Advertisement for orthosearch.org.uk
Results 1 - 20 of 41
Results per page:
Bone & Joint Research
Vol. 12, Issue 9 | Pages 590 - 597
20 Sep 2023
Uemura K Otake Y Takashima K Hamada H Imagama T Takao M Sakai T Sato Y Okada S Sugano N

Aims. This study aimed to develop and validate a fully automated system that quantifies proximal femoral bone mineral density (BMD) from CT images. Methods. The study analyzed 978 pairs of hip CT and dual-energy X-ray absorptiometry (DXA) measurements of the proximal femur (DXA-BMD) collected from three institutions. From the CT images, the femur and a calibration phantom were automatically segmented using previously trained deep-learning models. The Hounsfield units of each voxel were converted into density (mg/cm. 3. ). Then, a deep-learning model trained by manual landmark selection of 315 cases was developed to select the landmarks at the proximal femur to rotate the CT volume to the neutral position. Finally, the CT volume of the femur was projected onto the coronal plane, and the areal BMD of the proximal femur (CT-aBMD) was quantified. CT-aBMD correlated to DXA-BMD, and a receiver operating characteristic (ROC) analysis quantified the accuracy in diagnosing osteoporosis. Results. CT-aBMD was successfully measured in 976/978 hips (99.8%). A significant correlation was found between CT-aBMD and DXA-BMD (r = 0.941; p < 0.001). In the ROC analysis, the area under the curve to diagnose osteoporosis was 0.976. The diagnostic sensitivity and specificity were 88.9% and 96%, respectively, with the cutoff set at 0.625 g/cm. 2. . Conclusion. Accurate DXA-BMD measurements and diagnosis of osteoporosis were performed from CT images using the system developed herein. As the models are open-source, clinicians can use the proposed system to screen osteoporosis and determine the surgical strategy for hip surgery. Cite this article: Bone Joint Res 2023;12(9):590–597


The Bone & Joint Journal
Vol. 105-B, Issue 3 | Pages 254 - 260
1 Mar 2023
Bukowski BR Sandhu KP Bernatz JT Pickhardt PJ Binkley N Anderson PA Illgen R

Aims. Osteoporosis can determine surgical strategy for total hip arthroplasty (THA), and perioperative fracture risk. The aims of this study were to use hip CT to measure femoral bone mineral density (BMD) using CT X-ray absorptiometry (CTXA), determine if systematic evaluation of preoperative femoral BMD with CTXA would improve identification of osteopenia and osteoporosis compared with available preoperative dual-energy X-ray absorptiometry (DXA) analysis, and determine if improved recognition of low BMD would affect the use of cemented stem fixation. Methods. Retrospective chart review of a single-surgeon database identified 78 patients with CTXA performed prior to robotic-assisted THA (raTHA) (Group 1). Group 1 was age- and sex-matched to 78 raTHAs that had a preoperative hip CT but did not have CTXA analysis (Group 2). Clinical demographics, femoral fixation method, CTXA, and DXA data were recorded. Demographic data were similar for both groups. Results. Preoperative femoral BMD was available for 100% of Group 1 patients (CTXA) and 43.6% of Group 2 patients (DXA). CTXA analysis for all Group 1 patients preoperatively identified 13 osteopenic and eight osteoporotic patients for whom there were no available preoperative DXA data. Cemented stem fixation was used with higher frequency in Group 1 versus Group 2 (28.2% vs 14.3%, respectively; p = 0.030), and in all cases where osteoporosis was diagnosed, irrespective of technique (DXA or CTXA). Conclusion. Preoperative hip CT scans which are routinely obtained prior to raTHA can determine bone health, and thus guide femoral fixation strategy. Systematic preoperative evaluation with CTXA resulted in increased recognition of osteopenia and osteoporosis, and contributed to increased use of cemented femoral fixation compared with routine clinical care; in this small study, however, it did not impact short-term periprosthetic fracture risk. Cite this article: Bone Joint J 2023;105-B(3):254–260


The Bone & Joint Journal
Vol. 106-B, Issue 6 | Pages 548 - 554
1 Jun 2024
Ohyama Y Minoda Y Masuda S Sugama R Ohta Y Nakamura H

Aims. The aim of this study was to compare the pattern of initial fixation and changes in periprosthetic bone mineral density (BMD) between patients who underwent total hip arthroplasty (THA) using a traditional fully hydroxyapatite (HA)-coated stem (T-HA group) and those with a newly introduced fully HA-coated stem (N-HA group). Methods. The study included 36 patients with T-HA stems and 30 with N-HA stems. Dual-energy X-ray absorptiometry was used to measure the change in periprosthetic BMD, one and two years postoperatively. The 3D contact between the stem and femoral cortical bone was evaluated using a density-mapping system, and clinical assessment, including patient-reported outcome measurements, was recorded. Results. There were significantly larger contact areas in Gruen zones 3, 5, and 6 in the N-HA group than in the T-HA group. At two years postoperatively, there was a significant decrease in BMD around the proximal-medial femur (zone 6) in the N-HA group and a significant increase in the T-HA group. BMD changes in both groups correlated with BMI or preoperative lumbar BMD rather than with the extent of contact with the femoral cortical bone. Conclusion. The N-HA-coated stem showed a significantly larger contact area, indicating a distal fixation pattern, compared with the traditional fully HA-coated stem. The T-HA-coated stem showed better preservation of periprosthetic BMD, two years postoperatively. Surgeons should consider these patterns of fixation and differences in BMD when selecting fully HA-coated stems for THA, to improve the long-term outcomes. Cite this article: Bone Joint J 2024;106-B(6):548–554


Aims. The aim of this study was to compare the mid-term patient-reported outcome, bone remodelling, and migration of a short stem (Collum Femoris Preserving; CFP) with a conventional uncemented stem (Corail). Methods. Of 81 patients who were initially enrolled, 71 were available at five years’ follow-up. The outcomes at two years have previously been reported. The primary outcome measure was the clinical result assessed using the Oxford Hip Score (OHS). Secondary outcomes were the migration of the stem, measured using radiostereometric analysis (RSA), change of bone mineral density (BMD) around the stem, the development of radiolucent lines, and additional patient-reported outcome measures (PROMs). Results. There were no statistically significant differences between the groups regarding PROMs (median OHS (CFP 45 (interquartile range (IQR) 35 to 48); Corail 45 (IQR 40 to 48); p = 0.568). RSA showed stable stems in both groups, with little or no further subsidence between two and five years. Resorption of the femoral neck was evident in nine patients in the CFP group and in none of the 15 Corail stems with a collar that could be studied. Dual X-ray absorbiometry showed a significantly higher loss of BMD in the proximal Gruen zones in the CFP group (mean changes in BMD: Gruen zone 1, CFP -9.5 (95% confidence interval (CI) -14.8 to -4.2), Corail 1.0 (95% CI 3.4 to 5.4); Gruen zone 7, CFP -23.0 (95% CI -29.4 to -16.6), Corail -7.2 (95% CI -15.9 to 1.4). Two CFP stems were revised before two years’ follow-up due to loosening, and one Corail stem was revised after two years due to chronic infection. Conclusion. The CFP stem has a similar clinical outcome and subsidence pattern when compared with the Corail stem. More pronounced proximal stress-shielding was seen with the CFP stem, suggesting diaphyseal fixation, and questioning its femoral neck-sparing properties in the long term. Cite this article: Bone Joint J 2022;104-B(5):581–588


Bone & Joint Research
Vol. 13, Issue 4 | Pages 184 - 192
18 Apr 2024
Morita A Iida Y Inaba Y Tezuka T Kobayashi N Choe H Ike H Kawakami E

Aims. This study was designed to develop a model for predicting bone mineral density (BMD) loss of the femur after total hip arthroplasty (THA) using artificial intelligence (AI), and to identify factors that influence the prediction. Additionally, we virtually examined the efficacy of administration of bisphosphonate for cases with severe BMD loss based on the predictive model. Methods. The study included 538 joints that underwent primary THA. The patients were divided into groups using unsupervised time series clustering for five-year BMD loss of Gruen zone 7 postoperatively, and a machine-learning model to predict the BMD loss was developed. Additionally, the predictor for BMD loss was extracted using SHapley Additive exPlanations (SHAP). The patient-specific efficacy of bisphosphonate, which is the most important categorical predictor for BMD loss, was examined by calculating the change in predictive probability when hypothetically switching between the inclusion and exclusion of bisphosphonate. Results. Time series clustering allowed us to divide the patients into two groups, and the predictive factors were identified including patient- and operation-related factors. The area under the receiver operating characteristic (ROC) curve (AUC) for the BMD loss prediction averaged 0.734. Virtual administration of bisphosphonate showed on average 14% efficacy in preventing BMD loss of zone 7. Additionally, stem types and preoperative triglyceride (TG), creatinine (Cr), estimated glomerular filtration rate (eGFR), and creatine kinase (CK) showed significant association with the estimated patient-specific efficacy of bisphosphonate. Conclusion. Periprosthetic BMD loss after THA is predictable based on patient- and operation-related factors, and optimal prescription of bisphosphonate based on the prediction may prevent BMD loss. Cite this article: Bone Joint Res 2024;13(4):184–192


Bone & Joint Research
Vol. 11, Issue 12 | Pages 873 - 880
1 Dec 2022
Watanabe N Miyatake K Takada R Ogawa T Amano Y Jinno T Koga H Yoshii T Okawa A

Aims

Osteoporosis is common in total hip arthroplasty (THA) patients. It plays a substantial factor in the surgery’s outcome, and previous studies have revealed that pharmacological treatment for osteoporosis influences implant survival rate. The purpose of this study was to examine the prevalence of and treatment rates for osteoporosis prior to THA, and to explore differences in osteoporosis-related biomarkers between patients treated and untreated for osteoporosis.

Methods

This single-centre retrospective study included 398 hip joints of patients who underwent THA. Using medical records, we examined preoperative bone mineral density measures of the hip and lumbar spine using dual energy X-ray absorptiometry (DXA) scans and the medications used to treat osteoporosis at the time of admission. We also assessed the following osteoporosis-related biomarkers: tartrate-resistant acid phosphatase 5b (TRACP-5b); total procollagen type 1 amino-terminal propeptide (total P1NP); intact parathyroid hormone; and homocysteine.


Bone & Joint Research
Vol. 10, Issue 12 | Pages 830 - 839
15 Dec 2021
Robertson G Wallace R Simpson AHRW Dawson SP

Aims. Assessment of bone mineral density (BMD) with dual-energy X-ray absorptiometry (DXA) is a well-established clinical technique, but it is not available in the acute trauma setting. Thus, it cannot provide a preoperative estimation of BMD to help guide the technique of fracture fixation. Alternative methods that have been suggested for assessing BMD include: 1) cortical measures, such as cortical ratios and combined cortical scores; and 2) aluminium grading systems from preoperative digital radiographs. However, limited research has been performed in this area to validate the different methods. The aim of this study was to investigate the evaluation of BMD from digital radiographs by comparing various methods against DXA scanning. Methods. A total of 54 patients with distal radial fractures were included in the study. Each underwent posteroanterior (PA) and lateral radiographs of the injured wrist with an aluminium step wedge. Overall 27 patients underwent routine DXA scanning of the hip and lumbar spine, with 13 undergoing additional DXA scanning of the uninjured forearm. Analysis of radiographs was performed on ImageJ and Matlab with calculations of cortical measures, cortical indices, combined cortical scores, and aluminium equivalent grading. Results. Cortical measures showed varying correlations with the forearm DXA results (range: Pearson correlation coefficient (r) = 0.343 (p = 0.251) to r = 0.521 (p = 0.068)), with none showing statistically significant correlations. Aluminium equivalent grading showed statistically significant correlations with the forearm DXA of the corresponding region of interest (p < 0.017). Conclusion. Cortical measures, cortical indices, and combined cortical scores did not show a statistically significant correlation to forearm DXA measures. Aluminium-equivalent is an easily applicable method for estimation of BMD from digital radiographs in the preoperative setting. Cite this article: Bone Joint Res 2021;10(12):830–839


The Bone & Joint Journal
Vol. 103-B, Issue 5 | Pages 872 - 880
1 May 2021
Young PS Macarico DT Silverwood RK Farhan-Alanie OM Mohammed A Periasamy K Nicol A Meek RMD

Aims. Uncemented metal acetabular components show good osseointegration, but material stiffness causes stress shielding and retroacetabular bone loss. Cemented monoblock polyethylene components load more physiologically; however, the cement bone interface can suffer fibrous encapsulation and loosening. It was hypothesized that an uncemented titanium-sintered monoblock polyethylene component may offer the optimum combination of osseointegration and anatomical loading. Methods. A total of 38 patients were prospectively enrolled and received an uncemented monoblock polyethylene acetabular (pressfit) component. This single cohort was then retrospectively compared with previously reported randomized cohorts of cemented monoblock (cemented) and trabecular metal (trabecular) acetabular implants. The primary outcome measure was periprosthetic bone density using dual-energy x-ray absorptiometry over two years. Secondary outcomes included radiological and clinical analysis. Results. Although there were differences in the number of males and females in each group, no significant sex bias was noted (p = 0.080). Furthermore, there was no significant difference in age (p = 0.910) or baseline lumbar bone mineral density (BMD) (p = 0.998) found between any of the groups (pressfit, cemented, or trabecular). The pressfit implant initially behaved like the trabecular component with an immediate fall in BMD in the inferior and medial regions, with preserved BMD laterally, suggesting lateral rim loading. However, the pressfit component subsequently showed a reversal in BMD medially with recovery back towards baseline, and a continued rise in lateral BMD. This would suggest that the pressfit component begins to reload the medial bone over time, more akin to the cemented component. Analysis of postoperative radiographs revealed no pressfit component subsidence or movement up to two years postoperatively (100% interobserver reliability). Medial defects seen immediately postoperatively in five cases had completely resolved by two years in four patients. Conclusion. Initially, the uncemented monoblock component behaved similarly to the rigid trabecular metal component with lateral rim loading; however, over two years this changed to more closely resemble the loading pattern of a cemented polyethylene component with increasing medial pelvic loading. This indicates that the uncemented monoblock acetabular component may result in optimized fixation and preservation of retroacetabular bone stock. Cite this article: Bone Joint J 2021;103-B(5):872–880


The Bone & Joint Journal
Vol. 103-B, Issue 4 | Pages 644 - 649
1 Apr 2021
Alsousou J Oragu E Martin A Strickland L Newman S Kendrick B Taylor A Glyn-Jones S

Aims. The aim of this prospective cohort study was to evaluate the early migration of the TriFit cementless proximally coated tapered femoral stem using radiostereometric analysis (RSA). Methods. A total of 21 patients (eight men and 13 women) undergoing primary total hip arthroplasty (THA) for osteoarthritis of the hip were recruited in this study and followed up for two years. Two patients were lost to follow-up. All patients received a TriFit stem and Trinity Cup with a vitamin E-infused highly cross-linked ultra-high molecular weight polyethylene liner. Radiographs for RSA were taken postoperatively and then at three, 12, and 24 months. Oxford Hip Score (OHS), EuroQol five-dimension questionnaire (EQ-5D), and adverse events were reported. Results. At two years, the mean subsidence of the head and tip for the TriFit stem was 0.38 mm (SD 0.32) and 0.52 mm (SD 0.36), respectively. The total migration of the head and tip was 0.55 mm (SD 0.32) and 0.71 mm (SD 0.38), respectively. There were no statistically significant differences between the three to 12 months' migration (p = 0.105) and 12 to 24 months' migration (p = 0.694). The OHS and EQ-5D showed significant improvements at two years. Conclusion. The results of this study suggest that the TriFit femoral stem achieves initial stability and is likely to be stable in the mid and long term. A long-term outcome study is required to assess late mechanisms of failure and the effects of bone mineral density (BMD) related changes. Cite this article: Bone Joint J 2021;103-B(4):644–649


The Bone & Joint Journal
Vol. 103-B, Issue 7 Supple B | Pages 73 - 77
1 Jul 2021
Lawrie CM Barrack RL Nunley RM

Aims. Dual mobility (DM) implants have been shown to reduce the dislocation rate after total hip arthroplasty (THA), but there remain concerns about the use of cobalt chrome liners inserted into titanium shells. The aim of this study was to assess the clinical outcomes, metal ion levels, and periprosthetic femoral bone mineral density (BMD) at mid-term follow-up in young, active patients receiving a modular DM THA. Methods. This was a prospective study involving patients aged < 65 years, with a BMI of < 35 kg/m. 2. , and University of California, Los Angeles activity score of > 6 who underwent primary THA with a modular cobalt chrome acetabular liner, highly cross-linked polyethylene mobile bearing, and a cementless titanium femoral stem. Patient-reported outcome measures, whole blood metal ion levels (μg/l), and periprosthetic femoral BMD were measured at baseline and at one, two, and five years postoperatively. The results two years postoperatively for this cohort have been previously reported. Results. A total of 43 patients were enrolled. At minimum follow-up of five years, 23 (53.4%) returned for clinical and radiological review, 25 (58.1%) had metal ion analysis performed, 19 (44.2%) underwent dual energy x-ray absorptiometry scans, and 25 (58%) completed a pain-drawing questionnaire. The mean modified Harris Hip Scores improved significantly from 54.8 (SD 19) preoperatively to 93.08 (SD 10.5) five years postoperatively (p < 0.001). One patient was revised for aseptic acetabular loosening. The mean cobalt levels increased from 0.065 μg/l (SD 0.03) to 0.08 (SD 0.05) and the mean titanium levels increased from 0.35 (SD 0.13) to 0.78 (SD 0.29). The femoral BMD ratio decreased in Gruen Zone 1 (91.9%) at five years postoperatively compared with the baseline scores at six weeks potoperatively. The femoral BMD ratio was maintained in Gruen zones 2 to 7. Conclusion. The use of a modular DM component and a cementless, tapered femoral stem shows excellent mid-term survivorship with minimal concerns for corrosion and metal ion release in a cohort of young, active patients undergoing primary THA. Cite this article: Bone Joint J 2021;103-B(7 Supple B):73–77


Bone & Joint Research
Vol. 5, Issue 9 | Pages 362 - 369
1 Sep 2016
Oba M Inaba Y Kobayashi N Ike H Tezuka T Saito T

Objectives. In total hip arthroplasty (THA), the cementless, tapered-wedge stem design contributes to achieving initial stability and providing optimal load transfer in the proximal femur. However, loading conditions on the femur following THA are also influenced by femoral structure. Therefore, we determined the effects of tapered-wedge stems on the load distribution of the femur using subject-specific finite element models of femurs with various canal shapes. Patients and Methods. We studied 20 femurs, including seven champagne flute-type femurs, five stovepipe-type femurs, and eight intermediate-type femurs, in patients who had undergone cementless THA using the Accolade TMZF stem at our institution. Subject–specific finite element (FE) models of pre- and post-operative femurs with stems were constructed and used to perform FE analyses (FEAs) to simulate single-leg stance. FEA predictions were compared with changes in bone mineral density (BMD) measured for each patient during the first post-operative year. Results. Stovepipe models implanted with large-size stems had significantly lower equivalent stress on the proximal-medial area of the femur compared with champagne-flute and intermediate models, with a significant loss of BMD in the corresponding area at one year post-operatively. Conclusions. The stovepipe femurs required a large-size stem to obtain an optimal fit of the stem. The FEA result and post-operative BMD change of the femur suggest that the combination of a large-size Accolade TMZF stem and stovepipe femur may be associated with proximal stress shielding. Cite this article: M. Oba, Y. Inaba, N. Kobayashi, H. Ike, T. Tezuka, T. Saito. Effect of femoral canal shape on mechanical stress distribution and adaptive bone remodelling around a cementless tapered-wedge stem. Bone Joint Res 2016;5:362–369. DOI: 10.1302/2046-3758.59.2000525


Bone & Joint Research
Vol. 3, Issue 11 | Pages 317 - 320
1 Nov 2014
Basso T Klaksvik J Foss OA

Objective. In ex vivo hip fracture studies femoral pairs are split to create two comparable test groups. When more than two groups are required, or if paired femurs cannot be obtained, group allocation according to bone mineral density (BMD) is sometimes performed. In this statistical experiment we explore how this affects experimental results and sample size considerations. Methods. In a hip fracture experiment, nine pairs of human cadaver femurs were tested in a paired study design. The femurs were then re-matched according to BMD, creating two new test groups. Intra-pair variance and paired correlations in fixation stability were calculated. A hypothetical power analysis was then performed to explore the required sample size for the two types of group allocation. . Results. The standard deviation (. sd. ) of the mean paired difference in fixation stability increased from 2 mm in donor pairs to 5 mm in BMD-matched pairs. Intra-pair correlation was 0.953 (Pearson’s r) in donor pairs and non-significant at -0.134 (Pearson’s r) in BMD-matched pairs. Required sample size to achieve a statistical power of 0.8 increased from ten pairs using donor pairs to 54 pairs using BMD-matched pairs. Conclusion. BMD cannot be used to create comparable test groups unless sample size is increased substantially and paired statistics are no longer valid. Cite this article: Bone Joint Res 2014;3:317–20


Bone & Joint Research
Vol. 8, Issue 6 | Pages 275 - 287
1 Jun 2019
Clement ND Bardgett M Merrie K Furtado S Bowman R Langton DJ Deehan DJ Holland J

Objectives. Our primary aim was to describe migration of the Exeter stem with a 32 mm head on highly crosslinked polyethylene and whether this is influenced by age. Our secondary aims were to assess functional outcome, satisfaction, activity, and bone mineral density (BMD) according to age. Patients and Methods. A prospective cohort study was conducted. Patients were recruited into three age groups: less than 65 years (n = 65), 65 to 74 years (n = 68), and 75 years and older (n = 67). There were 200 patients enrolled in the study, of whom 115 were female and 85 were male, with a mean age of 69.9 years (sd 9.5, 42 to 92). They were assessed preoperatively, and at three, 12 and, 24 months postoperatively. Stem migration was assessed using Einzel-Bild-Röntgen-Analyse (EBRA). Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Harris Hip Score (HHS), Hip Disability and Osteoarthritis Outcome Score (HOOS), EuroQol-5 domains questionnaire (EQ-5D), short form-36 questionnaire (SF-36,) and patient satisfaction were used to assess outcome. The Lower Extremity Activity Scale (LEAS), Timed Up and Go (TUG) test, and activPAL monitor (energy expelled, time lying/standing/walking and step count) were used to assess activity. The BMD was assessed in Gruen and Charnley zones. Results. Mean varus/valgus tilt was -0.77⁰ and axial subsidence was -1.20 mm. No significant difference was observed between age groups (p ⩾ 0.07). There was no difference according to age group for postoperative WOMAC (p ⩾ 0.11), HHS (p ⩾ 0.06), HOOS (p ⩾ 0.46), EQ-5D (p ⩾ 0.38), patient satisfaction (p ⩾ 0.05), or activPAL (p ⩾ 0.06). Patients 75 years and older had a worse SF-36 physical function (p = 0.01) and physical role (p = 0.03), LEAS score (p < 0.001), a shorter TUG (p = 0.01), and a lower BMD in Charnley zone 1 (p = 0.02). Conclusion. Exeter stem migration is within normal limits and is not influenced by age group. Functional outcome, patient satisfaction, activity level, and periprosthetic BMD are similar across all age groups. Cite this article: N. D. Clement, M. Bardgett, K. Merrie, S. Furtado, R. Bowman, D. J. Langton, D. J. Deehan, J. Holland. Cemented Exeter total hip arthroplasty with a 32 mm head on highly crosslinked polyethylene: Does age influence functional outcome, satisfaction, activity, stem migration, and periprosthetic bone mineral density? Bone Joint Res 2019;8:275–287. DOI: 10.1302/2046-3758.86.BJR-2018-0300.R1


The Bone & Joint Journal
Vol. 101-B, Issue 4 | Pages 365 - 371
1 Apr 2019
Nam D Salih R Nahhas CR Barrack RL Nunley RM

Aims. Modular dual mobility (DM) prostheses in which a cobalt-chromium liner is inserted into a titanium acetabular shell (vs a monoblock acetabular component) have the advantage of allowing supplementary screw fixation, but the potential for corrosion between the liner and acetabulum has raised concerns. While DM prostheses have shown improved stability in patients deemed ‘high-risk’ for dislocation undergoing total hip arthroplasty (THA), their performance in young, active patients has not been reported. This study’s purpose was to assess clinical outcomes, metal ion levels, and periprosthetic femoral bone mineral density (BMD) in young, active patients receiving a modular DM acetabulum and recently introduced titanium, proximally coated, tapered femoral stem design. Patients and Methods. This was a prospective study of patients between 18 and 65 years of age, with a body mass index (BMI) < 35 kg/m. 2. and University of California at Los Angeles (UCLA) activity score > 6, who received a modular cobalt-chromium acetabular liner, highly crosslinked polyethylene mobile bearing, and cementless titanium femoral stem for their primary THA. Patients with a history of renal disease and metal hardware elsewhere in the body were excluded. A total of 43 patients (30 male, 13 female; mean age 52.6 years (. sd. 6.5)) were enrolled. All patients had a minimum of two years’ clinical follow-up. Patient-reported outcome measures, whole blood metal ion levels (ug/l), and periprosthetic femoral BMD were measured at baseline, as well as at one and two years postoperatively. Power analysis indicated 40 patients necessary to demonstrate a five-fold increase in cobalt levels from baseline (alpha = 0.05, beta = 0.80). A mixed model with repeated measures was used for statistical analysis. Results. Mean Harris Hip Scores improved from 54.1 (. sd. 20.5) to 91.2 (. sd. 10.8) at two years postoperatively (p < 0.001). All patients had radiologically well-fixed components, no patients experienced any instability, and no patients required any further intervention. Mean cobalt levels increased from 0.065 ug/l (. sd. 0.03) preoperatively to 0.30 ug/l (. sd. 0.51) at one year postoperatively (p = 0.01) but decreased at two years postoperatively to 0.16 ug/l (. sd. 0.23; p = 0.2). Four patients (9.3%) had a cobalt level outside the reference range (0.03 ug/l to 0.29 ug/l) at two years postoperatively, with values from 0.32 ug/l to 0.94 ug/l. The mean femoral BMD ratio was maintained in Gruen zones 2 to 7 at both one and two years postoperatively using this stem design. At two years postoperatively, mean BMD in the medial calcar was 101.5% of the baseline value. Conclusion. Use of a modular DM prosthesis and cementless, tapered femoral stem has shown encouraging results in young, active patients undergoing primary THA. Elevation in mean cobalt levels and the presence of four patients outside the reference range at two years postoperatively demonstrates the necessity of continued surveillance in this cohort. Cite this article: Bone Joint J 2019;101-B:365–371


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 2 | Pages 174 - 179
1 Feb 2007
Kim Y Yoon S Kim J

Our aim in this prospective study was to compare the bone mineral density (BMD) around cementless acetabular and femoral components which were identical in geometry and had the same alumina modular femoral head, but differed in regard to the material of the acetabular liners (alumina ceramic or polyethylene) in 50 patients (100 hips) who had undergone bilateral simultaneous primary total hip replacement. Dual energy X-ray absorptiometry scans of the pelvis and proximal femur were obtained at one week, at one year, and annually thereafter during the five-year period of the study. At the final follow-up, the mean BMD had increased significantly in each group in acetabular zone I of DeLee and Charnley (20% (15% to 26%), p = 0.003), but had decreased in acetabular zone II (24% (18% to 36%) in the alumina group and 25% (17% to 31%) in the polyethylene group, p = 0.001). There was an increase in the mean BMD in zone III of 2% (0.8% to 3.2%) in the alumina group and 1% (0.6% to 2.2%) in the polyethylene group (p = 0.315). There was a decrease in the mean BMD in the calcar region (femoral zone 7) of 15% (8% to 24%) in the alumina group and 14% (6% to 23%) in the polyethylene group (p < 0.001). The mean bone loss in femoral zone 1 of Gruen et al was 2% (1.1% to 3.1%) in the alumina group and 3% (1.3% to 4.3%) in the polyethylene group (p = 0.03), and in femoral zone 6, the mean bone loss was 15% (9% to 27%) in the alumina group and 14% (11% to 29%) in the polyethylene group compared with baseline values. There was an increase in the mean BMD on the final scans in femoral zones 2 (p = 0.04), 3 (p = 0.04), 4 (p = 0.12) and 5 (p = 0.049) in both groups. There was thus no significant difference in the bone remodelling of the acetabulum and femur five years after total hip replacement in those two groups where the only difference was in the acetabular liner


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 4 | Pages 455 - 459
1 Apr 2006
Shetty NR Hamer AJ Kerry RM Stockley I Eastell R Wilkinson JM

The aims of this study were to examine the repeatability of measurements of bone mineral density (BMD) around a cemented polyethylene Charnley acetabular component using dual-energy x-ray absorptiometry and to determine the longitudinal pattern of change in BMD during the first 24 months after surgery. The precision of measurements of BMD in 19 subjects ranged from 7.7% to 10.8% between regions, using a four-region-of-interest model. A longitudinal study of 27 patients demonstrated a transient decrease in net pelvic BMD during the first 12 months, which recovered to baseline at 24 months. The BMD in the region medial to the dome of the component reduced by between 7% and 10% during the first three months, but recovered to approximately baseline values by two years. Changes in BMD in the pelvis around cemented acetabular components may be measured using dual-energy x-ray absorptiometry. Bone loss after insertion of a cemented Charnley acetabular component is small, transient and occurs mainly at the medial wall of the acetabulum. After two years, bone mass returns to baseline values, with a pattern suggesting a uniform transmission of load to the acetabulum


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 11 | Pages 1509 - 1514
1 Nov 2010
Smolders JMH Hol A Rijnders T van Susante JLC

We undertook a randomised prospective follow-up study of changes in peri-prosthetic bone mineral density (BMD) after hip resurfacing and compared them with the results after total hip replacement. A total of 59 patients were allocated to receive a hip resurfacing (n = 29) or an uncemented distally fixed total hip replacement (n = 30). The BMD was prospectively determined in four separate regions of interest of the femoral neck and in the calcar region corresponding to Gruen zone 7 for the hip resurfacing group and compared only to the calcar region in the total hip replacement group. Standardised measurements were performed pre-operatively and after three, six and 12 months. The groups were well matched in terms of gender distribution and mean age. The mean BMD in the calcar region increased after one year to 105.2% of baseline levels in the resurfaced group compared with a significant decrease to 82.1% in the total hip replacement group (p < 0.001) by 12 months. For the resurfaced group, there was a decrease in bone density in all four regions of the femoral neck at three months which did not reach statistical significance and was followed by recovery to baseline levels after 12 months. Hip resurfacing did indeed preserve BMD in the inferior femoral neck. In contrast, a decrease in the mean BMD in Gruen zone 7 followed uncemented distally fixed total hip replacement. Long term follow-up studies are necessary to see whether this benefit in preservation of BMD will be clinically relevant at future revision surgery


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 1 | Pages 20 - 26
1 Jan 2004
Brodner W Bitzan P Lomoschitz F Krepler P Jankovsky R Lehr S Kainberger F Gottsauner-Wolf F

We investigated prospectively the bone mineral density (BMD) of the proximal femur after implantation of a tapered rectangular cementless stem in 100 patients with a mean age of 60 years (16 to 87). It was determined using dual energy x-ray absorptiometry, performed one week after surgery and then every six months until the end-point of five years. The BMD increased significantly in Gruen zones 2, 4 and 5 by 11%, 3% and 11% respectively, and decreased significantly in Gruen zones 1, 6 and 7 by 3%, 6% and 14% respectively, over the five-year period. The net mean BMD did not change over this time period. The changes in the BMD were not confined to the first 12 months after surgery. This investigation revealed no change in the overall periprosthetic BMD, but demonstrated a regional redistribution of bone mass from the proximal to distal zones


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 2 | Pages 185 - 189
1 Mar 2004
Kishida Y Sugano N Nishii T Miki H Yamaguchi K Yoshikawa H

We investigated the effect of the Birmingham hip resurfacing (BHR) arthroplasty on the bone mineral density (BMD) of the femur. A comparative study was carried out on 26 hips in 25 patients. Group A consisted of 13 patients (13 hips) who had undergone resurfacing hip arthroplasty with the BHR system and group B of 12 patients (13 hips) who had had cementless total hip arthroplasty with a proximal circumferential plasma-spray titanium-coated anatomic Ti6A14V stem. Patients were matched for gender, state of disease and age at the time of surgery. The periprosthetic BMD of the femur was measured using dual-energy x-ray absorptiomentry of the Gruen zones at two years in patients in groups A and B. The median values of the BMD in zones 1 and 7 were 99% and 111%, respectively. The post-operative loss of the BMD in the proximal femur was significantly greater in group B than in group A. These findings show that the BHR system preserves the bone stock of the proximal femur after surgery


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 8 | Pages 1036 - 1044
1 Aug 2012
Penny JO Brixen K Varmarken JE Ovesen O Overgaard S

It is accepted that resurfacing hip replacement preserves the bone mineral density (BMD) of the femur better than total hip replacement (THR). However, no studies have investigated any possible difference on the acetabular side. Between April 2007 and March 2009, 39 patients were randomised into two groups to receive either a resurfacing or a THR and were followed for two years. One patient’s resurfacing subsequently failed, leaving 19 patients in each group. Resurfaced replacements maintained proximal femoral BMD and, compared with THR, had an increased bone mineral density in Gruen zones 2, 3, 6, and particularly zone 7, with a gain of 7.5% (95% confidence interval (CI) 2.6 to 12.5) compared with a loss of 14.6% (95% CI 7.6 to 21.6). Resurfacing replacements maintained the BMD of the medial femoral neck and increased that in the lateral zones between 12.8% (95% CI 4.3 to 21.4) and 25.9% (95% CI 7.1 to 44.6). On the acetabular side, BMD was similar in every zone at each point in time. The mean BMD of all acetabular regions in the resurfaced group was reduced to 96.2% (95% CI 93.7 to 98.6) and for the total hip replacement group to 97.6% (95% CI 93.7 to 101.5) (p = 0.4863). A mean total loss of 3.7% (95% CI 1.0 to 6.5) and 4.9% (95% CI 0.8 to 9.0) of BMD was found above the acetabular component in W1 and 10.2% (95% CI 0.9 to 19.4) and 9.1% (95% CI 3.8 to 14.4) medial to the implant in W2 for resurfaced replacements and THRs respectively. Resurfacing resulted in a mean loss of BMD of 6.7% (95% CI 0.7 to 12.7) in W3 but the BMD inferior to the acetabular component was maintained in both groups. These results suggest that the ability of a resurfacing hip replacement to preserve BMD only applies to the femoral side