Advertisement for orthosearch.org.uk
Results 1 - 10 of 10
Results per page:
Bone & Joint 360
Vol. 12, Issue 6 | Pages 6 - 12
1 Dec 2023
Vallier HA Breslin MA Taylor LA Hendrickson SB Ollivere B


Bone & Joint 360
Vol. 10, Issue 6 | Pages 8 - 10
1 Dec 2021
Spacey K Wimhurst J Hasan R Sharma D


Bone & Joint 360
Vol. 5, Issue 6 | Pages 2 - 6
1 Dec 2016
Coughlin TA


Bone & Joint 360
Vol. 4, Issue 1 | Pages 6 - 11
1 Feb 2015
Manktelow A Bloch B

This review examines the future of total hip arthroplasty, aiming to avoid past mistakes


Bone & Joint 360
Vol. 4, Issue 5 | Pages 2 - 7
1 Oct 2015
Clark GW Wood DJ

The use of robotics in arthroplasty surgery is expanding rapidly as improvements in the technology evolve. This article examines current evidence to justify the usage of robotics, as well as the future potential in this emerging field.


Bone & Joint 360
Vol. 3, Issue 3 | Pages 9 - 13
1 Jun 2014
Waterson HB Philips JRA Mandalia VI Toms AD

Mechanical alignment has been a fundamental tenet of total knee arthroplasty (TKA) since modern knee replacement surgery was developed in the 1970s. The objective of mechanical alignment was to infer the greatest biomechanical advantage to the implant to prevent early loosening and failure. Over the last 40 years a great deal of innovation in TKA technology has been focusing on how to more accurately achieve mechanical alignment. Recently the concept of mechanical alignment has been challenged, and other alignment philosophies are being explored with the intention of trying to improve patient outcomes following TKA.

This article examines the evolution of the mechanical alignment concept and whether there are any viable alternatives.


Bone & Joint 360
Vol. 2, Issue 5 | Pages 2 - 7
1 Oct 2013
Penn-Barwell JG Rowlands TK

Blast and ballistic weapons used on the battlefield cause devastating injuries rarely seen outside armed conflict. These extremely high-energy injuries predominantly affect the limbs and are usually heavily contaminated with soil, foliage, clothing and even tissue from other casualties. Once life-threatening haemorrhage has been addressed, the military surgeon’s priority is to control infection.

Combining historical knowledge from previous conflicts with more recent experience has resulted in a systematic approach to these injuries. Urgent debridement of necrotic and severely contaminated tissue, irrigation and local and systemic antibiotics are the basis of management. These principles have resulted in successful healing of previously unsurvivable wounds. Healthy tissue must be retained for future reconstruction, vulnerable but viable tissue protected to allow survival and avascular tissue removed with all contamination.

While recent technological and scientific advances have offered some advantages, they must be judged in the context of a hard-won historical knowledge of these wounds. This approach is applicable to comparable civilian injury patterns. One of the few potential benefits of war is the associated improvement in our understanding of treating the severely injured; for this positive effect to be realised these experiences must be shared.


Bone & Joint 360
Vol. 2, Issue 5 | Pages 8 - 12
1 Oct 2013
Phillips JRA

Not all questions can be answered by prospective randomised controlled trials. Registries were introduced as a way of collecting information on joint replacements at a population level. They have helped to identify failing implants and the data have also been used to monitor the performance of individual surgeons. This review aims to look at some of the less well known registries that are currently being used worldwide, including those kept on knee ligaments, ankle arthroplasty, fractures and trauma.


Bone & Joint 360
Vol. 2, Issue 3 | Pages 2 - 5
1 Jun 2013
McNamara K

According to a report by Millennium Research Group in January 2011, the US orthopaedic extremity device market will generate over $4.6 billion in revenue by 2015.1 With an ageing demographic and increasing demand for better quality of life into old age, there is clearly a commercial drive for the orthopaedic device community to develop new and innovative solutions to bone and joint problems. Devising such solutions is one thing; protecting them, so that research investment can be rewarded, is another. How is such protection achieved? The judicious use of intellectual property rights plays a key role, and this article aims to provide some information about the use of patents to protect innovation.


Bone & Joint 360
Vol. 1, Issue 4 | Pages 2 - 4
1 Aug 2012
Marcovitch H

By and large, physicians and surgeons trust what they read, even if they take authors’ conclusions with a pinch of salt. There is a world of difference between being cautious about the implications of what you read and being defrauded by dishonest researchers. Fraud and scientific research are incompatible bedfellows and yet are an unhappy part of our research existence. All subspecialties are to blame and orthopaedics is no exception.