to extract data from unstructured free text fields for arthroplasty registry participation. Our objective was to investigate how accurately NLP can be used to extract structured clinical data from unstructured clinical notes when compared with manual data extraction. Methods. A group of 1,000 randomly selected clinical and hospital notes from eight different surgeons were collected for patients undergoing primary arthroplasty between 2012 and 2018. In all, 19 preoperative, 17 operative, and two postoperative variables of interest were manually extracted from these notes. A NLP algorithm was created to automatically extract these variables from a training sample of these notes, and the algorithm was tested on a random test sample of notes. Performance of the NLP algorithm was measured in Statistical Analysis System (SAS) by calculating the accuracy of the variables collected, the ability of the algorithm to collect the correct information when it was indeed in the note (sensitivity), and the ability of the algorithm to not collect a certain data element when it was not in the note (specificity). Results. The NLP algorithm performed well at extracting variables from unstructured data in our random test dataset (accuracy = 96.3%, sensitivity = 95.2%, and specificity = 97.4%). It performed better at extracting data that were in a structured, templated format such as range of movement (ROM) (accuracy = 98%) and implant brand (accuracy = 98%) than data that were entered with variation depending on the author of the note such as the presence of deep-vein thrombosis (DVT) (accuracy = 90%). Conclusion. The NLP algorithm used in this study was able to identify a subset of variables from randomly selected unstructured notes in arthroplasty with an accuracy above 90%. For some variables, such as objective exam data, the accuracy was very high. Our findings suggest that automated algorithms using NLP can help orthopaedic practices retrospectively collect information for registries and quality improvement (QI) efforts. Cite this article: Bone Joint J 2020;102-B(7 Supple B):99–104


Bone & Joint Research
Vol. 10, Issue 10 | Pages 629 - 638
20 Oct 2021
Hayashi S Hashimoto S Kuroda Y Nakano N Matsumoto T Ishida K Shibanuma N Kuroda R

Aims. This study aimed to evaluate the accuracy of implant placement with robotic-arm assisted total hip arthroplasty (THA) in patients with developmental dysplasia of the hip (DDH). Methods. The study analyzed a consecutive series of 69 patients who underwent robotic-arm assisted THA between September 2018 and December 2019. Of these, 30 patients had DDH and were classified according to the Crowe type. Acetabular component alignment and 3D positions were measured using pre- and postoperative CT data. The absolute differences of cup alignment and 3D position were compared between DDH and non-DDH patients. Moreover, these differences were analyzed in relation to the severity of DDH. The discrepancy of leg length and combined offset compared with contralateral hip were measured. Results. The mean values of absolute differences (postoperative CT-preoperative plan) were 1.7° (standard deviation (SD) 2.0) (inclination) and 2.5° (SD 2.1°) (anteversion) in DDH patients, and no significant differences were found between non-DDH and DDH patients. The mean absolute differences for 3D cup position were 1.1 mm (SD 1.0) (coronal plane) and 1.2 mm (SD 2.1) (axial plane) in DDH patients, and no significant differences were found between two groups. No significant difference was found either in cup alignment between postoperative CT and navigation record after cup screws or in the severity of DDH. Excellent restoration of leg length and combined offset were achieved in both groups. Conclusion. We demonstrated that robotic-assisted THA may achieve precise cup positioning in DDH patients, and may be useful in those with severe DDH. Cite this article: Bone Joint Res 2021;10(10):629–638


The Bone & Joint Journal
Vol. 101-B, Issue 1_Supple_A | Pages 11 - 18
1 Jan 2019
Kayani B Konan S Thakrar RR Huq SS Haddad FS

Objectives. The primary objective of this study was to compare accuracy in restoring the native centre of hip rotation in patients undergoing conventional manual total hip arthroplasty (THA) versus robotic-arm assisted THA. Secondary objectives were to determine differences between these treatment techniques for THA in achieving the planned combined offset, component inclination, component version, and leg-length correction. Materials and Methods. This prospective cohort study included 50 patients undergoing conventional manual THA and 25 patients receiving robotic-arm assisted THA. Patients undergoing conventional manual THA and robotic-arm assisted THA were well matched for age (mean age, 69.4 years (. sd. 5.2) vs 67.5 years (. sd. 5.8) (p = 0.25); body mass index (27.4 kg/m. 2. (. sd. 2.1) vs 26.9 kg/m. 2. (. sd. 2.2); p = 0.39); and laterality of surgery (right = 28, left = 22 vs right = 12, left = 13; p = 0.78). All operative procedures were undertaken by a single surgeon using the posterior approach. Two independent blinded observers recorded all radiological outcomes of interest using plain radiographs. Results. The correlation coefficient was 0.92 (95% confidence interval (CI) 0.88 to 0.95) for intraobserver agreement and 0.88 (95% CI 0.82 to 0.94) for interobserver agreement in all study outcomes. Robotic THA was associated with improved accuracy in restoring the native horizontal (p < 0.001) and vertical (p < 0.001) centres of rotation, and improved preservation of the patient’s native combined offset (p < 0.001) compared with conventional THA. Robotic THA improved accuracy in positioning of the acetabular component within the combined safe zones of inclination and anteversion described by Lewinnek et al (p = 0.02) and Callanan et al (p = 0.01) compared with conventional THA. There was no difference between the two treatment groups in achieving the planned leg-length correction (p = 0.10). Conclusion. Robotic-arm assisted THA was associated with improved accuracy in restoring the native centre of rotation, better preservation of the combined offset, and more precise acetabular component positioning within the safe zones of inclination and anteversion compared with conventional manual THA


Bone & Joint Open
Vol. 2, Issue 6 | Pages 365 - 370
1 Jun 2021
Kolodychuk N Su E Alexiades MM Ren R Ojard C Waddell BS

Aims. Traditionally, acetabular component insertion during total hip arthroplasty (THA) is visually assisted in the posterior approach and fluoroscopically assisted in the anterior approach. The present study examined the accuracy of a new surgeon during anterior (NSA) and posterior (NSP) THA using robotic arm-assisted technology compared to two experienced surgeons using traditional methods. Methods. Prospectively collected data was reviewed for 120 patients at two institutions. Data were collected on the first 30 anterior approach and the first 30 posterior approach surgeries performed by a newly graduated arthroplasty surgeon (all using robotic arm-assisted technology) and was compared to standard THA by an experienced anterior (SSA) and posterior surgeon (SSP). Acetabular component inclination, version, and leg length were calculated postoperatively and differences calculated based on postoperative film measurement. Results. Demographic data were similar between groups with the exception of BMI being lower in the NSA group (27.98 vs 25.2; p = 0.005). Operating time and total time in operating room (TTOR) was lower in the SSA (p < 0.001) and TTOR was higher in the NSP group (p = 0.014). Planned versus postoperative leg length discrepancy were similar among both anterior and posterior surgeries (p > 0.104). Planned versus postoperative abduction and anteversion were similar among the NSA and SSA (p > 0.425), whereas planned versus postoperative abduction and anteversion were lower in the NSP (p < 0.001). Outliers > 10 mm from planned leg length were present in one case of the SSP and NSP, with none in the anterior groups. There were no outliers > 10° in anterior or posterior for abduction in all surgeons. The SSP had six outliers > 10° in anteversion while the NSP had none (p = 0.004); the SSA had no outliers for anteversion while the NSA had one (p = 0.500). Conclusion. Robotic arm-assisted technology allowed a newly trained surgeon to produce similarly accurate results and outcomes as experienced surgeons in anterior and posterior hip arthroplasty. Cite this article: Bone Jt Open 2021;2(6):365–370


Bone & Joint Research
Vol. 10, Issue 1 | Pages 22 - 30
1 Jan 2021
Clement ND Gaston P Bell A Simpson P Macpherson G Hamilton DF Patton JT

Aims. The primary aim of this study was to compare the hip-specific functional outcome of robotic assisted total hip arthroplasty (rTHA) with manual total hip arthroplasty (mTHA) in patients with osteoarthritis (OA). Secondary aims were to compare general health improvement, patient satisfaction, and radiological component position and restoration of leg length between rTHA and mTHA. Methods. A total of 40 patients undergoing rTHA were propensity score matched to 80 patients undergoing mTHA for OA. Patients were matched for age, sex, and preoperative function. The Oxford Hip Score (OHS), Forgotten Joint Score (FJS), and EuroQol five-dimension questionnaire (EQ-5D) were collected pre- and postoperatively (mean 10 months (SD 2.2) in rTHA group and 12 months (SD 0.3) in mTHA group). In addition, patient satisfaction was collected postoperatively. Component accuracy was assessed using Lewinnek and Callanan safe zones, and restoration of leg length were assessed radiologically. Results. There were no significant differences in the preoperative demographics (p ≥ 0.781) or function (p ≥ 0.383) between the groups. The postoperative OHS (difference 2.5, 95% confidence interval (CI) 0.1 to 4.8; p = 0.038) and FJS (difference 21.1, 95% CI 10.7 to 31.5; p < 0.001) were significantly greater in the rTHA group when compared with the mTHA group. However, only the FJS was clinically significantly greater. There was no difference in the postoperative EQ-5D (difference 0.017, 95% CI -0.042 to 0.077; p = 0.562) between the two groups. No patients were dissatisfied in the rTHA group whereas six were dissatisfied in the mTHA group, but this was not significant (p = 0.176). rTHA was associated with an overall greater rate of component positioning in a safe zone (p ≤ 0.003) and restoration of leg length (p < 0.001). Conclusion. Patients undergoing rTHA had a greater hip-specific functional outcome when compared to mTHA, which may be related to improved component positioning and restoration of leg length. However, there was no difference in their postoperative generic health or rate of satisfaction. Cite this article: Bone Joint Res 2021;10(1):22–30


The Bone & Joint Journal
Vol. 102-B, Issue 7 Supple B | Pages 11 - 19
1 Jul 2020
Shohat N Goswami K Tan TL Yayac M Soriano A Sousa R Wouthuyzen-Bakker M Parvizi J

Aims. Failure of irrigation and debridement (I&D) for prosthetic joint infection (PJI) is influenced by numerous host, surgical, and pathogen-related factors. We aimed to develop and validate a practical, easy-to-use tool based on machine learning that may accurately predict outcome following I&D surgery taking into account the influence of numerous factors. Methods. This was an international, multicentre retrospective study of 1,174 revision total hip (THA) and knee arthroplasties (TKA) undergoing I&D for PJI between January 2005 and December 2017. PJI was defined using the Musculoskeletal Infection Society (MSIS) criteria. A total of 52 variables including demographics, comorbidities, and clinical and laboratory findings were evaluated using random forest machine learning analysis. The algorithm was then verified through cross-validation. Results. Of the 1,174 patients that were included in the study, 405 patients (34.5%) failed treatment. Using random forest analysis, an algorithm that provides the probability for failure for each specific patient was created. By order of importance, the ten most important variables associated with failure of I&D were serum CRP levels, positive blood cultures, indication for index arthroplasty other than osteoarthritis, not exchanging the modular components, use of immunosuppressive medication, late acute (haematogenous) infections, methicillin-resistant Staphylococcus aureus infection, overlying skin infection, polymicrobial infection, and older age. The algorithm had good discriminatory capability (area under the curve = 0.74). Cross-validation showed similar probabilities comparing predicted and observed failures indicating high accuracy of the model. Conclusion. This is the first study in the orthopaedic literature to use machine learning as a tool for predicting outcomes following I&D surgery. The developed algorithm provides the medical profession with a tool that can be employed in clinical decision-making and improve patient care. Future studies should aid in further validating this tool on additional cohorts. Cite this article: Bone Joint J 2020;102-B(7 Supple B):11–19


Bone & Joint Open
Vol. 3, Issue 12 | Pages 960 - 968
23 Dec 2022
Hardwick-Morris M Wigmore E Twiggs J Miles B Jones CW Yates PJ

Aims

Leg length discrepancy (LLD) is a common pre- and postoperative issue in total hip arthroplasty (THA) patients. The conventional technique for measuring LLD has historically been on a non-weightbearing anteroposterior pelvic radiograph; however, this does not capture many potential sources of LLD. The aim of this study was to determine if long-limb EOS radiology can provide a more reproducible and holistic measurement of LLD.

Methods

In all, 93 patients who underwent a THA received a standardized preoperative EOS scan, anteroposterior (AP) radiograph, and clinical LLD assessment. Overall, 13 measurements were taken along both anatomical and functional axes and measured twice by an orthopaedic fellow and surgical planning engineer to calculate intraoperator reproducibility and correlations between measurements.


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 898 - 906
1 Sep 2024
Kayani B Wazir MUK Mancino F Plastow R Haddad FS

Aims

The primary objective of this study was to develop a validated classification system for assessing iatrogenic bone trauma and soft-tissue injury during total hip arthroplasty (THA). The secondary objective was to compare macroscopic bone trauma and soft-tissues injury in conventional THA (CO THA) versus robotic arm-assisted THA (RO THA) using this classification system.

Methods

This study included 30 CO THAs versus 30 RO THAs performed by a single surgeon. Intraoperative photographs of the osseous acetabulum and periacetabular soft-tissues were obtained prior to implantation of the acetabular component, which were used to develop the proposed classification system. Interobserver and intraobserver variabilities of the proposed classification system were assessed.


Bone & Joint Open
Vol. 5, Issue 3 | Pages 154 - 161
1 Mar 2024
Homma Y Zhuang X Watari T Hayashi K Baba T Kamath A Ishijima M

Aims

It is important to analyze objectively the hammering sound in cup press-fit technique in total hip arthroplasty (THA) in order to better understand the change of the sound during impaction. We hypothesized that a specific characteristic would present in a hammering sound with successful fixation. We designed the study to quantitatively investigate the acoustic characteristics during cementless cup impaction in THA.

Methods

In 52 THAs performed between November 2018 and April 2022, the acoustic parameters of the hammering sound of 224 impacts of successful press-fit fixation, and 55 impacts of unsuccessful press-fit fixation, were analyzed. The successful fixation was defined if the following two criteria were met: 1) intraoperatively, the stability of the cup was retained after manual application of the torque test; and 2) at one month postoperatively, the cup showed no translation on radiograph. Each hammering sound was converted to sound pressures in 24 frequency bands by fast Fourier transform analysis. Basic patient characteristics were assessed as potential contributors to the hammering sound.


Bone & Joint Open
Vol. 4, Issue 3 | Pages 154 - 161
28 Mar 2023
Homma Y Zhuang X Watari T Hayashi K Baba T Kamath A Ishijima M

Aims

It is important to analyze objectively the hammering sound in cup press-fit technique in total hip arthroplasty (THA) in order to better understand the change of the sound during impaction. We hypothesized that a specific characteristic would present in a hammering sound with successful fixation. We designed the study to quantitatively investigate the acoustic characteristics during cementless cup impaction in THA.

Methods

In 52 THAs performed between November 2018 and April 2022, the acoustic parameters of the hammering sound of 224 impacts of successful press-fit fixation, and 55 impacts of unsuccessful press-fit fixation, were analyzed. The successful fixation was defined if the following two criteria were met: 1) intraoperatively, the stability of the cup was retained after manual application of the torque test; and 2) at one month postoperatively, the cup showed no translation on radiograph. Each hammering sound was converted to sound pressures in 24 frequency bands by fast Fourier transform analysis. Basic patient characteristics were assessed as potential contributors to the hammering sound.


Bone & Joint Open
Vol. 5, Issue 10 | Pages 858 - 867
11 Oct 2024
Yamate S Hamai S Konishi T Nakao Y Kawahara S Hara D Motomura G Nakashima Y

Aims

The aim of this study was to evaluate the suitability of the tapered cone stem in total hip arthroplasty (THA) in patients with excessive femoral anteversion and after femoral osteotomy.

Methods

We included patients who underwent THA using Wagner Cone due to proximal femur anatomical abnormalities between August 2014 and January 2019 at a single institution. We investigated implant survival time using the endpoint of dislocation and revision, and compared the prevalence of prosthetic impingements between the Wagner Cone, a tapered cone stem, and the Taperloc, a tapered wedge stem, through simulation. We also collected Oxford Hip Score (OHS), visual analogue scale (VAS) satisfaction, and VAS pain by postal survey in August 2023 and explored variables associated with those scores.


The Bone & Joint Journal
Vol. 106-B, Issue 1 | Pages 19 - 27
1 Jan 2024
Tang H Guo S Ma Z Wang S Zhou Y

Aims

The aim of this study was to evaluate the reliability and validity of a patient-specific algorithm which we developed for predicting changes in sagittal pelvic tilt after total hip arthroplasty (THA).

Methods

This retrospective study included 143 patients who underwent 171 THAs between April 2019 and October 2020 and had full-body lateral radiographs preoperatively and at one year postoperatively. We measured the pelvic incidence (PI), the sagittal vertical axis (SVA), pelvic tilt, sacral slope (SS), lumbar lordosis (LL), and thoracic kyphosis to classify patients into types A, B1, B2, B3, and C. The change of pelvic tilt was predicted according to the normal range of SVA (0 mm to 50 mm) for types A, B1, B2, and B3, and based on the absolute value of one-third of the PI-LL mismatch for type C patients. The reliability of the classification of the patients and the prediction of the change of pelvic tilt were assessed using kappa values and intraclass correlation coefficients (ICCs), respectively. Validity was assessed using the overall mean error and mean absolute error (MAE) for the prediction of the change of pelvic tilt.


Bone & Joint Research
Vol. 12, Issue 1 | Pages 22 - 32
11 Jan 2023
Boschung A Faulhaber S Kiapour A Kim Y Novais EN Steppacher SD Tannast M Lerch TD

Aims

Femoroacetabular impingement (FAI) patients report exacerbation of hip pain in deep flexion. However, the exact impingement location in deep flexion is unknown. The aim was to investigate impingement-free maximal flexion, impingement location, and if cam deformity causes hip impingement in flexion in FAI patients.

Methods

A retrospective study involving 24 patients (37 hips) with FAI and femoral retroversion (femoral version (FV) < 5° per Murphy method) was performed. All patients were symptomatic (mean age 28 years (SD 9)) and had anterior hip/groin pain and a positive anterior impingement test. Cam- and pincer-type subgroups were analyzed. Patients were compared to an asymptomatic control group (26 hips). All patients underwent pelvic CT scans to generate personalized CT-based 3D models and validated software for patient-specific impingement simulation (equidistant method).


Bone & Joint Research
Vol. 13, Issue 6 | Pages 294 - 305
17 Jun 2024
Yang P He W Yang W Jiang L Lin T Sun W Zhang Q Bai X Sun W Guo D

Aims

In this study, we aimed to visualize the spatial distribution characteristics of femoral head necrosis using a novel measurement method.

Methods

We retrospectively collected CT imaging data of 108 hips with non-traumatic osteonecrosis of the femoral head from 76 consecutive patients (mean age 34.3 years (SD 8.1), 56.58% male (n = 43)) in two clinical centres. The femoral head was divided into 288 standard units (based on the orientation of units within the femoral head, designated as N[Superior], S[Inferior], E[Anterior], and W[Posterior]) using a new measurement system called the longitude and latitude division system (LLDS). A computer-aided design (CAD) measurement tool was also developed to visualize the measurement of the spatial location of necrotic lesions in CT images. Two orthopaedic surgeons independently performed measurements, and the results were used to draw 2D and 3D heat maps of spatial distribution of necrotic lesions in the femoral head, and for statistical analysis.


Bone & Joint Open
Vol. 5, Issue 10 | Pages 825 - 831
3 Oct 2024
Afghanyar Y Afghanyar B Loweg L Drees P Gercek E Dargel J Rehbein P Kutzner KP

Aims

Limited implant survival due to aseptic cup loosening is most commonly responsible for revision total hip arthroplasty (THA). Advances in implant designs and materials have been crucial in addressing those challenges. Vitamin E-infused highly cross-linked polyethylene (VEPE) promises strong wear resistance, high oxidative stability, and superior mechanical strength. Although VEPE monoblock cups have shown good mid-term performance and excellent wear patterns, long-term results remain unclear. This study evaluated migration and wear patterns and clinical and radiological outcomes at a minimum of ten years’ follow-up.

Methods

This prospective observational study investigated 101 cases of primary THA over a mean duration of 129 months (120 to 149). At last follow-up, 57 cases with complete clinical and radiological outcomes were evaluated. In all cases, the acetabular component comprised an uncemented titanium particle-coated VEPE monoblock cup. Patients were assessed clinically and radiologically using the Harris Hip Score, visual analogue scale (pain and satisfaction), and an anteroposterior radiograph. Cup migration and polyethylene wear were measured using Einzel-Bild-Röntgen-Analyze software. All complications and associated treatments were documented until final follow-up.


Bone & Joint Open
Vol. 5, Issue 8 | Pages 688 - 696
22 Aug 2024
Hanusrichter Y Gebert C Steinbeck M Dudda M Hardes J Frieler S Jeys LM Wessling M

Aims

Custom-made partial pelvis replacements (PPRs) are increasingly used in the reconstruction of large acetabular defects and have mainly been designed using a triflange approach, requiring extensive soft-tissue dissection. The monoflange design, where primary intramedullary fixation within the ilium combined with a monoflange for rotational stability, was anticipated to overcome this obstacle. The aim of this study was to evaluate the design with regard to functional outcome, complications, and acetabular reconstruction.

Methods

Between 2014 and 2023, 79 patients with a mean follow-up of 33 months (SD 22; 9 to 103) were included. Functional outcome was measured using the Harris Hip Score and EuroQol five-dimension questionnaire (EQ-5D). PPR revisions were defined as an endpoint, and subgroups were analyzed to determine risk factors.


The Bone & Joint Journal
Vol. 105-B, Issue 7 | Pages 760 - 767
1 Jul 2023
Tanaka S Fujii M Kawano S Ueno M Sonohata M Kitajima M Mawatari D Mawatari M

Aims

The aims of this study were to validate the Forgotten Joint Score-12 (FJS-12) in the postoperative evaluation of periacetabular osteotomy (PAO), identify factors associated with joint awareness after PAO, and determine the FJS-12 threshold for patient-acceptable symptom state (PASS).

Methods

Data from 686 patients (882 hips) with hip dysplasia who underwent transposition osteotomy of the acetabulum, a type of PAO, between 1998 and 2019 were reviewed. After screening the study included 442 patients (582 hips; response rate, 78%). Patients who completed a study questionnaire consisting of the visual analogue scale (VAS) for pain and satisfaction, FJS-12, and Hip disability and Osteoarthritis Outcome Score (HOOS) were included. The ceiling effects, internal consistency, convergent validity, and PASS thresholds of FJS-12 were investigated.


The Bone & Joint Journal
Vol. 101-B, Issue 11 | Pages 1431 - 1437
1 Nov 2019
Harrison-Brown M Scholes C Ebrahimi M Field C Cordingley R Kerr D Farah S Kohan L

Aims. It is not known whether change in patient-reported outcome measures (PROMs) over time can be predicted by factors present at surgery, or early follow-up. The aim of this study was to identify factors associated with changes in PROM status between two-year evaluation and medium-term follow-up. Patients and Methods. Patients undergoing Birmingham Hip Resurfacing completed the Veteran’s Rand 36 (VR-36), modified Harris Hip Score (mHHS), Tegner Activity Score, and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) at two years and a minimum of three years. A change in score was assessed against minimal clinically important difference (MCID) and patient-acceptable symptom state (PASS) thresholds. Binary logistic regression was used to assess the relationship between patient factors and deterioration in PASS status between follow-ups. Results. Overall, 18% of patients reported reductions in mHHS total score exceeding MCID, and 21% reported similar reductions for WOMAC function scores. Nonetheless, almost all patients remained above PASS thresholds for WOMAC function (98%) and mHHS (93%). Overall, 66% of patients with mHHS scores < PASS at two years reported scores > PASS at latest follow-up. Conversely, 6% of patients deteriorated from > PASS to < PASS between follow-ups. Multivariable modelling indicated body mass index (BMI) > 27 kg/m. 2. , VR-36 Physical Component Score (PCS) < 51, VR-36 Mental Component Score (MCS) > 55, mHHS < 84 at two years, female sex, and bone graft use predicted these deteriorating patients with 79% accuracy and an area under the curve (AUC) of 0.84. Conclusion. Due to largely acceptable results at a later follow-up, extensive monitoring of multiple PROMs is not recommended for Birmingham Hip Resurfacing patients unless they report borderline or unacceptable hip function at two years, are female, are overweight, or received a bone graft during surgery. Cite this article: Bone Joint J 2019;101-B:1431–1437


The Bone & Joint Journal
Vol. 106-B, Issue 6 | Pages 555 - 564
1 Jun 2024
Leal J Holland CT Cochrane NH Seyler TM Jiranek WA Wellman SS Bolognesi MP Ryan SP

Aims

This study aims to assess the relationship between history of pseudotumour formation secondary to metal-on-metal (MoM) implants and periprosthetic joint infection (PJI) rate, as well as establish ESR and CRP thresholds that are suggestive of infection in these patients. We hypothesized that patients with a pseudotumour were at increased risk of infection.

Methods

A total of 1,171 total hip arthroplasty (THA) patients with MoM articulations from August 2000 to March 2014 were retrospectively identified. Of those, 328 patients underwent metal artefact reduction sequence MRI and had minimum two years’ clinical follow-up, and met our inclusion criteria. Data collected included demographic details, surgical indication, laterality, implants used, history of pseudotumour, and their corresponding preoperative ESR (mm/hr) and CRP (mg/dl) levels. Multivariate logistic regression modelling was used to evaluate PJI and history of pseudotumour, and receiver operating characteristic curves were created to assess the diagnostic capabilities of ESR and CRP to determine the presence of infection in patients undergoing revision surgery.


The Bone & Joint Journal
Vol. 101-B, Issue 8 | Pages 910 - 914
1 Aug 2019
Kiran M Donnelly TD Armstrong C Kapoor B Kumar G Peter V

Aims. Prosthetic joint infection (PJI) and aseptic loosening in total hip arthroplasty (THA) can present with pain and osteolysis. The Musculoskeletal Infection Society (MSIS) has provided criteria for the diagnosis of PJI. The aim of our study was to analyze the utility of F18-fluorodeoxyglucose (FDG) positron emission tomography (PET) CT scan in the preoperative diagnosis of septic loosening in THA, based on the current MSIS definition of prosthetic joint infection. Patients and Methods. A total of 130 painful unilateral cemented THAs with a mean follow-up of 5.17 years (. sd. 1.12) were included in this prospective study. The mean patient age was 67.5 years (. sd. 4.85). Preoperative evaluation with inflammatory markers, aspiration, and an F18 FDG PET scan were performed. Diagnostic utility tests were also performed, based on the MSIS criteria for PJI and three samples positive on culture alone. Results. The mean erythrocyte sedimentation rate, C-reactive protein, and white cell count were 47.83 mm/hr, 25.21 mg/l, and 11.05 × 10. 9. /l, respectively. The sensitivity, specificity, accuracy, negative predictive value, and false-positive rate of FDG PET compared with MSIS criteria were 94.87%, 38.46 %, 56.38%, 94.59 %, and 60.21%, respectively. The false-positive rate of FDG PET compared with culture alone was 77.4%. Conclusion. FDG PET has a definitive role in the preoperative evaluation of suspected PJI. This the first study to evaluate its utility based on MSIS criteria and compare it with microbiology results alone. However, FDG PET has a high false-positive rate. Therefore, we suggest that F18 FDG PET is useful in confirming the absence of infection, but if positive, may not be confirmatory of PJI. Cite this article: Bone Joint J 2019;101-B:910–914


The Bone & Joint Journal
Vol. 101-B, Issue 9 | Pages 1042 - 1049
1 Sep 2019
Murphy MP Killen CJ Ralles SJ Brown NM Hopkinson WJ Wu K

Aims. Several radiological methods of measuring anteversion of the acetabular component after total hip arthroplasty (THA) have been described. These are limited by low reproducibility, are less accurate than CT 3D reconstruction, and are cumbersome to use. These methods also partly rely on the identification of obscured radiological borders of the component. We propose two novel methods, the Area and Orthogonal methods, which have been designed to maximize use of readily identifiable points while maintaining the same trigonometric principles. Patients and Methods. A retrospective study of plain radiographs was conducted on 160 hips of 141 patients who had undergone primary THA. We compared the reliability and accuracy of the Area and Orthogonal methods with two of the current leading methods: those of Widmer and Lewinnek, respectively. Results. The 160 anteroposterior pelvis films revealed that the proposed Area method was statistically different from those described by Widmer and Lewinnek (p < 0.001 and p = 0.004, respectively). They gave the highest inter- and intraobserver reliability (0.992 and 0.998, respectively), and took less time (27.50 seconds (. sd. 3.19); p < 0.001) to complete. In addition, 21 available CT 3D reconstructions revealed the Area method achieved the highest Pearson’s correlation coefficient (r = 0.956; p < 0.001) and least statistical difference (p = 0.704) from CT with a mean within 1° of CT-3D reconstruction between ranges of 1° to 30° of measured radiological anteversion. Conclusion. Our results support the proposed Area method to be the most reliable, accurate, and speedy. They did not support any statistical superiority of the proposed Orthogonal method to that of the Widmer or Lewinnek method. Cite this article: Bone Joint J 2019;101-B:1042–1049


Bone & Joint Open
Vol. 4, Issue 6 | Pages 416 - 423
2 Jun 2023
Tung WS Donnelley C Eslam Pour A Tommasini S Wiznia D

Aims

Computer-assisted 3D preoperative planning software has the potential to improve postoperative stability in total hip arthroplasty (THA). Commonly, preoperative protocols simulate two functional positions (standing and relaxed sitting) but do not consider other common positions that may increase postoperative impingement and possible dislocation. This study investigates the feasibility of simulating commonly encountered positions, and positions with an increased risk of impingement, to lower postoperative impingement risk in a CT-based 3D model.

Methods

A robotic arm-assisted arthroplasty planning platform was used to investigate 11 patient positions. Data from 43 primary THAs were used for simulation. Sacral slope was retrieved from patient preoperative imaging, while angles of hip flexion/extension, hip external/internal rotation, and hip abduction/adduction for tested positions were derived from literature or estimated with a biomechanical model. The hip was placed in the described positions, and if impingement was detected by the software, inspection of the impingement type was performed.


The Bone & Joint Journal
Vol. 105-B, Issue 9 | Pages 946 - 952
1 Sep 2023
Dhawan R Young DA Van Eemeren A Shimmin A

Aims

The Birmingham Hip Resurfacing (BHR) arthroplasty has been used as a surgical treatment of coxarthrosis since 1997. We present 20-year results of 234 consecutive BHRs performed in our unit.

Methods

Between 1999 and 2001, there were 217 patients: 142 males (65.4%), mean age 52 years (18 to 68) who had 234 implants (17 bilateral). They had patient-reported outcome measures collected, imaging (radiograph and ultrasound), and serum metal ion assessment. Survivorship analysis was performed using Kaplan-Meier estimates. Revision for any cause was considered as an endpoint for the analysis.


Bone & Joint Open
Vol. 4, Issue 9 | Pages 652 - 658
1 Sep 2023
Albrektsson M Möller M Wolf O Wennergren D Sundfeldt M

Aims

To describe the epidemiology of acetabular fractures including patient characteristics, injury mechanisms, fracture patterns, treatment, and mortality.

Methods

We retrieved information from the Swedish Fracture Register (SFR) on all patients with acetabular fractures, of the native hip joint in the adult skeleton, sustained between 2014 and 2020. Study variables included patient age, sex, injury date, injury mechanism, fracture classification, treatment, and mortality.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 5 | Pages 624 - 629
1 May 2012
Audenaert E Smet B Pattyn C Khanduja V

The aim of this study was to determine the accuracy of registration and the precision of the resection volume in navigated hip arthroscopy for cam-type femoroacetabular impingement, using imageless and image-based registration. A virtual cam lesion was defined in 12 paired cadaver hips and randomly assigned to either imageless or image-based (three-dimensional (3D) fluoroscopy) navigated arthroscopic head–neck osteochondroplasty. The accuracy of patient–image registration for both protocols was evaluated and post-operative imaging was performed to evaluate the accuracy of the surgical resection. We found that the estimated accuracy of imageless registration in the arthroscopic setting was poor, with a mean error of 5.6 mm (standard deviation (. sd. ) 4.08; 95% confidence interval (CI) 4.14 to 7.19). Because of the significant mismatch between the actual position of the probe during surgery and the position of that probe as displayed on the navigation platform screen, navigated femoral osteochondroplasty was physically impossible. The estimated accuracy of image-based registration by means of 3D fluoroscopy had a mean error of 0.8 mm (. sd. 0.51; 95% CI 0.56 to 0.94). In terms of the volume of bony resection, a mean of 17% (. sd. 11; -6% to 28%) more bone was resected than with the virtual plan (p = 0.02). The resection was a mean of 1 mm deeper (. sd. 0.7; -0.3 to 1.6) larger than on the original virtual plan (p = 0.02). In conclusion, given the limited femoral surface that can be reached and digitised during arthroscopy of the hip, imageless registration is inaccurate and does not allow for reliable surgical navigation. However, image-based registration does acceptably allow for guided femoral osteochondroplasty in the arthroscopic management of femoroacetabular impingement


The Bone & Joint Journal
Vol. 106-B, Issue 6 | Pages 565 - 572
1 Jun 2024
Resl M Becker L Steinbrück A Wu Y Perka C

Aims

This study compares the re-revision rate and mortality following septic and aseptic revision hip arthroplasty (rTHA) in registry data, and compares the outcomes to previously reported data.

Methods

This is an observational cohort study using data from the German Arthroplasty Registry (EPRD). A total of 17,842 rTHAs were included, and the rates and cumulative incidence of hip re-revision and mortality following septic and aseptic rTHA were analyzed with seven-year follow-up. The Kaplan-Meier estimates were used to determine the re-revision rate and cumulative probability of mortality following rTHA.