Advertisement for orthosearch.org.uk
Results 1 - 12 of 12
Results per page:
Bone & Joint Open
Vol. 1, Issue 10 | Pages 628 - 638
6 Oct 2020
Mott A Mitchell A McDaid C Harden M Grupping R Dean A Byrne A Doherty L Sharma H

Aims. Bone demonstrates good healing capacity, with a variety of strategies being utilized to enhance this healing. One potential strategy that has been suggested is the use of stem cells to accelerate healing. Methods. The following databases were searched: MEDLINE, CENTRAL, EMBASE, Cochrane Database of Systematic Reviews, WHO-ICTRP, ClinicalTrials.gov, as well as reference checking of included studies. The inclusion criteria for the study were: population (any adults who have sustained a fracture, not including those with pre-existing bone defects); intervention (use of stem cells from any source in the fracture site by any mechanism); and control (fracture healing without the use of stem cells). Studies without a comparator were also included. The outcome was any reported outcomes. The study design was randomized controlled trials, non-randomized or observational studies, and case series. Results. In all, 94 eligible studies were identified. The clinical and methodological aspects of the studies were too heterogeneous for a meta-analysis to be undertaken. A narrative synthesis examined study characteristics, stem cell methods (source, aspiration, concentration, and application) and outcomes. Conclusion. Insufficient high-quality evidence is available to determine the efficacy of stem cells for fracture healing. The studies were heterogeneous in population, methods, and outcomes. Work to address these issues and establish standards for future research should be undertaken. Cite this article: Bone Joint Open 2020;1-10:628–638


Bone & Joint Research
Vol. 13, Issue 8 | Pages 411 - 426
28 Aug 2024
Liu D Wang K Wang J Cao F Tao L

Aims. This study explored the shared genetic traits and molecular interactions between postmenopausal osteoporosis (POMP) and sarcopenia, both of which substantially degrade elderly health and quality of life. We hypothesized that these motor system diseases overlap in pathophysiology and regulatory mechanisms. Methods. We analyzed microarray data from the Gene Expression Omnibus (GEO) database using weighted gene co-expression network analysis (WGCNA), machine learning, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to identify common genetic factors between POMP and sarcopenia. Further validation was done via differential gene expression in a new cohort. Single-cell analysis identified high expression cell subsets, with mononuclear macrophages in osteoporosis and muscle stem cells in sarcopenia, among others. A competitive endogenous RNA network suggested regulatory elements for these genes. Results. Signal transducer and activator of transcription 3 (STAT3) was notably expressed in both conditions. Single-cell analysis pinpointed specific cells with high STAT3 expression, and microRNA (miRNA)-125a-5p emerged as a potential regulator. Experiments confirmed the crucial role of STAT3 in osteoclast differentiation and muscle proliferation. Conclusion. STAT3 has emerged as a key gene in both POMP and sarcopenia. This insight positions STAT3 as a potential common therapeutic target, possibly improving management strategies for these age-related diseases. Cite this article: Bone Joint Res 2024;13(8):411–426


The Bone & Joint Journal
Vol. 96-B, Issue 3 | Pages 291 - 298
1 Mar 2014
Murray IR Corselli M Petrigliano FA Soo C Péault B

The ability of mesenchymal stem cells (MSCs) to differentiate in vitro into chondrocytes, osteocytes and myocytes holds great promise for tissue engineering. Skeletal defects are emerging as key targets for treatment using MSCs due to the high responsiveness of bone to interventions in animal models. Interest in MSCs has further expanded in recognition of their ability to release growth factors and to adjust immune responses. Despite their increasing application in clinical trials, the origin and role of MSCs in the development, repair and regeneration of organs have remained unclear. Until recently, MSCs could only be isolated in a process that requires culture in a laboratory; these cells were being used for tissue engineering without understanding their native location and function. MSCs isolated in this indirect way have been used in clinical trials and remain the reference standard cellular substrate for musculoskeletal engineering. The therapeutic use of autologous MSCs is currently limited by the need for ex vivo expansion and by heterogeneity within MSC preparations. The recent discovery that the walls of blood vessels harbour native precursors of MSCs has led to their prospective identification and isolation. MSCs may therefore now be purified from dispensable tissues such as lipo-aspirate and returned for clinical use in sufficient quantity, negating the requirement for ex vivo expansion and a second surgical procedure. In this annotation we provide an update on the recent developments in the understanding of the identity of MSCs within tissues and outline how this may affect their use in orthopaedic surgery in the future. Cite this article: Bone Joint J 2014;96-B:291–8


The Bone & Joint Journal
Vol. 102-B, Issue 10 | Pages 1419 - 1427
3 Oct 2020
Wood D French SR Munir S Kaila R

Aims

Despite the increase in the surgical repair of proximal hamstring tears, there exists a lack of consensus in the optimal timing for surgery. There is also disagreement on how partial tears managed surgically compare with complete tears repaired surgically. This study aims to compare the mid-term functional outcomes in, and operating time required for, complete and partial proximal hamstring avulsions, that are repaired both acutely and chronically.

Methods

This is a prospective series of 156 proximal hamstring surgical repairs, with a mean age of 48.9 years (21.5 to 78). Functional outcomes were assessed preinjury, preoperatively, and postoperatively (six months and minimum three years) using the Sydney Hamstring Origin Rupture Evaluation (SHORE) score. Operating time was recorded for every patient.


Bone & Joint Open
Vol. 1, Issue 6 | Pages 267 - 271
12 Jun 2020
Chang J Wignadasan W Kontoghiorghe C Kayani B Singh S Plastow R Magan A Haddad F

Aims

As the peak of the COVID-19 pandemic passes, the challenge shifts to safe resumption of routine medical services, including elective orthopaedic surgery. Protocols including pre-operative self-isolation, COVID-19 testing, and surgery at a non-COVID-19 site have been developed to minimize risk of transmission. Despite this, it is likely that many patients will want to delay surgery for fear of contracting COVID-19. The aim of this study is to identify the number of patients who still want to proceed with planned elective orthopaedic surgery in this current environment.

Methods

This is a prospective, single surgeon study of 102 patients who were on the waiting list for an elective hip or knee procedure during the COVID-19 pandemic. Baseline characteristics including age, ASA grade, COVID-19 risk, procedure type, surgical priority, and admission type were recorded. The primary outcome was patient consent to continue with planned surgical care after resumption of elective orthopaedic services. Subgroup analysis was also performed to determine if any specific patient factors influenced the decision to proceed with surgery.


Bone & Joint Research
Vol. 4, Issue 7 | Pages 105 - 116
1 Jul 2015
Shea CA Rolfe RA Murphy P

Construction of a functional skeleton is accomplished through co-ordination of the developmental processes of chondrogenesis, osteogenesis, and synovial joint formation. Infants whose movement in utero is reduced or restricted and who subsequently suffer from joint dysplasia (including joint contractures) and thin hypo-mineralised bones, demonstrate that embryonic movement is crucial for appropriate skeletogenesis. This has been confirmed in mouse, chick, and zebrafish animal models, where reduced or eliminated movement consistently yields similar malformations and which provide the possibility of experimentation to uncover the precise disturbances and the mechanisms by which movement impacts molecular regulation. Molecular genetic studies have shown the important roles played by cell communication signalling pathways, namely Wnt, Hedgehog, and transforming growth factor-beta/bone morphogenetic protein. These pathways regulate cell behaviours such as proliferation and differentiation to control maturation of the skeletal elements, and are affected when movement is altered. Cell contacts to the extra-cellular matrix as well as the cytoskeleton offer a means of mechanotransduction which could integrate mechanical cues with genetic regulation. Indeed, expression of cytoskeletal genes has been shown to be affected by immobilisation. In addition to furthering our understanding of a fundamental aspect of cell control and differentiation during development, research in this area is applicable to the engineering of stable skeletal tissues from stem cells, which relies on an understanding of developmental mechanisms including genetic and physical criteria. A deeper understanding of how movement affects skeletogenesis therefore has broader implications for regenerative therapeutics for injury or disease, as well as for optimisation of physical therapy regimes for individuals affected by skeletal abnormalities.

Cite this article: Bone Joint Res 2015;4:105–116


Bone & Joint 360
Vol. 5, Issue 1 | Pages 12 - 14
1 Feb 2016


Bone & Joint Research
Vol. 3, Issue 6 | Pages 193 - 202
1 Jun 2014
Hast MW Zuskov A Soslowsky LJ

Tendinopathy is a debilitating musculoskeletal condition which can cause significant pain and lead to complete rupture of the tendon, which often requires surgical repair. Due in part to the large spectrum of tendon pathologies, these disorders continue to be a clinical challenge. Animal models are often used in this field of research as they offer an attractive framework to examine the cascade of processes that occur throughout both tendon pathology and repair. This review discusses the structural, mechanical, and biological changes that occur throughout tendon pathology in animal models, as well as strategies for the improvement of tendon healing.

Cite this article: Bone Joint Res 2014;3:193–202.


The Bone & Joint Journal
Vol. 97-B, Issue 5 | Pages 582 - 589
1 May 2015
Brennan SA Ní Fhoghlú C Devitt BM O’Mahony FJ Brabazon D Walsh A

Implant-associated infection is a major source of morbidity in orthopaedic surgery. There has been extensive research into the development of materials that prevent biofilm formation, and hence, reduce the risk of infection. Silver nanoparticle technology is receiving much interest in the field of orthopaedics for its antimicrobial properties, and the results of studies to date are encouraging. Antimicrobial effects have been seen when silver nanoparticles are used in trauma implants, tumour prostheses, bone cement, and also when combined with hydroxyapatite coatings. Although there are promising results with in vitro and in vivo studies, the number of clinical studies remains small. Future studies will be required to explore further the possible side effects associated with silver nanoparticles, to ensure their use in an effective and biocompatible manner. Here we present a review of the current literature relating to the production of nanosilver for medical use, and its orthopaedic applications.

Cite this article: Bone Joint J 2015; 97-B:582–9.


The Bone & Joint Journal
Vol. 96-B, Issue 6 | Pages 829 - 836
1 Jun 2014
Ferguson JY Dudareva M Riley ND Stubbs D Atkins BL McNally MA

We report our experience using a biodegradable calcium sulphate antibiotic carrier containing tobramycin in the surgical management of patients with chronic osteomyelitis. The patients were reviewed to determine the rate of recurrent infection, the filling of bony defects, and any problems with wound healing. A total of 193 patients (195 cases) with a mean age of 46.1 years (16.1 to 82.0) underwent surgery. According to the Cierny–Mader classification of osteomyelitis there were 12 type I, 1 type II, 144 type III and 38 type IV cases. The mean follow-up was 3.7 years (1.3 to 7.1) with recurrent infection occurring in 18 cases (9.2%) at a mean of 10.3 months post-operatively (1 to 25.0). After further treatment the infection resolved in 191 cases (97.9%). Prolonged wound ooze (longer than two weeks post-operatively) occurred in 30 cases (15.4%) in which there were no recurrent infection. Radiographic assessment at final follow-up showed no filling of the defect with bone in 67 (36.6%), partial filling in 108 (59.0%) and complete filling in eight (4.4%). A fracture occurred in nine (4.6%) of the treated osteomyelitic segments at a mean of 1.9 years (0.4 to 4.9) after operation.

We conclude that Osteoset T is helpful in the management of patients with chronic osteomyelitis, but the filling of the defect in bone is variable. Prolonged wound ooze is usually self-limiting and not associated with recurrent infection.

Cite this article: Bone Joint J 2014; 96-B:829–36


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 10 | Pages 1427 - 1432
1 Oct 2012
Chassanidis CG Malizos KN Varitimidis S Samara S Koromila T Kollia P Dailiana Z

Periosteum is important for bone homoeostasis through the release of bone morphogenetic proteins (BMPs) and their effect on osteoprogenitor cells. Smoking has an adverse effect on fracture healing and bone regeneration. The aim of this study was to evaluate the effect of smoking on the expression of the BMPs of human periosteum. Real-time polymerase chain reaction was performed for BMP-2,-4,-6,-7 gene expression in periosteal samples obtained from 45 fractured bones (19 smokers, 26 non-smokers) and 60 non-fractured bones (21 smokers, 39 non-smokers). A hierarchical model of BMP gene expression (BMP-2 > BMP-6 > BMP-4 > BMP-7) was demonstrated in all samples. When smokers and non-smokers were compared, a remarkable reduction in the gene expression of BMP-2, -4 and -6 was noticed in smokers. The comparison of fracture and non-fracture groups demonstrated a higher gene expression of BMP-2, -4 and -7 in the non-fracture samples. Within the subgroups (fracture and non-fracture), BMP gene expression in smokers was either lower but without statistical significance in the majority of BMPs, or similar to that in non-smokers with regard to BMP-4 in fracture and BMP-7 in non-fracture samples. In smokers, BMP gene expression of human periosteum was reduced, demonstrating the effect of smoking at the molecular level by reduction of mRNA transcription of periosteal BMPs. Among the BMPs studied, BMP-2 gene expression was significantly higher, highlighting its role in bone homoeostasis.


Bone & Joint Research
Vol. 1, Issue 3 | Pages 36 - 41
1 Mar 2012
Franklin SL Jayadev C Poulsen R Hulley P Price A

Objectives

Surgical marking during tendon surgery is often used for technical and teaching purposes. This study investigates the effect of a gentian violet ink marker pen, a common surgical marker, on the viability of the tissue and cells of tendon.

Methods

In vitro cell and tissue methods were used to test the viability of human hamstring explants and the migrating tenocytes in the presence of the gentian violet ink.