Objectives. The aim of this study was to investigate the effect of hyperglycaemia on oxidative stress markers and inflammatory and matrix gene expression within tendons of normal and
Recently, high failure rates of metal-on-metal (MOM) hip implants have raised concerns of cobalt toxicity. Adverse reactions occur to cobalt nanoparticles (CoNPs) and cobalt ions (Co2+) during wear of MOM hip implants, but the toxic mechanism is not clear. To evaluate the protective effect of zinc ions (Zn2+), Balb/3T3 mouse fibroblast cells were pretreated with 50 μM Zn2+ for four hours. The cells were then exposed to different concentrations of CoNPs and Co2+ for four hours, 24 hours and 48 hours. The cell viabilities, reactive oxygen species (ROS) levels, and inflammatory cytokines were measured.Objectives
Methods
Rotator cuff tears are among the most common and debilitating
upper extremity injuries. Chronic cuff tears result in atrophy and
an infiltration of fat into the muscle, a condition commonly referred
to as ‘fatty degeneration’. While stem cell therapies hold promise
for the treatment of cuff tears, a suitable immunodeficient animal
model that could be used to study human or other xenograft-based
therapies for the treatment of rotator cuff injuries had not previously
been identified. A full-thickness, massive supraspinatus and infraspinatus tear
was induced in adult T-cell deficient rats. We hypothesised that,
compared with controls, 28 days after inducing a tear we would observe
a decrease in muscle force production, an accumulation of type IIB
fibres, and an upregulation in the expression of genes involved
with muscle atrophy, fibrosis and inflammation.Objectives
Methods
The period of post-operative treatment before surgical wounds
are completely closed remains a key window, during which one can
apply new technologies that can minimise complications. One such
technology is the use of negative pressure wound therapy to manage
and accelerate healing of the closed incisional wound (incisional
NPWT). We undertook a literature review of this emerging indication
to identify evidence within orthopaedic surgery and other surgical
disciplines. Literature that supports our current understanding
of the mechanisms of action was also reviewed in detail. Objectives
Methods
This study was designed to test the hypothesis
that the sensory innervation of bone might play an important role
in sensing and responding to low-intensity pulsed ultrasound and
explain its effect in promoting fracture healing. In 112 rats a
standardised mid-shaft tibial fracture was created, supported with
an intramedullary needle and divided into four groups of 28. These
either had a sciatic neurectomy or a patellar tendon resection as
control, and received the ultrasound or not as a sham treatment.
Fracture union, callus mineralisation and remodelling were assessed using
plain radiography, peripheral quantitative computed tomography and
histomorphology. Daily ultrasound treatment significantly increased the rate of
union and the volumetric bone mineral density in the fracture callus
in the neurally intact rats (p = 0.025), but this stimulating effect
was absent in the rats with sciatic neurectomy. Histomorphology
demonstrated faster maturation of the callus in the group treated
with ultrasound when compared with the control group. The results
supported the hypothesis that intact innervation plays an important
role in allowing low-intensity pulsed ultrasound to promote fracture
healing.
This study aims to assess the correlation of CT-based structural
rigidity analysis with mechanically determined axial rigidity in
normal and metabolically diseased rat bone. A total of 30 rats were divided equally into normal, ovariectomized,
and partially nephrectomized groups. Cortical and trabecular bone
segments from each animal underwent micro-CT to assess their average
and minimum axial rigidities using structural rigidity analysis.
Following imaging, all specimens were subjected to uniaxial compression
and assessment of mechanically-derived axial rigidity.Objectives
Methods
We investigated the effect of progesterone on the nerve during lengthening of the limb in rats. The sciatic nerves of rats were elongated by leg lengthening for ten days at 3 mm per day. On alternate days between the day after the operation and nerve dissection, the progesterone-treated group received subcutaneous injections of 1 mg progesterone in sesame oil and the control group received oil only. On the fifth, tenth and 17th day, the sciatic nerves were excised at the midpoint of the femur and the mRNA expression level of myelin protein P0 was analysed by quantitative real time polymerase chain reaction. On day 52 nodal length was examined by electron microscopy, followed by an examination of the compound muscle action potential (C-MAP) amplitude and the motor conduction velocity (MCV) of the tibial nerve on days 17 and 52. The P0 (a major myelin glycoprotein) mRNA expression level in the progesterone-treated group increased by 46.6% and 38.7% on days five and ten, respectively. On day 52, the nodal length in the progesterone-treated group was smaller than that in the control group, and the MCV of the progesterone-treated group had been restored to normal. Progesterone might accelerate the restoration of demyelination caused by nerve elongation by activating myelin synthesis.